cholsolve() — Solve AX=B for X using Cholesky decomposition

Description

cholsolve(A, B) solves $AX = B$ and returns X for symmetric (Hermitian), positive-definite A. cholsolve() returns a matrix of missing values if A is not positive definite or if A is singular.

cholsolve(A, B, tol) does the same thing; it allows you to specify the tolerance for declaring that A is singular; see Tolerance under Remarks and examples below.

_cholsolve(A, B) and _cholsolve(A, B, tol) do the same thing except that, rather than returning the solution X, they overwrite B with the solution, and in the process of making the calculation, they destroy the contents of A.

Syntax

```
numeric matrix      cholsolve(numeric matrix A, numeric matrix B)
numeric matrix      cholsolve(numeric matrix A, numeric matrix B, real scalar tol)
void                 _cholsolve(numeric matrix A, numeric matrix B)
void                 _cholsolve(numeric matrix A, numeric matrix B, real scalar tol)
```

Remarks and examples

The above functions solve $AX = B$ via Cholesky decomposition and are accurate. When A is not symmetric and positive definite, [M-5] lusolve(), [M-5] qrsolve(), and [M-5] svsolve() are alternatives based on the LU decomposition, the QR decomposition, and the singular value decomposition (SVD). The alternatives differ in how they handle singular A. Then the LU-based routines return missing values, whereas the QR-based and SVD-based routines return generalized (least-squares) solutions.

Remarks are presented under the following headings:

Derivation
Relationship to inversion
Tolerance

Derivation

We wish to solve for X

$$AX = B$$

(1)
when A is symmetric and positive definite. Perform the Cholesky decomposition of A so that we have $A = GG'$. Then (1) can be written as

$$ GG'X = B \quad (2) $$

Define

$$ Z = G'X \quad (3) $$

Then (2) can be rewritten as

$$ GZ = B \quad (4) $$

It is easy to solve (4) for Z because G is a lower-triangular matrix. Once Z is known, it is easy to solve (3) for X because G' is upper triangular.

Relationship to inversion

See *Relationship to inversion* in [M-5] *lusolve()* for a discussion of the relationship between solving the linear system and matrix inversion.

Tolerance

The default tolerance used is

$$ \eta = \frac{(1e-13) \cdot \text{trace(abs}(G))}{n} $$

where G is the lower-triangular Cholesky factor of $A: n \times n$. A is declared to be singular if *cholesky()* (see [M-5] *cholesky()*) finds that A is not positive definite, or if A is found to be positive definite, if any diagonal element of G is less than or equal to η. Mathematically, positive definiteness implies that the matrix is not singular. In the numerical method used, two checks are made: *cholesky()* makes one and then the η rule is applied to ensure numerical stability in the use of the result *cholesky()* returns.

If you specify $tol > 0$, the value you specify is used to multiply η. You may instead specify $tol \leq 0$ and then the negative of the value you specify is used in place of η; see [M-1] *Tolerance*.

See [M-5] *lusolve()* for a detailed discussion of the issues surrounding solving nearly singular systems. The main point to keep in mind is that if A is ill conditioned, then small changes in A or B can lead to radically large differences in the solution for X.

Conformability

cholsolve(A, B, tol):

input:

- A: $n \times n$
- B: $n \times k$
- tol: 1×1 (optional)

result: $n \times k$

chsolve(A, B, tol):

input:

- A: $n \times n$
- B: $n \times k$
- tol: 1×1 (optional)

output:

- A: 0×0
- B: $n \times k$
Diagnostics

cholsolve(A, B, ...), and _cholsolve(A, B, ...) return a result of all missing values if A is not positive definite or if A contains missing values.

_cholsolve(A, B, ...) also aborts with error if A or B is a view.

All functions use the elements from the lower triangle of A without checking whether A is symmetric or, in the complex case, Hermitian.

Also see

[M-5] cholesky() — Cholesky square-root decomposition
[M-5] cholinv() — Symmetric, positive-definite matrix inversion
[M-5] lusolve() — Solve AX=B for X using LU decomposition
[M-5] qrsolve() — Solve AX=B for X using QR decomposition
[M-5] solvelower() — Solve AX=B for X, A triangular
[M-5] svsolve() — Solve AX=B for X using singular value decomposition
[M-5] solve_tol() — Tolerance used by solvers and inverters
[M-4] Solvers — Functions to solve AX=B and to obtain A inverse