Description

`conj(Z)` returns the elementwise complex conjugate of Z, that is, $\text{conj}(a+bi) = a - bi$. `conj()` may be used with real or complex matrices. If Z is real, Z is returned unmodified.

`_conj(A)` replaces A with `conj(A)`. Coding `_conj(A)` is equivalent to coding $A = \text{conj}(A)$, except that less memory is used.

Syntax

```plaintext
cnumeric matrix conj(numeric matrix Z)

void _conj(numeric matrix A)
```

Remarks and examples

Given $m \times n$ matrix Z, `conj(Z)` returns an $m \times n$ matrix; it does not return the transpose. To obtain the conjugate transpose matrix, also known as the adjoint matrix, adjugate matrix, Hermitian adjoin, or Hermitian transpose, code

Z'

See [M-2] op_transpose.

A matrix equal to its conjugate transpose is called Hermitian or self-adjoint, although in this manual, we often use the term symmetric.

Conformability

`conj(Z)`:
- Z: $r \times c$
- result: $r \times c$

`_conj(A)`:
- input: A: $r \times c$
- output: A: $r \times c$
Diagnoses

\(\text{conj}(Z) \) returns a real matrix if \(Z \) is real and a complex matrix if \(Z \) is complex.

\(\text{conj}(Z) \), if \(Z \) is real, returns \(Z \) itself and not a copy. This makes \(\text{conj}() \) execute instantly when applied to real matrices.

\(\text{conj}(A) \) does nothing if \(A \) is real (and hence, does not abort if \(A \) is a view).

Also see

[M-5] _transpose() — Transposition in place

[M-4] Scalar — Scalar mathematical functions