fullsvd() — Full singular value decomposition

Description

`fullsvd(A, U, s, Vt)` calculates the singular value decomposition of $m \times n$ matrix A, returning the result in U, s, and Vt. Singular values in s are sorted from largest to smallest.

`fullsvdiag(s, k)` converts column vector s returned by `fullsvd()` into matrix S. In all cases, the appropriate call for this function is

$$S = fullsvdiag(s, rows(A) - cols(A))$$

`_fullsvd(A, U, s, Vt)` does the same as `fullsvd()`, except that, in the process, it destroys A. Use of `_fullsvd()` in place of `fullsvd()` conserves memory.

`_svd_la()` is the interface into the [M-1] LAPACK SVD routines and is used in the implementation of the previous functions. There is no reason you should want to use it. `_svd_la()` is similar to `_fullsvd()`. It differs in that it returns a real scalar equal to 1 if the numerical routines fail to converge, and it returns 0 otherwise. The previous SVD routines set s to contain missing values in this unlikely case.

Syntax

```c
void fullsvd(numeric matrix A, U, s, Vt)
numeric matrix fullsvdiag(numeric colvector s, real scalar k)
void _fullsvd(numeric matrix A, U, s, Vt)
real scalar _svd_la(numeric matrix A, U, s, Vt)
```

Remarks and examples

Remarks are presented under the following headings:

- **Introduction**
- **Relationship between the full and thin SVDs**
- **The contents of s**
- **Possibility of convergence problems**

Documented here is the full SVD, appropriate in all cases, but of interest mainly when $A: m \times n$, $m < n$. There is a thin SVD that conserves memory when $m \geq n$; see [M-5] `svd()`. The relationship between the two is discussed in **Relationship between the full and thin SVDs** below.
Introduction

The SVD is used to compute accurate solutions to linear systems and least-squares problems, to compute the 2-norm, and to determine the numerical rank of a matrix.

The singular value decomposition (SVD) of $A: m \times n$ is given by

$$A = USV'$$

where

U: $m \times m$ and orthogonal (unitary)

S: $m \times n$ and diagonal

V: $n \times n$ and orthogonal (unitary)

When A is complex, the transpose operator $'$ is understood to mean the conjugate transpose operator.

Diagonal matrix S contains the singular values and those singular values are real even when A is complex. It is usual (but not required) that S is arranged so that the largest singular value appears first, then the next largest, and so on. The SVD routines documented here do this.

The full SVD routines return U and $V^t = V'$. S is returned as a column vector s, and S can be obtained by

$$S = \text{fullsdiag}(s, \text{rows}(A) - \text{cols}(A))$$

so we will write the SVD as

$$A = U * \text{fullsdiag}(s, \text{rows}(A) - \text{cols}(A)) * V^t$$

Function fullsvd(A, U, s, V^t) returns the U, s, and V^t corresponding to A.

Relationship between the full and thin SVDs

A popular variant of the SVD is known as the thin SVD and is suitable for use when $m \geq n$. Both SVDs have the same formula,

$$A = USV'$$

but U and S have reduced dimensions in the thin version:

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Full SVD</th>
<th>Thin SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>U:</td>
<td>$m \times m$</td>
<td>$m \times n$</td>
</tr>
<tr>
<td>S:</td>
<td>$m \times n$</td>
<td>$n \times n$</td>
</tr>
<tr>
<td>V:</td>
<td>$n \times n$</td>
<td>$n \times n$</td>
</tr>
</tbody>
</table>

When $m = n$, the two variants are identical.

The thin SVD is of use when $m > n$, because then only the first n diagonal elements of S are nonzero, and therefore only the first n columns of U are relevant in $A = USV'$. There are considerable memory savings to be had in calculating the thin SVD when $m \gg n$.

As a result, many people call the thin SVD the SVD and ignore the full SVD altogether. If the matrices you deal with have $m \geq n$, you will want to do the same. To obtain the thin SVD, see \texttt{svd()}.

Regardless of the dimension of your matrix, you may wish to obtain only the singular values. In this case, see \texttt{svds()} documented in \texttt{svd()}. That function is appropriate in all cases.
The contents of s

Given \(A: m \times n \), the singular values are returned in \(s: \min(m,n) \times 1 \).

Let’s consider the \(m = n \) case first. \(A \) is \(m \times m \) and the \(m \) singular values are returned in \(s \), an \(m \times 1 \) column vector. If \(A \) were 3 \(\times \) 3, perhaps we would get back

\[
\begin{bmatrix}
1 & 13.47 \\
2 & 5.8 \\
3 & 2.63
\end{bmatrix}
\]

If we needed it, we could obtain \(S \) from \(s \) simply by creating a diagonal matrix from \(s \)

\[
S = \text{diag}(s)
\]

\[
\begin{bmatrix}
1 & 2 & 3 \\
1 & 13.47 & 0 & 0 \\
2 & 0 & 5.8 & 0 \\
3 & 0 & 0 & 2.63
\end{bmatrix}
\]

although the official way we are supposed to do this is

\[
S = \text{fullsdiag}(s, \text{rows}(A)-\text{cols}(A))
\]

and that will return the same result.

Now let’s consider \(m < n \). Let’s pretend that \(A \) is 3 \(\times \) 4. The singular values will be returned in 3 \(\times \) 1 vector \(s \). For instance, \(s \) might still contain

\[
\begin{bmatrix}
1 & 13.47 \\
2 & 5.8 \\
3 & 2.63
\end{bmatrix}
\]

The \(S \) matrix here needs to be 3 \(\times \) 4, and \text{fullsdiag()} will form it:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 13.47 & 0 & 0 & 0 \\
2 & 0 & 5.8 & 0 & 0 \\
3 & 0 & 0 & 2.63 & 0
\end{bmatrix}
\]

The final case is \(m > n \). We will pretend that \(A \) is 4 \(\times \) 3. The \(s \) vector we get back will look the same
but this time, we need a 4×3 rather than a 3×4 matrix formed from it.

\[
\begin{array}{c c c}
1 & 13.47 & 0 \\
2 & 5.8 & 0 \\
3 & 0 & 2.63 \\
4 & 0 & 0
\end{array}
\]

Possibility of convergence problems

See Possibility of convergence problems in [M-5] svd(); what is said there applies equally here.

Conformability

fullsvd(A, U, s, Vt):

\[\begin{align*}
\text{input:} & \\
A: & m \times n \\
\text{output:} & \\
U: & m \times m \\
s: & \min(m, n) \times 1 \\
Vt: & n \times n \\
\text{result:} & \text{void}
\end{align*}\]

fullsdiag(s, k):

\[\begin{align*}
\text{input:} & \\
s: & r \times 1 \\
k: & 1 \times 1 \\
\text{output:} & \\
\text{result:} & r + k \times r, \text{ if } k \geq 0 \\
& r \times r - k, \text{ otherwise}
\end{align*}\]

_fullsvd(A, U, s, Vt):

\[\begin{align*}
\text{input:} & \\
A: & m \times n \\
\text{output:} & \\
A: & 0 \times 0 \\
U: & m \times m \\
s: & \min(m, n) \times 1 \\
Vt: & n \times n \\
\text{result:} & \text{void}
\end{align*}\]
fullsvd() — Full singular value decomposition

_\text{svd_la}(A, U, s, Vt):

\textbf{input:}
\begin{align*}
A &: m \times n
\end{align*}

\textbf{output:}
\begin{align*}
A &: m \times n, \text{ but contents changed} \\
U &: m \times m \\
s &: \min(m, n) \times 1 \\
Vt &: n \times n \\
\text{result} &: 1 \times 1
\end{align*}

\textbf{Diagnostics}

\text{fullsvd}(A, U, s, Vt) \text{ and } _\text{fullsvd}(A, s, Vt) \text{ return missing results if } A \text{ contains missing. In all other cases, the routines should work, but there is the unlikely possibility of convergence problems, in which case missing results will also be returned; see } \textit{Possibility of convergence problems} \text{ in } [\text{M-5}] \text{ svd()}. \\
_\text{fullsvd}() \text{ aborts with error if } A \text{ is a view.}

Direct use of _\text{svd_la}() \text{ is not recommended.}

\textbf{Also see}

[\text{M-5}] \text{ norm()} — Matrix and vector norms
[\text{M-5}] \text{ pinv()} — Moore–Penrose pseudoinverse
[\text{M-5}] \text{ rank()} — Rank of matrix
[\text{M-5}] \text{ svd()} — Singular value decomposition
[\text{M-5}] \text{ svsolve()} — Solve AX=B for X using singular value decomposition
[\text{M-4}] \text{ Matrix} — Matrix functions