
mata mlib — Create function library

Description Syntax Options Remarks and examples Also see

Description
Mata libraries are useful. You can put your functions in them. If you do that, you can use your functions

just as if they were built in to Mata. Your functions and Mata’s are put on equal footing. The footing

really is equal because Mata’s built-in functions are also stored in libraries. The only difference is that

those libraries are created and maintained by StataCorp.

mata mlib creates, adds to, and causes Mata to index .mlib files, which are libraries containing the

object-code functions. The lmbuild command also creates and maintains Mata function libraries, but

lmbuild is easier to use than mata mlib create or mata mlib add. Therefore, we suggest you use

lmbuild (see [M-3] lmbuild) instead of these commands.

mata mlib has two other features that are sometimes useful. Mata maintains a list for itself of the libraries

it is to search when looking for functions. Mata builds that list when Stata is launched. Type mata mlib
query to see the list. Mata tries to keep the list up to date as you work, but if you create a new library

and do not use lmbuild, Mata will not know about it. Or if you copy a library from a colleague, Mata

will not know about it until Stata is relaunched. Type mata mlib index in such cases, and Mata will

rebuild the list.

mata mlib create creates a new, empty library.

mata mlib add adds new members to a library.

mata mlib index causes Mata to build a new list of libraries to be searched.

mata mlib query lists the libraries to be searched.

1

https://www.stata.com/manuals/m-3lmbuild.pdf#m-3lmbuild

mata mlib — Create function library 2

Syntax
: mata mlib create libname [, dir(path) replace size(#)]

: mata mlib add libname fcnlist() [, dir(path) complete]

: mata mlib index

: mata mlib query

where fcnlist() is a namelist containing only function names, such as

fcnlist() examples

myfunc()
myfunc() myotherfunc() foo()
f*() g*()
*()

see [M-3] namelists

and where libname is the name of a library. You must start libname with the letter l and do not add the

.mlib suffix as it will be added for you. Examples of libnames include

libname Corresponding filename

lmath lmath.mlib
lmoremath lmoremath.mlib
lnjc lnjc.mlib

Also libnames that begin with the letters lmata, such as lmatabase, are reserved for the names of official

libraries.

This command is for use in Mata mode following Mata’s colon prompt. To use this command from

Stata’s dot prompt, type

. mata: mata mlib . . .

Options
dir(path) specifies the directory (folder) into which the file should be written. dir(.) is the default,

meaning that if dir() is not specified, the file is written into the current (working) directory. path

may be a directory name or may be the sysdir shorthand STATA, BASE, SITE, PLUS, PERSONAL, or
OLDPLACE; see [P] sysdir. dir(PERSONAL) is recommended.

complete is for use when saving class definitions. It specifies that the definition be saved only if it is

complete; otherwise, an error message is to be issued. See [M-2] class.

replace specifies that the file may be replaced if it already exists.

https://www.stata.com/manuals/m-3namelists.pdf#m-3namelists
https://www.stata.com/manuals/psysdir.pdf#psysdir
https://www.stata.com/manuals/m-2class.pdf#m-2class

mata mlib — Create function library 3

size(#), used with mlib create, specifies the maximum number of members the newly created library

will be able to contain, 2 ≤ # ≤ 2048. The default is size(1024).

Remarks and examples
Remarks are presented under the following headings:

Background
Outline of the procedure for dealing with libraries
Creating a .mlib library
Adding members to a .mlib library
Listing the contents of a library
Making it so Mata knows to search your libraries
Advice on organizing your source code

Also see [M-1] How for an explanation of object code.

Background

.mlib files contain the object code for one or more functions. Functions which happen to be stored in

libraries are called library functions, and Mata’s library functions are also stored in .mlib libraries. You

can create your own libraries, too.

Mata provides two ways to store object code:

1. In a .mo file, which contains the code for one function

2. In a .mlib library file, which may contain the code for up to 2,048 functions

.mo files are easier to use and work just as well as .mlib libraries; see [M-3] mata mosave. .mlib
libraries, however, are easier to distribute to others when you have many functions, because they are

combined into one file.

Outline of the procedure for dealing with libraries

Working with libraries is easy:

1. First, choose a name for your library. We will choose the name lpersonal.

2. Next, create an empty library by using the mata mlib create command.

3. After that, you can add new members to the library at any time, using mata mlib add.

.mlib libraries contain object code, not the original source code, so you need to keep track of the source

code yourself. Also, if you want to update the object code in a function stored in a library, you must

re-create the entire library; there is no way to replace or delete a member once it is added.

We begin by showing you the mechanical steps, and then we will tell you how we manage libraries and

source code.

https://www.stata.com/manuals/m-1how.pdf#m-1How
https://www.stata.com/manuals/m-3matamosave.pdf#m-3matamosave

mata mlib — Create function library 4

Creating a .mlib library

If you have not read [M-3] mata mosave, please do so.

To create a new, empty library named lpersonal.mlib in the current directory, type

: mata mlib create lpersonal
(file lpersonal.mlib created)

If lpersonal.mlib already exists and you want to replace it, either erase the existing file first or type

: mata mlib create lpersonal, replace
(file lpersonal.mlib created)

To create a new, empty library named lpersonal.mlib in your PERSONAL (see [P] sysdir) directory,

type

: mata mlib create lpersonal, dir(PERSONAL)
(file c:\ado\personal\lpersonal.mlib created)

or

: mata mlib create lpersonal, dir(PERSONAL) replace
(file c:\ado\personal\lpersonal.mlib created)

Adding members to a .mlib library

Once a library exists, whether you have just created it and it is empty, or it already existed and contains

some functions, you can add new functions to it by typing

: mata mlib add libname fcnname()

So, if we wanted to add function example() to library lpersonal.mlib, we would type

: mata mlib add lpersonal example()
(1 function added)

In doing this, we do not have to say where lpersonal.mlib is stored; Mata searches for it along the

ado-path.

Before you can add example() to the library, however, you must compile it:

: function example(. . .)
> {
> . . .
> }

: mata mlib add lpersonal example()
(1 function added)

You can add many functions to a library in one command:

: mata mlib add lpersonal example2() example3()
(2 functions added)

You can add all the functions currently in memory by typing

: mata mlib add lanother *()
(3 functions added)

https://www.stata.com/manuals/m-3matamosave.pdf#m-3matamosave
https://www.stata.com/manuals/psysdir.pdf#psysdir

mata mlib — Create function library 5

In the above example, we added to lanother.mlib because we had already added example(),
example2(), and example3() to lpersonal.mlib and trying to add them again would result in an

error. (Before adding *(), we could verify that we are adding what we want to add by typing mata
describe *(); see [M-3] mata describe.)

Listing the contents of a library

Once a library exists, you can list its contents (the names of the functions it contains) by typing

: mata describe using libname

Here we would type

: mata describe using lpersonal
(library contains 3 members)

bytes type name and extent

32 auto transmorphic matrix example()
32 auto transmorphic matrix example2()
32 auto transmorphic matrix example3()

mata describe usually lists the contents of memory, but mata describe using lists the contents of a

library.

Making it so Mata knows to search your libraries

Mata automatically finds the .mlib libraries on your ado-path. It does this when Mata is invoked for the

first time during a session. Thus everything is automatic except that Mata will know nothing about any

new libraries created during the Stata session, so after creating a new library, you must tell Mata about

it. You do this by asking Mata to rebuild its library index:

: mata mlib index

You do not specify the name of your new library. That name does not matter because Mata rebuilds its

entire library index.

You can issue the mata mlib index command right after creating the new library

: mata mlib create lpersonal, dir(PERSONAL)
: mata mlib index

or after you have created and added to the library:

: mata mlib create lpersonal, dir(PERSONAL)
: mata mlib add lpersonal *()
: mata mlib index

It does not matter. Mata does not need to rebuild its index after a known library is updated; Mata needs

to be told to rebuild only when a new library is added during the session.

https://www.stata.com/manuals/m-3matadescribe.pdf#m-3matadescribe

mata mlib — Create function library 6

Advice on organizing your source code

Say you wish to create and maintain lpersonal.mlib. Our preferred way is to use a do-file:
begin lpersonal.do

mata:
mata clear
function definitions appear here

mata mlib create lpersonal, dir(PERSONAL) replace
mata mlib add lpersonal *()
mata mlib index
end

end lpersonal.do

This way, all we have to do to create or re-create the library is enter Stata, change to the directory con-

taining our source code, and type

. do lpersonal

For large libraries, we like to put the source code for different parts in different files:

begin lpersonal.do
mata: mata clear

do function1.mata
do function2.mata
. . .
mata:
mata mlib create lpersonal, dir(PERSONAL) replace
mata mlib add lpersonal *()
mata mlib index
end

end lpersonal.do

The function files contain the source code, which might include one function, or it might include more

than one function if the primary function had subroutines:

begin function1.mata
mata:
function definitions appear here
end

end function1.mata

We name our component files ending in .mata, but they are still just do-files.

Also see
[M-3] lmbuild — Easily create function library

[M-3] mata mosave — Save function’s compiled code in object file

[M-3] Intro — Commands for controlling Mata
Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-3lmbuild.pdf#m-3lmbuild
https://www.stata.com/manuals/m-3matamosave.pdf#m-3matamosave
https://www.stata.com/manuals/m-3intro.pdf#m-3Intro
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

