Description

minindex(v, k, i, w) returns in i and w the indices of the k minimums of v.

maxindex(v, k, i, w) does the same, except that it returns the indices of the k maximums.

minindex() may be called with $k < 0$; it is then equivalent to maxindex().

maxindex() may be called with $k < 0$; it is then equivalent to minindex().

Syntax

```plaintext
void minindex(real vector v, real scalar k, i, w)
void maxindex(real vector v, real scalar k, i, w)
```

Results are returned in i and w.

- i will be a real colvector.
- w will be a $K \times 2$ real matrix, $K \leq |k|$.

Remarks and examples

Remarks are presented under the following headings:

- Use of functions when v has all unique values
- Use of functions when v has repeated (tied) values
- Summary

Remarks are cast in terms of minindex() but apply equally to maxindex().

Use of functions when v has all unique values

Consider $v = (3, 1, 5, 7, 6)$.

1. minindex(v, 1, i, w) returns $i = 2$, which means that $v[2]$ is the minimum value in v.
2. minindex(v, 2, i, w) returns $i = (2, 1)'$, which means that $v[2]$ is the minimum value of v and that $v[1]$ is the second minimum.
 ...
5. minindex(v, 5, i, w) returns $i = (2, 1, 3, 5, 4)'$, which means that the ordered values in v are $v[2], v[1], v[3], v[5]$, and $v[4]$.

1
minindex(\(v, 6, i, w\)), minindex(\(v, 7, i, w\)), and so on, return the same as (5), because there are only five minimums in a five-element vector.

When \(v\) has unique values, the values returned in \(w\) are irrelevant.

- In (1), \(w\) will be \((1, 1)\).
- In (2), \(w\) will be \((1, 1\ 2, 1)\).

...
- In (5), \(w\) will be \((1, 1\ 2, 1\ 3, 1\ 4, 1\ 5, 1)\).

The second column of \(w\) records the number of tied values. Since the values in \(v\) are unique, the second column of \(w\) will be ones. If you have a problem where you are uncertain whether the values in \(v\) are unique, code

```r
if (!allof(w[,2], 1)) {
    /* uniqueness assumption false */
}
```

Use of functions when \(v\) has repeated (tied) values

Consider \(v = (3, 2, 3, 2, 3, 3)\).

1. minindex(\(v, 1, i, w\)) returns \(i = (2, 4)^\prime\), which means that there is one minimum value and that it is repeated in two elements of \(v\), namely, \(v[2]\) and \(v[4]\).

 Here, \(w\) will be \((1, 2)\), but you can ignore that. There are two values in \(i\) corresponding to the same minimum.

 When \(k==1\), rows(\(i\)) equals the number of observations in \(v\) corresponding to the minimum, as does \(w[1, 2]\).

2. minindex(\(v, 2, i, w\)) returns \(i = (2, 4, 1, 3, 5, 6)^\prime\) and \(w = (1, 2\ 3, 4)\).

 Begin with \(w\). The first row of \(w\) is \((1, 2)\), which states that the indices of the first minimums of \(v\) start at \(i[1]\) and consist of two elements. Thus the indices of the first minimums are \(i[1]\) and \(i[2]\) (the minimums are \(v[i[1]]\) and \(v[i[2]]\), which of course are equal).

 The second row of \(w\) is \((3, 4)\), which states that the indices of the second minimums of \(v\) start at \(i[3]\) and consist of four elements: \(i[3]\), \(i[4]\), \(i[5]\), and \(i[6]\) (which are 1, 3, 5, and 6).

 In summary, rows(\(w\)) records the number of minimums returned. \(w[m, 1]\) records where in \(i\) the \(m\)th minimum begins (it begins at \(i[w[m, 1]]\)). \(w[m, 2]\) records the total number of tied values. Thus one could step across the minimums and the tied values by coding

```r
minindex(v, k, i, w)
for (m=1; m<=rows(w); m++) {
    for (j=w[m,1]; j<w[m,1]+w[m,2]; j++) {
        /* i[j] is the index in v of an mth minimum */
    }
}
```

3. minindex(\(v, 3, i, w\)), minindex(\(v, 4, i, w\)), and so on, return the same as (2) because, with \(v = (3, 2, 3, 2, 3, 3)\), there are only two minimums.
Consider \(\text{minindex}(v, k, i, w) \). Returned will be

\[
\begin{bmatrix}
i_1 & n_1 \\
i_2 & n_2 \\
\vdots & \vdots
\end{bmatrix}
\]

\(w : K \times 2, \ K \leq |k| \)

\[
\begin{bmatrix}
j_1 \\
j_2 \\
j_3 \\
\vdots
\end{bmatrix} \leftarrow i[i_1] \text{ is start of first minimums}
\]

\(\{ \) has \(n_1 \) values

\[
\begin{bmatrix}
j_4 \\
\vdots
\end{bmatrix} \leftarrow i[i_2] \text{ is start of second minimums}
\]

\(\{ \) has \(n_2 \) values

\(i : 1 \times m, \ m = n_1 + n_2 + \cdots \)

\(j_1, j_2, \ldots, \) are indices into \(v \).

Conformability

\(\text{minindex}(v, k, i, w), \text{maxindex}(v, k, i, w) : \)

input:

\[
v: \ n \times 1 \text{ or } 1 \times n
\]

\[
k: \ 1 \times 1
\]

output:

\[
i: \ L \times 1, \ L \geq K
\]

\[
w: \ K \times 2, \ K \leq |k|
\]

Diagnostics

\(\text{minindex}(v, k, i, w) \) and \(\text{maxindex}(v, k, i, w) \) abort with error if \(i \) or \(w \) is a view.

In \(\text{minindex}(v, k, i, w) \) and \(\text{maxindex}(v, k, i, w) \), missing values in \(v \) are ignored in obtaining minimums and maximums.

In the examples above, we have shown input vector \(v \) as a row vector. It can also be a column vector; it makes no difference.

In \(\text{minindex}(v, k, i, w) \), input argument \(k \) specifies the number of minimums to be obtained. \(k \) may be zero. If \(k \) is negative, \(-k \) maximums are obtained.

Similarly, in \(\text{maxindex}(v, k, i, w) \), input argument \(k \) specifies the number of maximums to be obtained. \(k \) may be zero. If \(k \) is negative, \(-k \) minimums are obtained.

\(\text{minindex()} \) and \(\text{maxindex()} \) are designed for use when \(k \) is small relative to \(\text{length}(v) \); otherwise, see \(\text{order()} \) in [M-5] sort().
Also see

[M-5] minmax() — Minimums and maximums

[M-4] Utility — Matrix utility functions