Title

| epsilon() — Unit roundoff error (machine precision) |

<table>
<thead>
<tr>
<th>Description</th>
<th>Syntax</th>
<th>Remarks and examples</th>
<th>Conformability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

\(\text{epsilon}(x) \) returns the unit roundoff error in quantities of size \(\text{abs}(x) \).

Syntax

\[
\text{real scalar \hspace{1em} epsilon(real scalar \hspace{1em} x)}
\]

Remarks and examples

On all computers on which Stata and Mata are currently implemented—which are computers following IEEE standards—\(\text{epsilon}(1) \) is \(1.0 \times 34 \), or about \(2.22045 \times 16 \). This is the smallest amount by which a real number can differ from 1.

\(\text{epsilon}(x) \) is \(\text{abs}(x) \times \text{epsilon}(1) \). This is an approximation of the smallest amount by which a real number can differ from \(x \). The approximation is exact at integer powers of 2.

Conformability

epsilon(x):

\[
x: \quad 1 \times 1
\]

\[
\text{result:} \quad 1 \times 1
\]

Diagnostics

\(\text{epsilon}(x) \) returns . if \(x \) is missing.

Also see

- [M-5] `edittozero()` — Edit matrix for roundoff error (zeros)
- [M-5] `mindouble()` — Minimum and maximum nonmissing value
- [M-4] `Utility` — Matrix utility functions