minindex() — Indices of minimums and maximums

Description

minindex(v, k, i, w) returns in i and w the indices of the k minimums of v.
maxindex(v, k, i, w) does the same, except that it returns the indices of the k maximums.
minindex() may be called with k < 0; it is then equivalent to maxindex().
maxindex() may be called with k < 0; it is then equivalent to minindex().

Syntax

void minindex(real vector v, real scalar k, i, w)
void maxindex(real vector v, real scalar k, i, w)

Results are returned in i and w.
i will be a real colvector.
w will be a $K \times 2$ real matrix, $K \leq |k|$.

Remarks and examples

Remarks are presented under the following headings:

Use of functions when v has all unique values
Use of functions when v has repeated (tied) values
Summary

Remarks are cast in terms of minindex() but apply equally to maxindex().

Use of functions when v has all unique values

Consider v = (3, 1, 5, 7, 6).

1. minindex(v, 1, i, w) returns i = 2, which means that v[2] is the minimum value in v.

2. minindex(v, 2, i, w) returns i = (2, 1)', which means that v[2] is the minimum value of v and that v[1] is the second minimum.

...

5. minindex(v, 5, i, w) returns i = (2, 1, 3, 5, 4)', which means that the ordered values in v are v[2], v[1], v[3], v[5], and v[4].
6. minindex(v, 6, i, w), minindex(v, 7, i, w), and so on, return the same as (5), because there are only five minimums in a five-element vector.

When v has unique values, the values returned in w are irrelevant.

- In (1), w will be (1, 1).
- In (2), w will be (1, 1, 2, 1).
- ...
- In (5), w will be (1, 1, 2, 1, 3, 1, 4, 1, 5, 1).

The second column of w records the number of tied values. Since the values in v are unique, the second column of w will be ones. If you have a problem where you are uncertain whether the values in v are unique, code

```r
if (!allof(w[, 2], 1)) {
    /* uniqueness assumption false */
}
```

Use of functions when v has repeated (tied) values

Consider v = (3, 2, 3, 2, 3, 3).

1. minindex(v, 1, i, w) returns i = (2, 4)', which means that there is one minimum value and that it is repeated in two elements of v, namely, v[2] and v[4].

Here, w will be (1, 2), but you can ignore that. There are two values in i corresponding to the same minimum.

When k == 1, rows(i) equals the number of observations in v corresponding to the minimum, as does w[1, 2].

2. minindex(v, 2, i, w) returns i = (2, 4, 1, 3, 5, 6)' and w = (1, 2, 3, 4).

Begin with w. The first row of w is (1, 2), which states that the indices of the first minimums of v start at i[1] and consist of two elements. Thus the indices of the first minimums are i[1] and i[2] (the minimums are v[i[1]] and v[i[2]], which of course are equal).

The second row of w is (3, 4), which states that the indices of the second minimums of v start at i[3] and consist of four elements: i[3], i[4], i[5], and i[6] (which are 1, 3, 5, and 6).

In summary, rows(w) records the number of minimums returned. w[m, 1] records where in i the mth minimum begins (it begins at i[w[m, 1]]). w[m, 2] records the total number of tied values. Thus one could step across the minimums and the tied values by coding

```r
minindex(v, k, i, w)
for (m=1; m<rows(w); m++) {
    for (j=w[m, 1]; j<w[m, 1]+w[m, 2]; j++) {
        /* i[j] is the index in v of an mth minimum */
    }
}
```

3. minindex(v, 3, i, w), minindex(v, 4, i, w), and so on, return the same as (2) because, with v = (3, 2, 3, 2, 3, 3), there are only two minimums.
Summary

Consider \texttt{minindex}(v, k, i, w). Returned will be

\[
 w = \begin{bmatrix}
 i_1 & n_1 \\
 i_2 & n_2 \\
 \vdots & \vdots
 \end{bmatrix},
 \quad w : K \times 2, \quad K \leq |k|
\]

\[
 i = \begin{bmatrix}
 j_1 \\
 j_2 \\
 j_3 \\
 j_4 \\
 \vdots
 \end{bmatrix},
 \quad \left\{ \begin{array}{c}
 \text{has } n_1 \text{ values} \\
 \text{has } n_2 \text{ values}
 \end{array} \right.
\]

\[
 i : 1 \times m, \quad m = n_1 + n_2 + \ldots
\]

\(j_1, j_2, \ldots\), are indices into \(v\).

Conformability

\texttt{minindex}(v, k, i, w), \texttt{maxindex}(v, k, i, w):

\textit{input:}

\[
 v: \quad n \times 1 \text{ or } 1 \times n
\]

\[
 k: \quad 1 \times 1
\]

\textit{output:}

\[
 i: \quad L \times 1, \quad L \geq K
\]

\[
 w: \quad K \times 2, \quad K \leq |k|
\]

Diagnostics

\texttt{minindex}(v, k, i, w) and \texttt{maxindex}(v, k, i, w) abort with error if \(i\) or \(w\) is a view.

In \texttt{minindex}(v, k, i, w) and \texttt{maxindex}(v, k, i, w), missing values in \(v\) are ignored in obtaining minimums and maximums.

In the examples above, we have shown input vector \(v\) as a row vector. It can also be a column vector; it makes no difference.

In \texttt{minindex}(v, k, i, w), input argument \(k\) specifies the number of minimums to be obtained. \(k\) may be zero. If \(k\) is negative, \(-k\) maximums are obtained.

Similarly, in \texttt{maxindex}(v, k, i, w), input argument \(k\) specifies the number of maximums to be obtained. \(k\) may be zero. If \(k\) is negative, \(-k\) minimums are obtained.

\texttt{minindex()} and \texttt{maxindex()} are designed for use when \(k\) is small relative to \texttt{length}(v); otherwise, see \texttt{order()} in \([M-5]\) \texttt{sort}().
Also see

[M-5] minmax() — Minimums and maximums

[M-4] Utility — Matrix utility functions