
fopen() — File I/O

Description Syntax Remarks and examples Conformability Diagnostics Also see

Description
These functions read and write files. First, open the file and get back a file handle (fh). The file handle,

which is nothing more than an integer, is how you refer to the file in the calls to other file I/O functions.

When you are finished, close the file.

Most file I/O functions come in two varieties: without and with an underscore in front of the name, such

as fopen() and fopen(), and fwrite() and fwrite().

In functions without a leading underscore, errors cause execution to be aborted. For instance, you attempt

to open a file for read and the file does not exist. Execution stops. Or, having successfully opened a file,

you attempt to write into it and the disk is full. Execution stops. When execution stops, the appropriate

error message is presented.

In functions with the leading underscore, execution continues and no error message is displayed; it is your

responsibility (1) to verify that things went well and (2) to take the appropriate action if they did not.

Concerning (1), some underscore functions return a status value; others require that you call fstatus()
to obtain the status information.

You can mix and match use of underscore and nonunderscore functions, using, say, fopen() to open a
file and fread() to read it, or fopen() to open and fwrite() to write.

Syntax
real scalar fopen(string scalar fn, mode)

real scalar fopen(string scalar fn, mode, public)

real scalar fopen(string scalar fn, mode)

real scalar fopen(string scalar fn, mode, public)

where

mode: string scalar containing ”r”, ”w”, ”rw”, or ”a”
public: optional real scalar containing zero or nonzero

1

https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()RemarksandexamplesOpeningandclosingfiles
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()RemarksandexamplesWritingtoafile
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()Remarksandexamplesunderscore
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()Remarksandexamplesmode
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()Remarksandexamplespublic

fopen() — File I/O 2

In what follows, fh is the value returned by fopen() or fopen():

void fclose(fh)

real scalar fclose(fh)

string scalar fget(fh)

string scalar fget(fh)

string scalar fgetnl(fh)

string scalar fgetnl(fh)

string scalar fread(fh, real scalar len)

string scalar fread(fh, real scalar len)

void fput(fh, string scalar s)

real scalar fput(fh, string scalar s)

void fwrite(fh, string scalar s)

real scalar fwrite(fh, string scalar s)

matrix fgetmatrix(fh[, real scalar isstrict])

matrix fgetmatrix(fh[, real scalar isstrict])

void fputmatrix(fh, transmorphic matrix X)

real scalar fputmatrix(fh, transmorphic matrix X)

real scalar fstatus(fh)

real scalar ftell(fh)

real scalar ftell(fh)

void fseek(fh, real scalar offset, real scalar whence)

real scalar fseek(fh, real scalar offset, real scalar whence)

(whence is coded −1, 0, or 1, meaning from start of file, from current

position, or from end of file; offset is signed: positive values mean after

whence and negative values mean before)

void ftruncate(fh)

real scalar ftruncate(fh)

fopen() — File I/O 3

Remarks and examples
Remarks are presented under the following headings:

Opening and closing files
Reading from a file
Writing to a file
Reading and writing in the same file
Reading and writing matrices
Repositioning in a file
Truncating a file
Error codes

Opening and closing files

Functions

fopen(string scalar fn, string scalar mode)

fopen(string scalar fn, string scalar mode)

fopen(string scalar fn, string scalar mode, real scalar public)

fopen(string scalar fn, string scalar mode, real scalar public)

open a file. The file may be on a local disk, a network disk, or even on the web (such as

https://www.stata.com/index.html). fn specifies the filename, and mode specifies how the file is to

opened:

mode Meaning

”r” Open for reading; file must exist and be readable.

File may be ”https://. . .” file.

File will be positioned at the beginning.

”w” Open for writing; file must not exist and the directory be writable.

File may not be ”https://. . .” file.

File will be positioned at the beginning.

”rw” Open for reading and writing; file must either exist and be writable or

not exist and directory be writable.

File may not be ”https://. . .” file.

File will be positioned at the beginning (new file) or at the end

(existing file).

”a” Open for appending; file must either exist and be writable or not exist

and directory be writable.

File may not be ”https://. . .” file.

File will be positioned at the end.

Other values for mode cause fopen() and fopen() to abort with an invalid-mode error.

Optional third argument public specifies whether the file, if it is being created, should be given permis-

sions so that everyone can read it, or if it instead should be given the normal permissions. Not specifying

public, or specifying public as 0, gives the file the normal permissions. Specifying public as nonzero

makes the file publicly readable. public is relevant only when the file is being created, that is, is being

opened ”w”, or being opened ”rw” and not previously existing.

https://www.stata.com/

fopen() — File I/O 4

fopen() returns a file handle; the file is opened or execution is aborted.

fopen() returns a file handle or returns a negative number. If a negative number is returned, the file is

not open, and the number indicates the reason. For fopen(), there are a few likely possibilities

Negative

value Meaning

−601 file not found

−602 file already exists

−603 file could not be opened

−608 file is read-only

−691 I/O error

and there are many other possibilities. For instance, perhaps you attempted to open a file on the web

(say, http://www.newurl.org/upinfo.doc) and the URL was not found, or the server refused to send back

the file, etc. See Error codes below for a complete list of codes.

After opening the file, you use the other file I/O commands to read and write it, and then you close the

file with fclose() or fclose(). fclose() returns nothing; if the file cannot be closed, execution is

aborted. fclose returns 0 if successful, or a negative number otherwise. For fclose(), the likely
possibilities are

Negative

value Meaning

−691 filesystem I/O error

Reading from a file

You may read from a file opened ”r” or ”rw”. The commands to read are

fget(fh)

fgetnl(fh)

fread(fh, real scalar len)

and, of course,

fget(fh)

fgetnl(fh)

fread(fh, real scalar len)

All functions, with or without an underscore, require a file handle be specified, and all the functions

return a string scalar or they return J(0,0,””), a 0 × 0 string matrix. They return J(0,0,””) on end of
file and, for the underscore functions, when the read was not successful for other reasons. When using

the underscore functions, you use fstatus() to obtain the status code; see Error codes below. The

http://www.newurl.org/upinfo.doc
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()RemarksandexamplesErrorcodes
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()RemarksandexamplesErrorcodes

fopen() — File I/O 5

underscore read functions are rarely used because the only reason a read can fail is I/O error, and there

is not much that can be done about that except abort, which is exactly what the nonunderscore functions

do.

fget(fh) is for reading text files; the next line from the file is returned, without end-of-line characters.

(If the line is longer then 32,768 characters, the first 32,768 characters are returned.)

fgetnl(fh) is much the same as fget(), except that the new-line characters are not removed from the

returned result. (If the line is longer then 32,768 characters, the first 32,768 characters are returned.)

fread(fh, len) is usually used for reading binary files and returns the next len characters (bytes) from

the file or, if there are fewer than that remaining to be read, however many remain. (len may not exceed

9,007,199,254,740,991 [sic] on 64-bit computers; memory shortage for storing the result will arise long

before this limit is reached on most computers.)

The following code reads and displays a file:

fh = fopen(filename, ”r”)
while ((line=fget(fh))!=J(0,0,””)) {

printf(”%s\n”, line)
}
fclose(fh)

Writing to a file

You may write to a file opened ”w”, ”rw”, or ”a”. The functions are

fput(fh, string scalar s)

fwrite(fh, string scalar s)

and, of course,

fput(fh, string scalar s)

fwrite(fh, string scalar s)

fh specifies the file handle, and s specifies the string to be written. fput() writes s followed by the

new-line characters appropriate for your operating system. fwrite() writes s alone.

fput() and fwrite() return nothing; fput() and fwrite() return a real scalar equal to 0 if all went
well or a negative error code; see Error codes below.

The following code copies text from one file to another:

fh_in = fopen(inputname, ”r”)
fh_out = fopen(outputname, ”w”)
while ((line=fget(fh_in))!=J(0,0,””)) {

fput(fh_out, line)
}
fclose(fh_out)
fclose(fh_in)

https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()RemarksandexamplesErrorcodes

fopen() — File I/O 6

The following code reads a file (binary or text) and changes every occurrence of ”a” to ”b”:

fh_in = fopen(inputname, ”r”)
fh_out = fopen(outputname, ”w”)
while ((c=fread(fh_in, 1))!=J(0,0,””)) {

fwrite(fh_out, (c==”a” ? ”b” : c))
}
fclose(fh_out)
fclose(fh_in)

Reading and writing in the same file

You may read and write from a file opened ”rw”, using any of the read or write functions described

above. When reading and writing in the same file, one often uses file repositioning functions, too; see

Repositioning in a file below.

Reading and writing matrices

Functions

fputmatrix(fh, transmorphic matrix X)

and

fputmatrix(fh, transmorphic matrix X)

will write a matrix to a file. In the usual fashion, fputmatrix() returns nothing (it aborts if there is

an I/O error) and fputmatrix() returns a scalar equal to 0 if all went well and a negative error code

otherwise.

Functions

fgetmatrix(fh[, real scalar isstrict])

and

fgetmatrix(fh[, real scalar isstrict])

will read a matrix written by fputmatrix() or fputmatrix(). Both functions return the matrix read

or return J(0,0,.) on end of file (both functions) or error (fgetmatrix() only). Because J(0,0,.)
could be the matrix that was written, distinguishing between that and end of file requires subsequent

use of fstatus(). fstatus() will return 0 if fgetmatrix() or fgetmatrix() returned a written

matrix, −1 if end of file, or (after fgetmatrix()) a negative error code.

For a Mata struct or class matrix, a matrix according to the current definition will be created, and the

saved matrix will be used to initialize the new matrix based on member-name matching.

Optional argument isstrict affects the behavior of the functions if the matrix being read is a Mata struct

or class matrix. When the argument is set and not zero, the current struct or class definition in memory

will be checked against the saved matrix to ensure that all variable names, variable eltypes, and variable

orgtypes match each other.

fputmatrix() writes matrices in a compact, efficient, and portable format; a matrix written on a Win-

dows computer can be read back on a Mac or Unix computer and vice versa.

https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()RemarksandexamplesRepositioninginafile
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()Remarksandexamplesunderscore

fopen() — File I/O 7

The following code creates a file containing three matrices,

fh = fopen(filename, ”w”)
fputmatrix(fh, a)
fputmatrix(fh, b)
fputmatrix(fh, c)
fclose(fh)

and the following code reads them back:

fh = fopen(filename, ”r”)
a = fgetmatrix(fh)
b = fgetmatrix(fh)
c = fgetmatrix(fh)
fclose(fh)

The following code saves a Mata class scalar to file,

class sA {
real scalar r
string scalar s
static scalar sr
void new()

}

a = sA()
a.r = 1
a.s = ”sA instance”

fh = fopen(filename, ”w”)
fputmatrix(fh, a)
fclose(fh)

and the following code reads the class matrix back:

fh = fopen(filename, ”r”)
a = fgetmatrix(fh)
fclose(fh)

The contents of a depends on the current definition of class sA in memory. If the definition does not

change, a.r will be 1 and a.s will be “sA instance”. Note: Only regular variables are saved and read

back; static variables and functions are not saved. Also, the new() function will not be called in the

created class scalar. If the class definition has been changed,

class sA {
real scalar r
real scalar b
static scalar sr
void new()

}

the function will not read the matrix if optional argument isstrict is specified and not zero. Otherwise,

a class sA scalar a according to the current definition will be created. (Note: new() will not be called.)

Member variables with matching names and compatible eltypes and orgtypes will be initialized using

the values in the saved matrix. In this example, a.r will be 1, and a.b will be missing because b is not

a member in the class sA definition when it was saved.

fopen() — File I/O 8

Technical note

You may even write pointer matrices

mats = (&a, &b, &c, NULL)
fh = fopen(filename,”w”)
fputmatrix(fh, mats)
fclose(fh)

and read them back:

fh = fopen(filename, ”r”)
mats = fgetmatrix(fh)
fclose(fh)

When writing pointer matrices, fputmatrix() writes NULL for any pointer-to-function value. It is also

recommended that you do not write self-referential matrices (matrices that point to themselves, either

directly or indirectly), although the elements of the matrix may be cross linked and even recursive them-

selves. If you are writing pointer matrix p, no element of p, *p, **p, etc., should contain &p. That one
address cannot be preserved because in the assignment associated with reading back the matrix (the “re-

sult =” part of result = fgetmatrix(fh)), a new matrix with a different address is associated with the

contents.

Repositioning in a file

The function

ftell(fh)

returns a real scalar reporting where you are in a file, and function

fseek(fh, real scalar offset, real scalar whence)

changes where you are in the file to be offset bytes from the beginning of the file (whence = −1), offset

bytes from the current position (whence = 0), or offset bytes from the end of the file (whence = 1).

Functions ftell() and fseek() do the same thing as ftell() and fseek(), the difference being
that, rather than aborting on error, the underscore functions return negative error codes. ftell() is

pretty well useless as the only error that can arise is I/O error, and what else are you going to do other

than abort? fseek(), however, has a use, because it allows you to try out a repositioning and check

whether it was successful. With fseek(), if the repositioning is not successful, execution is aborted.

Say you open a file for read:

fh = fopen(filename, ”r”)

After opening the file in mode r, you are positioned at the beginning of the file or, in the jargon of file

processing, at position 0. Now say that you read 10 bytes from the file:

part1 = fread(fh, 10)

Assuming that was successful, you are now at position 10 of the file. Say that you next read a line from

the file

line = fget(fh)

fopen() — File I/O 9

and assume that fget() returns ”abc”. You are now at position 14 or 15. (No, not 13: fget() read the
line and the new-line characters and returned the line. abc was followed by carriage return and line feed
(two characters) if the file was written under Windows and by a carriage return or line feed alone (one

character) if the file was written under Mac or Unix).

ftell(fh) and ftell(fh) tell you where you are in the file. Coding

pos = ftell(fh)

would store 14 or 15 in pos. Later in your code, after reading more of the file, you could return to this

position by coding

fseek(fh, pos, -1)

You could return to the beginning of the file by coding

fseek(fh, 0, -1)

and you could move to the end of the file by coding

fseek(fh, 0, 1)

fseek(fh, 0, 0) is equivalent to ftell(fh).

Repositioning functions cannot be used when the file has been opened ”a”.

Truncating a file

Truncation refers to making a longer file shorter. If a file was opened ”w” or ”rw”, you may truncate it

at its current position by using

ftruncate(fh)

or

ftruncate(fh)

ftruncate() returns nothing; ftruncate() returns 0 on success and otherwise returns a negative

error code.

The following code shortens a file to its first 100 bytes:

fh = fopen(filename, ”rw”)
fseek(fh, 100, -1)
ftruncate(fh)
fclose(fh)

fopen() — File I/O 10

Error codes

If you use the underscore I/O functions, if there is an error, they will return a negative code. Those codes

are

Negative code Meaning

0 all is well

−1 end of file

−2 connection timed out

−601 file not found

−602 file already exists

−603 file could not be opened

−608 file is read-only

−610 file format error

−612 unexpected end of file

−630 web files not supported in this version of Stata

−631 host not found

−632 web file not allowed in this context

−633 may not write to web file

−660 proxy host not found

−661 host or file not found

−662 proxy server refused request to send

−663 remote connection to proxy failed

−665 could not set socket nonblocking

−669 invalid URL

−670 invalid network port number

−671 unknown network protocol

−672 server refused to send file

−673 authorization required by server

−674 unexpected response from server

−675 server reported server error

−676 server refused request to send

−677 remote connection failed

−678 could not open local network socket

−679 unexpected web error

−691 I/O error

−699 insufficient disk space

−3601 invalid file handle

−3602 invalid filename

−3603 invalid file mode

−3611 too many open files

−3621 attempt to write read-only file

−3622 attempt to read write-only file

−3623 attempt to seek append-only file

−3698 file seek error

Other codes in the −600 to −699 range are possible. The codes in this range correspond
to the negative of the corresponding Stata return code; see [P] error.

Underscore functions that return a real scalar will return one of these codes if there is an error.

https://www.stata.com/manuals/perror.pdf#perror

fopen() — File I/O 11

If an underscore function does not return a real scalar, then you obtain the outcome status using

fstatus(). For instance, the read-string functions return a string scalar or J(0,0,””) on end of file.

The underscore variants do the same, and they also return J(0,0,””) on error, meaning error looks like

end of file. You can determine the error code using the function

fstatus(fh)

fstatus() returns 0 (no previous error) or one of the negative codes above.

fstatus() may be used after any underscore I/O command to obtain the current error status.

fstatus() may also be used after the nonunderscore I/O commands; then fstatus() will return −1

or 0 because all other problems would have stopped execution.

Conformability
fopen(fn, mode, public), fopen(fn, mode, public):

fn: 1 × 1

mode: 1 × 1

public: 1 × 1 (optional)

result: 1 × 1

fclose(fh):
fh: 1 × 1

result: void

fclose(fh):
fh: 1 × 1

result: 1 × 1

fget(fh), fget(fh), fgetnl(fh), fgetnl(fh):
fh: 1 × 1

result: 1 × 1 or 0 × 0 if end of file

fread(fh, len), fread(fh, len):
fh: 1 × 1

len: 1 × 1

result: 1 × 1 or 0 × 0 if end of file

fput(fh, s), fwrite(fh, s):
fh: 1 × 1

s: 1 × 1

result: void

fput(fh, s), fwrite(fh, s):
fh: 1 × 1

s: 1 × 1

result: 1 × 1

fgetmatrix(fh), fgetmatrix(fh):
fh: 1 × 1

result: r × c or 0 × 0 if end of file

fopen() — File I/O 12

fputmatrix(fh, X):
fh: 1 × 1

X : r × c

result: void

fputmatrix(fh, X):
fh: 1 × 1

X : r × c

result: 1 × 1

fstatus(fh):
fh: 1 × 1

result: 1 × 1

ftell(fh), ftell(fh):
fh: 1 × 1

result: 1 × 1

fseek(fh, offset, whence):
fh: 1 × 1

offset: 1 × 1

whence: 1 × 1

result: void

fseek(fh, offset, whence):
fh: 1 × 1

offset: 1 × 1

whence: 1 × 1

result: 1 × 1

ftruncate(fh):
fh: 1 × 1

result: void

ftruncate(fh):
fh: 1 × 1

result: 1 × 1

Diagnostics
fopen(fn, mode) aborts with error if mode is invalid or if fn cannot be opened or if an attempt is made

to open too many files simultaneously.

fopen(fn, mode) aborts with error if mode is invalid or if an attempt is made to open too many files

simultaneously. fopen() returns the appropriate negative error code if fn cannot be opened.

All remaining I/O functions—even functions with leading underscore—abort with error if fh is not a

handle to a currently open file.

fopen() — File I/O 13

Also, the functions that do not begin with an underscore abort with error when a file was opened read-only

and a request requiring write access is made, when a file is opened write-only and a request requiring

read access is made, etc. See Error codes above; all problems except code −1 (end of file) cause the

nonunderscore functions to abort with error.

Finally, the following functions will also abort with error for the following specific reasons:

fseek(fh, offset, whence) and fseek(fh, offset, whence) abort with error if offset is outside the

range ±9,007,199,254,740,991 on 64-bit computers or if whence is not −1, 0, or 1.

Also see
[M-5] bufio() — Buffered (binary) I/O

[M-5] cat() — Load file into string matrix sprintf() in

[M-5] printf() — Format output

[M-4] IO — I/O functions

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()RemarksandexamplesErrorcodes
https://www.stata.com/manuals/m-5bufio.pdf#m-5bufio()
https://www.stata.com/manuals/m-5cat.pdf#m-5cat()
https://www.stata.com/manuals/m-5printf.pdf#m-5printf()
https://www.stata.com/manuals/m-4io.pdf#m-4IO
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

