cholinv() — Symmetric, positive-definite matrix inversion

Description

cholinv(A) and cholinv(A, tol) return the inverse of real or complex, symmetric (Hermitian), positive-definite, square matrix A.

_cholinv(A) and _cholinv(A, tol) do the same thing except that, rather than returning the inverse matrix, they overwrite the original matrix A with the inverse.

In all cases, optional argument tol specifies the tolerance for determining singularity; see Remarks and examples below.

Syntax

numeric matrix cholinv(numeric matrix A)
numeric matrix cholinv(numeric matrix A, real scalar tol)
void _cholinv(numeric matrix A)
void _cholinv(numeric matrix A, real scalar tol)

Remarks and examples

These routines calculate the inverse of a symmetric, positive-definite square matrix A. See [M-5] luinv() for the inverse of a general square matrix.

cholinv(A) is logically equivalent to cholsolve(A, I(rows(A))); see [M-5] cholsolve() for details and for use of the optional tol argument.

Conformability

cholinv(A, tol):

<table>
<thead>
<tr>
<th></th>
<th>A:</th>
<th>tol:</th>
<th>result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>n × n</td>
<td>1 × 1 (optional)</td>
<td>n × n</td>
</tr>
</tbody>
</table>

_cholinv(A, tol):

<table>
<thead>
<tr>
<th></th>
<th>A:</th>
<th>tol:</th>
<th>result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>n × n</td>
<td>1 × 1 (optional)</td>
<td>n × n</td>
</tr>
</tbody>
</table>
Diagnostics

The inverse returned by these functions is real if \(A \) is real and is complex if \(A \) is complex. If you use these functions with a non–positive-definite matrix, or a matrix that is too close to singularity, returned will be a matrix of missing values. The determination of singularity is made relative to \(tol \). See *Tolerance* under Remarks and examples in \[M-5\] cholsolve() for details.

\texttt{cholinv(A)} and \texttt{_cholinv(A)} return a result containing all missing values if \(A \) is not positive definite or if \(A \) contains missing values.

\texttt{_cholinv(A)} aborts with error if \(A \) is a view.

See \[M-5\] cholsolve() and \[M-1\] Tolerance for information on the optional \(tol \) argument.

Both functions use the elements from the lower triangle of \(A \) without checking whether \(A \) is symmetric or, in the complex case, Hermitian.

Also see

\[M-5\] invsym() — Symmetric real matrix inversion

\[M-5\] luinv() — Square matrix inversion

\[M-5\] pinv() — Moore–Penrose pseudoinverse

\[M-5\] qrinv() — Generalized inverse of matrix via QR decomposition

\[M-5\] cholsolve() — Solve \(AX=B \) for \(X \) using Cholesky decomposition

\[M-5\] solve_tol() — Tolerance used by solvers and inverters

\[M-4\] Matrix — Matrix functions

\[M-4\] Solvers — Functions to solve \(AX=B \) and to obtain \(A \) inverse