invorder() — Permutation vector manipulation

Description

invorder(p) returns the permutation vector that undoes the permutation performed by p.

revorder(p) returns the permutation vector that is the reverse of the permutation performed by p.

Syntax

```stata
real vector invorder(real vector p)
real vector revorder(real vector p)
```

where p is assumed to be a permutation vector.

Remarks and examples

See [M-1] `Permutation` for a description of permutation vectors. To summarize,

1. Permutation vectors p are used to permute the rows or columns of a matrix X: r × c.
 - If p is intended to permute the rows of X, the permuted X is obtained via \(Y = X[p, .] \).
 - If p is intended to permute the columns of X, the permuted X is obtained via \(Y = X[., p] \).

2. If p is intended to permute the rows of X, it is called a row-permutation vector. Row-permutation vectors are r × 1 column vectors.

3. If p is intended to permute the columns of X, it is called a column-permutation vector. Column-permutation vectors are 1 × c row vectors.

4. Row-permutation vectors contain a permutation of the integers 1 to r.

5. Column-permutation vectors contain a permutation of the integers 1 to c.

Let us assume that p is a row-permutation vector, so that

\[Y = X[p, .] \]

invorder(p) returns the row-permutation vector that undoes p:

\[X = Y[\text{invorder}(p), .] \]
That is, using the matrix notation of [M-1] Permutation,

\[Y = PX \quad \text{implies} \quad X = P^{-1}Y \]

If \(p \) is the permutation vector corresponding to permutation matrix \(P \), \texttt{invorder}(p) is the permutation vector corresponding to permutation matrix \(P^{-1} \).

\texttt{revorder}(p) returns the permutation vector that reverses the order of \(p \). For instance, say that row-permutation vector \(p \) permutes the rows of \(X \) so that the diagonal elements are in ascending order. Then \texttt{revorder}(p) would permute the rows of \(X \) so that the diagonal elements would be in descending order.

Conformability

\texttt{invorder}(p), \texttt{revorder}(p):

- \(p \): \(r \times 1 \) or \(1 \times c \)
- \texttt{result}: \(r \times 1 \) or \(1 \times c \)

Diagnostics

\texttt{invorder}(p) and \texttt{revorder}(p) can abort with error or can produce meaningless results when \(p \) is not a permutation vector.

Also see

[M-1] Permutation — An aside on permutation matrices and vectors