Lmatrix() — Elimination matrix

<table>
<thead>
<tr>
<th>Description</th>
<th>Syntax</th>
<th>Remarks and examples</th>
<th>Conformability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Lmatrix(n) returns the \(n(n + 1)/2 \times n^2 \) elimination matrix \(L \) for which \(L \cdot \text{vec}(X) = \text{vech}(X) \), where \(X \) is an \(n \times n \) symmetric matrix.

Syntax

```plaintext
real matrix Lmatrix(real scalar n)
```

Remarks and examples

Elimination matrices are frequently used in computing derivatives of functions of symmetric matrices. Section 9.6 of Lütkepohl (1996) lists many useful properties of elimination matrices.

Conformability

Lmatrix(n):

<table>
<thead>
<tr>
<th>(n)</th>
<th>(1 \times 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>result:</td>
<td>(n(n + 1)/2 \times n^2)</td>
</tr>
</tbody>
</table>

Diagnostics

Lmatrix(n) aborts with error if \(n \) is less than 0 or is missing. \(n \) is interpreted as \(\text{trunc}(n) \).

Reference

Also see

[M-5] Dmatrix() — Duplication matrix

[M-5] Kmatrix() — Commutation matrix

[M-5] vec() — Stack matrix columns

[M-4] standard — Functions to create standard matrices