det() — Determinant of matrix

Description

\[\text{det}(A) \] returns the determinant of \(A \).

\[\text{dettriangular}(A) \] returns the determinant of \(A \), treating \(A \) as if it were triangular (even if it is not).

Syntax

\[\text{numeric scalar} \quad \text{det}(\text{numeric matrix} \ A) \]

\[\text{numeric scalar} \quad \text{dettriangular}(\text{numeric matrix} \ A) \]

Remarks and examples

Calculation of the determinant is made by obtaining the LU decomposition of \(A \) and then calculating the determinant of \(U \):

\[
\text{det}(A) = \text{det}(PLU) = \text{det}(P) \times \text{det}(L) \times \text{det}(U) = \pm 1 \times 1 \times \text{det}(U) = \pm \text{det}(U)
\]

Since \(U \) is (upper) triangular, \(\text{det}(U) \) is simply the product of its diagonal elements. See [M-5] lud().

Conformability

\[\text{det}(A), \text{dettriangular}(A): \]

\[
\begin{align*}
A: & \quad n \times n \\
result: & \quad 1 \times 1
\end{align*}
\]
Diagnostics

\(\text{det}(A) \) and \(\text{dettriangular}(A) \) return 1 if \(A \) is \(0 \times 0 \).

\(\text{det}(A) \) aborts with error if \(A \) is not square and returns missing if \(A \) contains missing values.

\(\text{dettriangular}(A) \) aborts with error if \(A \) is not square and returns missing if any element on the diagonal of \(A \) is missing.

Both \(\text{det}(A) \) and \(\text{dettriangular}(A) \) will return missing value if the determinant exceeds 8.99e+307.

Also see

[M-5] \(\text{lud}() \) — LU decomposition

[M-4] \(\text{Matrix} \) — Matrix functions