
LinearProgram() — Linear programming

Description Syntax Remarks and examples Conformability
Diagnostics References Also see

Description
The LinearProgram() class finds the parameter vector that minimizes or maximizes the linear objective

function subject to some restrictions. The restrictions may be linear equality constraints, linear inequality

constraints, lower bounds, or upper bounds.

Syntax
Syntax is presented under the following headings:

Step 1: Initialization
Step 2: Definition of linear programming problem
Step 3: Perform optimization
Step 4: Display or obtain results
Utility function for use in all steps
Definition of q
Functions defining the linear programming problem

q.setCoefficients() and q.getCoefficients()
q.setMaxOrMin() and q.getMaxOrMin()
q.setEquality() and q.getEquality()
q.setInequality() and q.getInequality()
q.setBounds() and q.getBounds()
q.setMaxiter() and q.getMaxiter()
q.setTol() and q.getTol()
q.setTrace() and q.getTrace()

Performing optimization
q.optimize()

Functions for obtaining results
q.parameters()
q.value()
q.iterations()
q.converged()
q.errorcode(), q.errortext(), and q.returncode()

Utility function
q.query()

Step 1: Initialization

q = LinearProgram()

1

https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetCoefficients
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetMaxOrMin
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetEquality
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetInequality
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetBounds
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetMaxiter
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetTol
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetTrace
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxoptimize()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxparameters()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxvalue()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxiterations()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxconverged()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxerrorcode
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxquery()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq

LinearProgram() — Linear programming 2

Step 2: Definition of linear programming problem
void q.setCoefficients(real rowvector coef)

void q.setMaxOrMin(string scalar maxormin)

void q.setEquality(real matrix ecmat, real colvector rhs)

void q.setInequality(real matrix iemat, real colvector rhs)

void q.setBounds(real rowvector lowerbd, real rowvector upperbd)

void q.setMaxiter(real scalar maxiter)

void q.setTol(real scalar tol)

void q.setTrace(string scalar trace)

real rowvector q.getCoefficients()

string scalar q.getMaxOrMin()

real matrix q.getEquality()

real matrix q.getInequality()

real matrix q.getBounds()

real scalar q.getMaxiter()

real scalar q.getTol()

string scalar q.getTrace()

Step 3: Perform optimization
real scalar q.optimize()

Step 4: Display or obtain results
real rowvector q.parameters()

real scalar q.value()

real scalar q.iterations()

real scalar q.converged()

real scalar q.errorcode()

string scalar q.errortext()

real scalar q.returncode()

https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetCoefficients
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetMaxOrMin
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetEquality
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetInequality
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetBounds
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetMaxiter
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetTol
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetTrace
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetCoefficients
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetMaxOrMin
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetEquality
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetInequality
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetBounds
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetMaxiter
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetTol
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxsetTrace
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxoptimize()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxparameters()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxvalue()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxiterations()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxconverged()
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxerrorcode
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxerrorcode
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxerrorcode

LinearProgram() — Linear programming 3

Utility function for use in all steps
void q.query()

Definition of q

Avariable of type LinearProgram is called an instance of the LinearProgram() class. q is an instance

of LinearProgram(), a vector of instances, or a matrix of instances. If you are working interactively,

you can create an instance of LinearProgram() by typing

q = LinearProgram()

For a row vector of n LinearProgram() instances, type

q = LinearProgram(n)

For an m × n matrix of LinearProgram() instances, type

q = LinearProgram(m, n)

In a function, you would declare one instance of the LinearProgram() class q as a scalar.

void myfunc()
{

class LinearProgram scalar q
q = LinearProgram()
...

}

Within a function, you can declare q as a row vector of n instances by typing

void myfunc()
{

class LinearProgram rowvector q
q = LinearProgram(n)
...

}

For an m × n matrix of instances, type

void myfunc()
{

class LinearProgram matrix q
q = LinearProgram(m, n)
...

}

https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()SyntaxDefinitionofq
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Syntaxquery()
https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryinstance

LinearProgram() — Linear programming 4

Functions defining the linear programming problem

At a minimum, you need to tell the LinearProgram() class about the coefficients of the linear objec-

tive function you wish to optimize. Optionally, you may specify whether to minimize or maximize the

objective function, any equality constraints, any inequality constraints, any lower bounds, and any upper

bounds. You may also specify the maximum number of iterations allowed, the convergence tolerance,

and whether or not to print computational details.

Each pair of functions includes a q.set function that specifies a setting and a q.get function that returns

the current setting.

q.setCoefficients() and q.getCoefficients()

q.setCoefficients(coef) sets the linear objective function coefficients. The coefficients must be set

before optimization.

q.getCoefficients() returns the linear objective function coefficients (or an empty vector if not spec-

ified).

q.setMaxOrMin() and q.getMaxOrMin()

q.setMaxOrMin(maxormin) sets whether to perform maximization or minimization. maxorminmay be

”max” or ”min”. The default is maximization (”max”).

q.getMaxOrMin() returns ”max” or ”min” according to the current setting.

q.setEquality() and q.getEquality()

The equality constraints for a linear programming problem are in the form of linear system AECx = bEC,

where AEC is the equality-constraints (EC) matrix and bEC is the right-hand-side (RHS) vector.

q.setEquality(ecmat, rhs) sets the EC matrix and the RHS vector.

q.getEquality() returns a matrix containing both the EC matrix and the RHS vector. The RHS vector

is the last column of the returned matrix. (An empty matrix is returned if equality constraints were not

specified.)

q.setInequality() and q.getInequality()

The inequality constraints for a linear programming problem are in the form of linear systemAIEx ≤ bIE,

where AIE is the inequality-constraints (IE) matrix and bIE is the RHS vector.

q.setInequality(iemat, rhs) sets the IE matrix and the RHS vector.

q.getInequality() returns a matrix containing both the IEmatrix and the RHS vector. The RHS vector

is the last column of the returned matrix. (An empty matrix is returned if inequality constraints were not

specified.)

LinearProgram() — Linear programming 5

q.setBounds() and q.getBounds()

The parameters may have lower bounds or upper bounds. By default, the lower bound is −∞ and the

upper bound is ∞.

q.setBounds(lowerbd, upperbd) sets the lower and upper bounds. Using a missing value as the lower

bound indicates −∞, and using a missing value as the upper bound indicates ∞.

q.getBounds() returns a two-row matrix containing the lower and upper bounds.

q.setMaxiter() and q.getMaxiter()

q.setMaxiter(maxiter) specifies the maximum number of iterations, which must be an integer greater

than 0. The default value of maxiter is 16000.

q.getMaxiter() returns the current maximum number of iterations.

q.setTol() and q.getTol()

q.setTol(tol) specifies the convergence-criterion tolerance, which must be greater than 0. The default

value of tol is 1e-8.

q.getTol() returns the currently specified tolerance.

q.setTrace() and q.getTrace()

q.setTrace(trace) sets whether or not to print out computation details. trace may be ”on” or ”off”.
The default value is ”off”.

q.getTrace() returns the current trace status.

Performing optimization

q.optimize()

q.optimize() invokes the optimization process and returns the value of the objective function at the

optimum.

Functions for obtaining results

After performing optimization, the functions below provide results including parameters, the value at

the optimum, the number of iterations, whether convergence was achieved, error messages, and return

codes.

q.parameters()

q.parameters() returns the parameter vector that optimizes the objective function; it returns an empty

vector prior to performing the optimization.

LinearProgram() — Linear programming 6

q.value()

q.value() returns the value of the objective function at the optimum; it returns a missing value prior to

performing the optimization.

q.iterations()

q.iterations() returns the number of iterations.

q.converged()

q.converged() returns 1 if the optimization converged and 0 if not.

q.errorcode(), q.errortext(), and q.returncode()

q.errorcode() returns the error code generated during the computation; it returns 0 if no error is found.

q.errortext() returns an error message corresponding to the error code generated during the compu-

tation; it returns an empty string if no error is found.

q.returncode() returns the Stata return code corresponding to the error code generated during the

computation.

The error codes and the corresponding Stata return codes are as follows:

Error Return

code code Error text

1 430 problem is infeasible

2 430 problem is unbounded

3 430 maximum number of iterations has been reached

4 3499 dimensions of coefficients, constraints, and bounds do not conform

5 111 dimension of the parameters is 0

Utility function

You can obtain a report of all settings and results currently stored in a class LinearProgram() instance.

q.query()

q.query() with no return value displays the information stored in the class.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Details about the interior-point method
Examples

LinearProgram() — Linear programming 7

Introduction

The LinearProgram() class is a Mata class for linear programming.

LinearProgram() usesMehrotra’s (1992) predictor-corrector primal-dual method to optimize the linear

programming problems of the form

minx or maxx cx
′

such that AECx
′ = bEC

AIEx
′ ≤ bIE

lowerbd ≤ x ≤ upperbd

where cx′ is the linear objective function, AECx
′ = bEC specifies equality constraints, AIEx

′ ≤ bIE
specifies inequality constraints, lowerbd is the lower bound on x, and upperbd is the upper bound on x.

Mehrotra’s (1992) predictor-corrector primal-dual method is much faster than the traditional simplex

method for large problems. This method is a version of the interior-point method that is widely used

today instead of the older simplex method that was widely used in the past. This speed comes at the cost

of some accuracy, but the inaccuracy can be removed in practice by lowering the convergence tolerance.

Lowering the convergence tolerance will produce answers that are practically the same as those produced

by the simplex method.

Details about the interior-point method

The simplex method breaks down for large problems, because it repeatedly checks a list of candidate

solutions. When the list gets too large, the solution time becomes infeasible.

Instead of repeatedly checking a list of candidate solutions, the interior-point method solves a series of

approximations to the original problem. This approximation-based approach makes it feasible to solve

large problems that are not feasibly solved by the simplex algorithm. The interior-point method is also

much faster than the simplex method on the medium-sized and large-sized problems that are common in

statistical applications of linear programming.

Because the simplex algorithm checks a list of candidate solutions, it finds the exact integer solution,

when one exists. In contrast, interior-point algorithms find the exact integer solution plus or minus the

small positive amount 𝜖. Reducing the convergence tolerance reduces 𝜖 to a value that is practically 0.

(Technically, it will be on the order of 10−16.)

See example 1 for an illustration.

For an introduction to class programming in Mata, see [M-2] class.

Examples

To solve a linear programming problem, you first use LinearProgram() to get an instance of the

class. At a minimum, you must also use setCoefficients() to specify the linear objective func-

tion coefficients. In the examples below, we demonstrate both basic and more advanced use of the

LinearProgram() class.

https://www.stata.com/manuals/m-2class.pdf#m-2class

LinearProgram() — Linear programming 8

Example 1: A first example

Consider the following linear programming problem:

max𝑥1,𝑥2
5𝑥1 + 3𝑥2

such that − 𝑥1 + 11𝑥2 = 33
0.5𝑥1 − 𝑥2 ≤ −3
2𝑥1 + 14𝑥2 ≤ 60

2𝑥1 + 𝑥2 ≤ 14.5
𝑥1 − 0.4𝑥2 ≤ 5

𝑥1 ≥ 0
𝑥2 ≥ 0

This problem can be written in matrix form,

maxx cx
′

such that AECx
′ = bEC

AIEx
′ ≤ bIE

x ≥ [0
0]

where c = (5, 3), AEC = (−1, 11), bEC = 33,

AIE =
⎡
⎢⎢
⎣

0.5 −1
2 14
2 1
1 −0.4

⎤
⎥⎥
⎦

and bIE =
⎡
⎢⎢
⎣

−3
60

14.5
5

⎤
⎥⎥
⎦

We first define all the coefficients and constraints in matrix form, respectively:

: c = (5, 3)
:
: Aec = (-1, 11)
: bec = 33
:
: Aie = (0.5, -1 \ 2, 14 \ 2, 1 \ 1, -0.4)
: bie = (-3 \ 60 \ 14.5 \ 5)
:
: lowerbd = (0, 0)
: upperbd = (., .)

Here we use missing in the upper bound to indicate an infinite upper bound. (A missing value used in

the lower bound indicates a minus infinite lower bound.)

LinearProgram() — Linear programming 9

We generate q as an instance of the class:

: q = LinearProgram()

Then we initialize the coefficients and constraints:

: q.setCoefficients(c)
: q.setEquality(Aec, bec)
: q.setInequality(Aie, bie)
: q.setBounds(lowerbd, upperbd)

Now we can solve the problem:

: q.optimize()
9.000000001

We can display the optimal parameters after the solution is found:

: q.parameters()
1 2

1 9.89562e-11 3

As mentioned above, the exact solution for this problem is (0, 3), and the simplex method would find it.

Lowering the convergence tolerance produces a solution that is practically (0, 3).
: q.setTol(1e-12)
: q.optimize()

9
: q.parameters()

1 2

1 4.94781e-15 3

Example 2: Display information about the linear programming problem

Each instance of the class contains a lot of information about the problem at hand. You can use the mem-

ber function q.query() to display this information. Several other member functions display specific

pieces of information. This example illustrates how to use these functions.

Consider the following linear programming problem:

min𝑥1,𝑥2,𝑥3
𝑥1 + 𝑥2

such that 𝑥1 + 𝑥2 + 𝑥3 = 5
𝑥1 − 𝑥2 + 2𝑥3 = 8

𝑥1 ≥ 1
0 ≤ 𝑥2 ≤ 2

𝑥3 ≥ 0

https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()RemarksandexamplesDetailsabouttheinterior-pointmethod

LinearProgram() — Linear programming 10

We can express the problem in matrix form, as we did with the previous example:

: c = (1, 1, 0)
: Aec = (1, 1, 1 \ 1, -1, 2)
: bec = (5 \ 8)
: lowerbd = (1, 0, 0)
: upperbd = (., 2, .)

To calculate the problem, we define the class instance q:

: q = LinearProgram()

We can show all the default values by using q.query() before we perform any initialization or compu-

tation.

: q.query()
Settings for LinearProgram()
Version: 1.00
Problem setup:

Perform maximization of the following problem
Objective function size: 1 x 0
Equality constraint matrix size: 0 x 0
Equality constraint right-hand-side size: 0 x 1
Inequality constraint matrix size: 0 x 0
Inequality constraint right-hand-side size: 0 x 1
Lower bound size: 1 x 0
Upper bound size: 1 x 0

Trace: off
Convergence

Maximum iterations: 16000
Tolerance: 1.0000e-08

Current status
Objective function value: .
Converged: no

Note: The function setCoefficients() has not been called.

Now we initialize the problem with all the information required. First, we define the coefficients of the

objective function:

: q.setCoefficients(c)

Because this is aminimization problem, we use q.setMaxOrMin() to change the setting from the default,

”max”, to ”min”.

: q.setMaxOrMin(”min”)

We then define the equality constraints and bounds, respectively.

: q.setEquality(Aec, bec)
: q.setBounds(lowerbd, upperbd)

LinearProgram() — Linear programming 11

Our default maximum number of iterations is 16,000; Stata will issue a warning message when the

maximum number of iterations has been reached. For illustrative purposes, we set the maximum to 2

here and compute the approximation.

: q.setMaxiter(2)
: q.optimize()
Warning: Maximum number of iterations has been reached.

.

The solution could not be found using only two iterations. Thus, We see a warning, and a missing value

(.) is returned as the value of the objective function.

We switch back to a maximum of 16,000 iterations.

: q.setMaxiter(16000)

We can set the trace to ”on” to see the computation details.

: q.setTrace(”on”)
: q.optimize()
Quadrature trace:
Iteration Current function value Current error estimate

1 5.202919005 3.44331e+00
2 .5872208056 6.08052e-01
3 .3333542428 2.63268e-02
4 .3333333396 1.29229e-06
5 .3333333333 6.46181e-11

1.333333333

We turn off the trace by typing

: q.setTrace(”off”)

Now we can list parameters at the minimum:

: q.parameters()
1 2 3

1 1 .3333333333 3.666666667

We can also display the value of the objective function at the solution.

: q.value()
1.333333333

And, we can display the number of iterations used to find the solution.

: q.iterations()
5

No error was found, so the error code and error message are

: q.errorcode()
0

: q.errortext()

LinearProgram() — Linear programming 12

We can show all the values by using q.query() after the computation:

: q.query()
Settings for LinearProgram()
Version: 1.00
Problem setup:

Perform minimization of the following problem
Objective function size: 1 x 3
Equality constraint matrix size: 2 x 3
Equality constraint right-hand-side size: 2 x 1
Inequality constraint matrix size: 0 x 0
Inequality constraint right-hand-side size: 0 x 1
Lower bound size: 1 x 3
Upper bound size: 1 x 3

Trace: off
Convergence

Maximum iterations: 16000
Tolerance: 1.0000e-08

Current status
Objective function value: 1.33333333
Converged: yes
Iterations: 5

The following three examples use linear programming to solve statistical estimation problems. For some

statistical estimation problems, there are many equivalent ways of specifying the corresponding linear

programming problems. In our examples, we use a common way of specifying each problem.

Example 3: Quantile regression

Linear programming can be used to fit quantile regression models.

We begin with a brief introduction to writing the quantile-regression (QR) estimation problem as a linear

programming problem; see [R] qreg, Koenker and Hallock (2001), and Koenker and Bassett (1978) for

more details.

Minimizing the sum of squared residuals produces an estimator of the coefficients in a mean regression

model. Analogously, minimizing the sum of the check function of the residuals produces an estimator

of the coefficients in a QR model. For the QR model, we estimate the coefficients of the 𝜏th conditional
quantile function (β𝜏) by solving

minβ𝜏

𝑛
∑
𝑖=1

𝑐𝜏(𝑦𝑖 − x𝑖β
′
𝜏)

where 𝑦𝑖 is the 𝑖th observation of the outcome y, x𝑖 is the 𝑖th observation of the vector of covariates x, 𝑛
is the number of observations, and 𝑐𝜏(⋅) is the check function. The check function 𝑐𝜏(𝑟𝑖) of the residual
𝑟𝑖 = 𝑦𝑖 − x𝑖β

′
𝜏 is given by

𝑐𝜏(𝑟𝑖) = {𝜏 − I(𝑟𝑖 < 0)}𝑟𝑖

https://www.stata.com/manuals/rqreg.pdf#rqreg

LinearProgram() — Linear programming 13

where

I(𝑟𝑖 < 0) = {1 if 𝑟𝑖 < 0
0 otherwise

This minimization problem for the estimator of the coefficients in the QR model can be written as the

following linear programming problem:

minβ𝜏,u,v 𝜏1′
𝑛u + (1 − 𝜏)1′

𝑛v

such that y − Xβ𝜏 = u − v

u ≥ 0𝑛

v ≥ 0𝑛

where 1𝑛 is a vector of 1s, 0𝑛 is a vector of 0s, X is the matrix of observations of the covariates, y is the

vector of observations of the outcome, and u and v are added to the inequality constraint to transform it

into an equality (in other words, they are slack variables).

The above problem can be rewritten as

minβ𝜏,u,v c
⎡⎢
⎣

β𝜏
u

v

⎤⎥
⎦

such that AEC
⎡⎢
⎣

β𝜏
u

v

⎤⎥
⎦

= y

u ≥ 0𝑛

v ≥ 0𝑛

where

c = ⎡⎢
⎣

0𝑘
𝜏1𝑛

(1 − 𝜏)1𝑛

⎤⎥
⎦

′

and AEC = [X I𝑛 −I𝑛]

where 𝑘 is the number of covariates in x and I𝑛 is the identity matrix.

Now let us see an example using linear programming for quantile regression.

We use an extract of the dataset on chief-executive officer (CEO) salaries from Wooldridge (2020). This

extract was created and is distributed by the Boston College Economics department (see Wooldridge

datasets). In addition to salary (salary), the dataset also contains information on the CEOs’ age (age),
whether they completed college (college) or graduate school (grad), their years of experience with the
company (comten) and as CEOs (ceoten), and the company’s current profits as a percentage of sales

(profmarg).

. use https://www.stata-press.com/data/r19/ceosal2
(CEO salaries)

http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html
http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html

LinearProgram() — Linear programming 14

Let’s begin by using qreg to perform a quantile regression for the 75th quantile using salary as the

dependent variable, and age, college, grad, comten, ceoten, and profmarg as independent variables.

. qreg salary age college grad comten ceoten profmarg, quantile(.75)
Iteration 1: WLS sum of weighted deviations = 34405.44
Iteration 1: Sum of abs. weighted deviations = 34538.146
Iteration 2: Sum of abs. weighted deviations = 34103.361
Iteration 3: Sum of abs. weighted deviations = 33839.987
Iteration 4: Sum of abs. weighted deviations = 33408.942
Iteration 5: Sum of abs. weighted deviations = 33395.286
Iteration 6: Sum of abs. weighted deviations = 32994.187
Iteration 7: Sum of abs. weighted deviations = 32604.049
Iteration 8: Sum of abs. weighted deviations = 32458.071
Iteration 9: Sum of abs. weighted deviations = 32278.694
Iteration 10: Sum of abs. weighted deviations = 32164.004
Iteration 11: Sum of abs. weighted deviations = 32146.02
Iteration 12: Sum of abs. weighted deviations = 32098.911
Iteration 13: Sum of abs. weighted deviations = 32091.43
Iteration 14: Sum of abs. weighted deviations = 32054.647
Iteration 15: Sum of abs. weighted deviations = 32003.957
Iteration 16: Sum of abs. weighted deviations = 31837.324
Iteration 17: Sum of abs. weighted deviations = 31741.915
Iteration 18: Sum of abs. weighted deviations = 31515.552
Iteration 19: Sum of abs. weighted deviations = 31492.239
Iteration 20: Sum of abs. weighted deviations = 31488.9
Iteration 21: Sum of abs. weighted deviations = 31488.622
Iteration 22: Sum of abs. weighted deviations = 31483.585
Iteration 23: Sum of abs. weighted deviations = 31407.582
Iteration 24: Sum of abs. weighted deviations = 31407.363
Iteration 25: Sum of abs. weighted deviations = 31398.938
Iteration 26: Sum of abs. weighted deviations = 31398.217
Iteration 27: Sum of abs. weighted deviations = 31396.024
.75 Quantile regression Number of obs = 177

Raw sum of deviations 32811.25 (about 1119)
Min sum of deviations 31396.02 Pseudo R2 = 0.0431

salary Coefficient Std. err. t P>|t| [95% conf. interval]

age 5.379105 9.441549 0.57 0.570 -13.25867 24.01688
college -554.7379 419.7605 -1.32 0.188 -1383.352 273.8764

grad 186.6717 140.3615 1.33 0.185 -90.40431 463.7478
comten -6.826164 6.497454 -1.05 0.295 -19.65225 5.999919
ceoten 17.84588 10.23762 1.74 0.083 -2.363353 38.05511

profmarg -.4654744 3.791003 -0.12 0.902 -7.948978 7.018029
_cons 1298.486 672.6187 1.93 0.055 -29.2744 2626.247

The output table contains the estimated coefficients that we will now obtain by linear programming. For

further interpretation of the output, see [R] qreg.

We begin by importing the data into Mata and adding a vector of 1s to covariates for the constant term:

. mata:
mata (type end to exit)

: X = st_data(., (”age college grad comten ceoten profmarg”))
: y = st_data(., (”salary”))
: X = (X, J(rows(X), 1, 1))

https://www.stata.com/manuals/rqreg.pdf#rqreg

LinearProgram() — Linear programming 15

Now specify that 𝜏 should be 0.75.
: tau = 0.75

Then we formulate the problem as a linear programming problem using the formulas at the beginning of

this example:

: n = rows(X)
: k = cols(X)
: c = (J(1, k, 0), tau * J(1, n, 1), (1 - tau) * J(1, n, 1))
: Aec = (X, I(n), -I(n))
: lowerbd = (J(1, k, .), J(1, 2*n, 0))
: upperbd = J(1, 2*n + k, .)

We then generate an instance of the class and save the required coefficients and the constraints to it:

: q = LinearProgram()
: q.setCoefficients(c)
: q.setEquality(Aec, y)
: q.setBounds(lowerbd, upperbd)
: q.setMaxOrMin(”min”)

Now we solve it:

: q.optimize()
31396.02428

: x = q.parameters()
: x[1..k]

1 2 3 4

1 5.379105375 -554.7378912 186.6717198 -6.82616387

5 6 7

1 17.84587946 -.4654742937 1298.486114

These point estimates are the same as those computed by qreg.

LinearProgram() — Linear programming 16

Example 4: Data envelopment analysis

Production theory is a fundamental component of economic analysis. When studying production, we

base our analysis on the concept of a production function. The production function describes how inputs

in the production process are turned into outputs. Before the work of Debreu (1951), Koopmans (1951),

and Farrell (1957), it was assumed that the input–output relationship had no inefficiency. It is now

common to study and measure deviations from efficient production (called efficiency analysis).

A way to measure production efficiency is data envelopment analysis DEA; see Cooper, Seiford, and

Tone [2007]; Färe [1988]; Grosskopf and Knox Lovell [1994]; and Färe and Primont [1995]). DEA

makes no assumptions about the functional form of the production function and is therefore robust to

misspecification.

Intuitively, we know the total output produced by each firm, given their inputs. We can then measure the

results of each firm relative to the most efficient firms in our sample. The most efficient firms, those that

produce the most for a given set of inputs, form a frontier, an envelope. All other firms are underneath and

are relatively inefficient. What we obtain when using DEA is a measure of relative efficiency, a number

between 0 and 1, where inefficiency is any number below 1.

DEA uses the weighted sum of outputs over the weighted sum of inputs to measure efficiency, and it can

be written as a linear programming problem. For example, to estimate the efficiency of a firm or, more

generally, the efficiency of a unit 𝑘, we solve

maxu,v
Y𝑘u

′

X𝑘v
′

such that
Y𝑗u

′

X𝑗v
′ ≤ 1 𝑗 = 1, . . . , 𝑛

u ≥ 0′
𝑝

v ≥ 0′
𝑚

LinearProgram() — Linear programming 17

where X𝑗 and Y𝑗 are the inputs and outputs for unit 𝑗, respectively. 𝑛 is the number of units, 𝑚 is the

number of inputs, and 𝑝 is the number of outputs. This problem can be rewritten as a linear programming

problem:

maxu,v Y𝑘u
′

such that X𝑘v
′ = 1

Yu′ − Xv′ ≤ 0𝑛

u ≥ 0′
𝑝

v ≥ 0′
𝑚

Using our notation,

maxu,v c [u v]′

such that AEC [u v]′ = bEC

AIE [u v]′ ≤ bIE

u ≥ 0′
𝑝

v ≥ 0′
𝑚

We have

c = [Y𝑘
0𝑚

] AEC = [0′
𝑝 X𝑘] bEC = 1 AIE = [Y −X] bIE = 0𝑛

Here 0𝑚, 0𝑛, and 0𝑝 are vectors of 0s.

As an example, we use a sample of 756 fictional firms producing a manufactured good with capital

and labor. The firms are hypothesized to use a constant returns-to-scale technology, but the sizes of the

firms differ. For more details, see example 2 in [R] frontier. The inputs for the firms will be capital

(lncapital) and labor (lnlabor); the output will be the manufactured good (lnoutput).

. use https://www.stata-press.com/data/r19/frontier1

We begin by importing the data into Mata:

. mata:
mata (type end to exit)

: X = st_data(., (”lnlabor”, ”lncapital”))
: Y = st_data(., ”lnoutput”)
: n = rows(X)
: m = cols(X)
: p = cols(Y)

https://www.stata.com/manuals/rfrontier.pdf#rfrontierRemarksandexamplesex2
https://www.stata.com/manuals/rfrontier.pdf#rfrontier

LinearProgram() — Linear programming 18

Now we write the coefficients and constraints as a linear programming problem using the equations

above, and we use id = 1 to indicate the first firm.

: id = 1
: c = (Y[id, .], J(1, m, 0))
: Aec = (J(1, p, 0), X[id, .])
: bec = 1
: Aie = (Y, -X)
: bie = J(n, 1, 0)
: lowerbd = J(1, m + p, 0)
: upperbd = J(1, m + p, .)

We then generate an instance of the LinearProgram() class and store all the required information.

: q = LinearProgram()
: q.setCoefficients(c)
: q.setEquality(Aec, bec)
: q.setInequality(Aie, bie)
: q.setBounds(lowerbd, upperbd)

Then we can compute the relative efficiency of unit 1, which we defined above.

: q.optimize()
.191803712

Because the optimal value is less than 1, we conclude that the first firm is inefficient. If we want to

estimate the efficiencies of other firms, we simply change id to the firm of interest. For example, if we

change id to 261, we can get the relative efficiency of firm 261:

: q.optimize()
1

This shows that firm 261 is efficient.

Example 5: Dantzig selector

In a linear model, we model the mean of the outcome 𝑦𝑖 as the linear combination x𝑖β
′, where x𝑖 are the

covariates and β are the coefficients. In the standard case, the number of covariates 𝑘 is small relative

to the number of observations 𝑛. In a high-dimensional regression, 𝑘 is large relative to 𝑛, but we must

assume that many of the coefficients β on x𝑖 are 0.

The Dantzig selector (Candes and Tao 2007) estimates which of the coefficients are 0 and produces

estimates of the coefficients that are not 0.

In a standard linear model, we estimate β by minimizing the sum of the squared residuals. The first-order

conditions for this minimization problem are known as the normal equations, and in matrix form, they

are

X′(y − Xβ) = 0

where X is a matrix containing the observations of the covariates and y is a vector containing the obser-

vations of the outcome.

LinearProgram() — Linear programming 19

The Dantzig selector solution to the high-dimensional linear model finds the smallest-in-magnitude co-

efficients that get close to solving the first-order conditions. In math, the Dantzig selector solves

minβ ‖β‖1

such that ‖X′(y − Xβ)‖∞ ≤ 𝜆

where 𝜆 is a constant that parameterizes “close” to solving the first-order conditions. (The least ab-

solute shrinkage and selector operator is another solution to the high-dimensional linear model; see

[LASSO] Lasso intro for more details.)

The Dantzig selector problem can be written as the following linear programming problem:

minβ,u 1′
𝑘u

such that X′(y − Xβ) ≤ 𝜆1𝑘

−X′(y − Xβ) ≤ 𝜆1𝑘

β − u ≤ 0𝑘

−β − u ≤ 0𝑘

Here u is a vector of variables used as the upper bounds of the absolute values of β.

The above version is closely related to the original motivation for the Dantzig selection, but it is not in

an easy-to-implement form. A ready-to-implement form for the above problem is

minβ,u c [β
u

]

such that AIE [β
u

] ≤ bIE

where

c = [0𝑘
1𝑘

]
′

AIE =
⎡
⎢⎢
⎣

−X′X 0𝑘×𝑘
X′X 0𝑘×𝑘
I𝑘 −I𝑘

−I𝑘 −I𝑘

⎤
⎥⎥
⎦

bIE =
⎡
⎢⎢
⎣

−X′y + 𝜆1𝑘
X′y + 𝜆1𝑘

0𝑘
0𝑘

⎤
⎥⎥
⎦

In this example, we use an extract of the data used in Sunyer et al. (2017) that models how the attention

of school children is affected by pollution. Our sample contains 1,096 students, and we model the rela-

tionship between the mean-hit reaction time (htime) and other factors, including daily nitrogen dioxide
levels (no2), home socioeconomical vulnerability index (sev home), school socioeconomical vulner-

ability index (sev sch), school noise levels (noise sch), starting age at school (age start sch),
number of young siblings they live with (youngsibl), and home greenness (ndvi mn).

https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro

LinearProgram() — Linear programming 20

We begin by using the dataset and dropping the observations that contain missing values.

. use https://www.stata-press.com/data/r19/breathe_lp

. generate byte touse = 1

. markout touse *

. drop if touse == 0
(18 observations deleted)

Next we create local macros to hold the names of the outcome variable and the covariates in the model,

including some powers and interactions of the original covariates.

. local ccontrols ”sev_home sev_sch age_start_sch ndvi_mn youngsibl noise_sch”

. local ofinterest ”no2”

. local depvar htime

. local indeps ‘ofinterest’ ‘ccontrols’ c.(‘ccontrols’)#c.(‘ccontrols’)

Then we expand the names of covariates in the model, remove the collinear variables, and save the names

back to the same macro.

. _rmcoll ‘indeps’, expand

. local indeps ‘r(varlist)’

Now we import the data into Mata, remove the mean from the outcome variable, and standardize the

covariates.

. mata:
mata (type end to exit)

: X = st_data(., ‘”‘indeps’”’, ”touse”)
: y = st_data(., ”‘depvar’”, ”touse”)
: ybar = mean(y)
: y = y :- ybar
: Xbar = mean(X)
: X = X :- Xbar
: sd_X = sqrt(mean(X:^2))
: X = X :/ sd_X

We need a value for 𝜆 to complete the problem. Prior to writing this example, we used the method of

cross-validation to find a good value for 𝜆; see Hastie, Tibshirani, and Friedman (2009) for an introduc-

tion to cross-validation. Cross-validation specifies that we should set 𝜆 = 4163.558931.

We are now ready to specify and solve the linear programming problem.

: tmpA = quadcross(X, X)
: tmpb = quadcross(X, y)
: lambda = 4163.558931
: k = cols(X)
: c = (J(1, k, 0), J(1, k, 1))
: Aec = (-tmpA, J(k, k, 0) \ tmpA, J(k, k, 0) \ I(k), -I(k) \ -I(k), -I(k))
: bec = (-tmpb :+ lambda \ tmpb :+ lambda \ J(k, 1, 0) \ J(k, 1, 0))

LinearProgram() — Linear programming 21

We now define an instance of the LinearProgram() class and put the required information into that

instance q.

: q = LinearProgram()
: q.setCoefficients(c)
: q.setInequality(Aec, bec)
: q.setMaxOrMin(”min”)

Now solve the problem.

: q.optimize()
8.21319472

We put the estimates of β into the Mata vector b by typing

: x = q.parameters()
: b = x[1..k]

Out of the 28 estimated parameters, we only want to see which variables were selected, that is, which

variables have estimated coefficients that are greater than 0 in absolute value. To show the variable names

that have been selected, we type

: indep_list = tokens(‘”‘indeps’”’)
: sel = (abs(b) :>= 1e-6)
: ”selected variables are ”

selected variables are
: select(indep_list, sel)

1 2

1 sev_home c.sev_home#c.age_start_sch

3 4

1 c.sev_sch#c.ndvi_mn c.ndvi_mn#c.noise_sch

Here we consider a coefficient to be 0 when its absolute value is less than 10−6. Recall from Details

about the interior-point method above and the discussion in example 1 that the interior-point method will

not produce solution values that are exactly 0. Lowering the tolerance will make the coefficients that are

practically 0 have values closer to 0, but it will not change which variables are selected.

The results indicate that the mean-hit reaction time is related to the home socioeconomical vulnerability

index, the home socioeconomical vulnerability index times starting age at school, the school socioeco-

nomical vulnerability index times home greenness, and home greenness times school noise levels.

https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()RemarksandexamplesDetailsabouttheinterior-pointmethod
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()RemarksandexamplesDetailsabouttheinterior-pointmethod
https://www.stata.com/manuals/m-5linearprogram.pdf#m-5LinearProgram()Remarksandexamplesex1

LinearProgram() — Linear programming 22

Conformability
LinearProgram():

input:

void

output:

result: 1 × 1

LinearProgram(n):
input:

n: 1 × 1

output:

result: 1 × n

LinearProgram(m, n):
input:

m: 1 × 1

n: 1 × 1

output:

result: m × n

setCoefficients(coef):
input:

coef : 1 × N

output:

result: void

getCoefficients():
input:

void

output:

result: 1 × N

setMaxOrMin(maxormin):
input:

object: 1 × 1

output:

result: void

getMaxOrMin():
input:

void

output:

result: 1 × 1

LinearProgram() — Linear programming 23

setEquality(ecmat, rhs):
input:

ecmat: M0 × N

rhs: M0 × 1

output:

result: void

getEquality():
input:

void

output:

result: (M0 + 1) × N

setInequality(iemat, rhs):
input:

iemat: M1 × N

rhs: M1 × 1

output:

result: void

getInequality():
input:

void

output:

result: (M1 + 1) × N

setBounds(lowerbd, upperbd):
input:

lowerbd: 1 × N

upperbd: 1 × N

output:

result: void

getBounds():
input:

void

output:

result: 2 × N

setMaxiter(maxiter):
input:

maxiter: 1 × 1

output:

result: void

getMaxiter():
input:

void

output:

result: 1 × 1

LinearProgram() — Linear programming 24

setTol(tol):
input:

tol: 1 × 1

output:

result: void

getTol():
input:

void

output:

result: 1 × 1

setTrace(trace):
input:

trace: 1 × 1

output:

result: void

getTrace():
input:

void

output:

result: 1 × 1

optimize():
input:

void

output:

result: 1 × 1

parameters():
input:

void

output:

result: 1 × N

value():
input:

void

output:

result: 1 × 1

iterations():
input:

void

output:

result: 1 × 1

LinearProgram() — Linear programming 25

converged():
input:

void

output:

result: 1 × 1

errorcode():
input:

void

output:

result: 1 × 1

errortext():
input:

void

output:

result: 1 × 1

returncode():
input:

void

output:

result: 1 × 1

query():
input:

void

output:

void

Diagnostics
LinearProgram(), q.set*(), q.get*(), q.parameters(), q.value(), q.iterations(),
q.converged(), q.errorcode(), q.errortext(), q.returncode(), and q.query() functions

abort with an error message when used incorrectly.

q.optimize() aborts with an error message if it is used incorrectly. If q.optimize() runs into numer-

ical difficulties, it returns a missing value and displays a warning message including some details about

the problem encountered.

References
Andersen, E. D., and K. D. Andersen. 1995. Presolving in linear programming. Mathematical Programming, B ser., 71:

221–245. https://doi.org/10.1007/BF01586000.

Andersen, E. D., J. Gondzio, and C. Mészáros. 1996. “Implementation of interior-point methods for large scale linear

programs”. In Interior Point Methods of Mathematical Programming, edited by T. Terlaky, 189–252. Dordrecht, The

Netherlands: Kluwer. https://doi.org/10.1007/978-1-4613-3449-1_6.

Badunenko, O., and P. Mozharovskyi. 2016. Nonparametric frontier analysis using Stata. Stata Journal 16: 550–589.

Belotti, F., S. Daidone, G. Ilardi, and V. Atella. 2013. Stochastic frontier analysis using Stata. Stata Journal 13: 719–758.

https://doi.org/10.1007/BF01586000
https://doi.org/10.1007/978-1-4613-3449-1_6
https://www.stata-journal.com/article.html?article=st0444
https://www.stata-journal.com/article.html?article=st0315

LinearProgram() — Linear programming 26

Brearley, A. L., G. Mitra, and H. P. Williams. 1975. Analysis of mathematical programming problems prior to applying

the simplex algorithm.Mathematical Programming, A ser., 8: 54–83. https://doi.org/10.1007/BF01580428.

Candes, E., and T. Tao. 2007. The Dantzig selector: Statistical estimation when 𝑝 is much larger than 𝑛. Annals of
Statistics 35: 2313–2351. https://doi.org/10.1214/009053606000001523.

Cooper, W. W., L. M. Seiford, and K. Tone. 2007. Data Envelopment Analysis: A Comprehensive Text with Models,

Applications, References and DEA-Solver Software. 2nd ed. New York: Springer. https://doi.org/10.1007/978-0-387-

45283-8.

Czyzyk, J., S. Mehrotra, and S. J. Wright. 1997. PCx user guide. Technical Memorandum 217, Argonne National Labo-

ratory, Mathematics and Computer Science Division.

Debreu, G. 1951. The coefficient of resource utilization. Econometrica 19: 273–292. https://doi.org/10.2307/1906814.

Färe, R. 1988. Fundamentals of Production Theory. New York: Springer. https://doi.org/10.1007/978-3-642-51722-8.

Färe, R., and D. Primont. 1995. Multi-Output Production and Duality: Theory and Applications. New York: Springer.

https://doi.org/10.1007/978-94-011-0651-1.

Farrell, M. J. 1957. The measurement of productive efficiency. Journal of the Royal Statistical Society, A ser., 120:

253–290. https://doi.org/10.2307/2343100.

Gay, D. M. 1985. Electronic mail distribution of linear programming test problems. Mathematical Programming Society,

Committee on Algorithms Newsletter 13: 10–12.

Gondzio, J. 1997. Presolve analysis of linear programs prior to applying an interior point method. INFORMS Journal on

Computing 9: 73–91. https://doi.org/10.1287/ijoc.9.1.73.

Grosskopf, R. F. S., and C. A. Knox Lovell. 1994. Production Frontiers. Cambridge: Cambridge University Press. https:

//doi.org/10.1017/CBO9780511551710.

Hastie, T. J., R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction. 2nd ed. New York: Springer. https://doi.org/10.1007/978-0-387-84858-7.

Huang, X. 2004. Preprocessing and postprocessing in linear optimization. Master’s thesis, McMaster University.

Jansen, B., J. J. de Jong, C. Roos, and T. Terlaky. 1997. Sensitivity analysis in linear programming: Just be careful!

European Journal of Operational Research 101: 15–28. https://doi.org/10.1016/S0377-2217(96)00172-5.

Karakaplan, M. U. 2017. Fitting endogenous stochastic frontier models in Stata. Stata Journal 17: 39–55.

Koenker, R., and G. Bassett, Jr. 1978. Regression quantiles. Econometrica 46: 33–50. https://doi.org/10.2307/1913643.

Koenker, R., and K. Hallock. 2001. Quantile regression. Journal of Economic Perspectives 15: 143–156. https://doi.org/

10.1257/jep.15.4.143.

Koopmans, T. C. 1951. “Analysis of production as an efficient combination of activities”. InActivity Analysis of Produc-

tion and Allocation: Proceedings of a Conference, edited by T. C. Koopmans, 33–97. New York: Wiley.

Lustig, I. J., R. E. Marsten, and D. F. Shanno. 1994. Interior point methods for linear programming: Computational state

of the art. ORSA Journal on Computing 6: 1–14. https://doi.org/10.1287/ijoc.6.1.1.

Marsten, R. E., M. J. Saltzman, D. F. Shanno, G. S. Pierce, and J. F. Ballintijn. 1989. Implementation of a dual affine

interior point algorithm for linear programming. ORSA Journal on Computing 1: 287–297. https://doi.org/10.1287/

ijoc.1.4.287.

Mehrotra, S. 1991. Higher order methods and their performance. Technical Report 90-16R1, Department of Industrial

Engineering and Management Sciences, Northwestern University. https://users.iems.northwestern.edu/∼mehrotra/

TechnicalReports/HigherOrderPerformance.pdf.

———. 1992. On the implementation of a primal-dual interior point method. SIAM Journal on Optimization 2: 575–601.

https://doi.org/10.1137/0802028.

Mészáros, C. 2005. The Cholesky factorization in interior point methods. Computers and Mathematics with Applications

50: 1157–1166. https://doi.org/10.1016/j.camwa.2005.08.016.

Netlib. 2013. Netlib linear programming test problems. https://www.netlib.org/lp/.

Nocedal, J., and S. J. Wright. 2006. Numerical Optimization. 2nd ed. New York: Springer. https://doi.org/10.1007/978-

0-387-40065-5.

https://doi.org/10.1007/BF01580428
https://doi.org/10.1214/009053606000001523
https://doi.org/10.1007/978-0-387-45283-8
https://doi.org/10.1007/978-0-387-45283-8
https://doi.org/10.2307/1906814
https://doi.org/10.1007/978-3-642-51722-8
https://doi.org/10.1007/978-94-011-0651-1
https://doi.org/10.2307/2343100
https://doi.org/10.1287/ijoc.9.1.73
https://doi.org/10.1017/CBO9780511551710
https://doi.org/10.1017/CBO9780511551710
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1016/S0377-2217(96)00172-5
https://www.stata-journal.com/article.html?article=st0466
https://doi.org/10.2307/1913643
https://doi.org/10.1257/jep.15.4.143
https://doi.org/10.1257/jep.15.4.143
https://doi.org/10.1287/ijoc.6.1.1
https://doi.org/10.1287/ijoc.1.4.287
https://doi.org/10.1287/ijoc.1.4.287
https://users.iems.northwestern.edu/~mehrotra/TechnicalReports/HigherOrderPerformance.pdf
https://users.iems.northwestern.edu/~mehrotra/TechnicalReports/HigherOrderPerformance.pdf
https://doi.org/10.1137/0802028
https://doi.org/10.1016/j.camwa.2005.08.016
https://www.netlib.org/lp/
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5

LinearProgram() — Linear programming 27

Sunyer, J., E. Suades-González, R. García-Esteban, I. Rivas, J. Pujol, M. Alvarez-Pedrerol, J. Forns, X. Querol, and

X. Basagaña. 2017. Traffic-related air pollution and attention in primary school children: Short-term association.

Epidemiology 28: 181–189. https://doi.org/10.1097/EDE.0000000000000603.

Tauchmann, H. 2012. Partial frontier efficiency analysis. Stata Journal 12: 461–478.

Wei, H. 2006. Numerical stability in linear programming and semidefinite programming. PhD thesis, University of Wa-

terloo. https://www.math.uwaterloo.ca/∼hwolkowi/henry/reports/h3wei2006thesis.pdf.

Wooldridge, J. M. 2020. Introductory Econometrics: AModern Approach. 7th ed. Boston: Cengage.

Wright, S. J. 1997. Primal-Dual Interior-Point Methods. Philadelphia: Society for Industrial and Applied Mathematics.

https://doi.org/10.1137/1.9781611971453.

Also see
[M-2] class — Object-oriented programming (classes)

[M-5] moptimize() — Model optimization

[M-5] optimize() — Function optimization

[LASSO] Lasso intro — Introduction to lasso

[R] frontier — Stochastic frontier models

[R] qreg — Quantile regression

[R] regress — Linear regression

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1097/EDE.0000000000000603
https://www.stata-journal.com/article.html?article=st0270
https://www.math.uwaterloo.ca/~hwolkowi/henry/reports/h3wei2006thesis.pdf
https://www.stata.com/bookstore/introductory-econometrics/
https://doi.org/10.1137/1.9781611971453
https://www.stata.com/manuals/m-2class.pdf#m-2class
https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()
https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/rfrontier.pdf#rfrontier
https://www.stata.com/manuals/rqreg.pdf#rqreg
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

