
mata — Mata invocation command

Description Syntax Remarks and examples Also see

Description
The mata command invokes Mata. An istmt is something Mata understands; istmt stands for interactive

statement of Mata.

Syntax
The mata command documented here is for use from Stata. It is how you enter Mata. You type mata at

a Stata dot prompt, not a Mata colon prompt.

Syntax 1 Comment

mata no colon following mata
istmt

istmt if an error occurs, you stay in

.. mata mode

istmt

end you exit when you type end

Syntax 1 is the best way to use Mata interactively.

Syntax 2 Comment

mata: colon following mata
istmt

istmt if an error occurs, you are

.. dumped from mata
istmt

end otherwise, you exit when you type end

Syntax 2 is mostly used by programmers in ado-files.

Programmers want errors to stop everything.

Syntax 3 Comment

mata istmt rarely used

Syntax 3 is the single-line variant of syntax 1, but it is not useful.

Syntax 4 Comment

mata: istmt for use by programmers

Syntax 4 is the single-line variant of syntax 2, and it exists for the same reason

as syntax 2: for use by programmers in ado-files.

1

mata — Mata invocation command 2

Remarks and examples
Remarks are presented under the following headings:

Introduction
The fine distinction between syntaxes 3 and 4
The fine distinction between syntaxes 1 and 2

Introduction

For interactive use, use syntax 1. Type mata (no colon), press Enter, and then use Mata freely. Type end
to return to Stata. (When you exit from Mata back into Stata, Mata does not clear itself; so if you later

type mata-followed-by-enter again, you will be right back where you were.)

For programming use, use syntax 2 or syntax 4. Inside a program or an ado-file, you can just call a Mata

function

program myprog
. . .
mata: utility(”‘varlist’”)
. . .

end

and you can even include that Mata function in your ado-file

begin myprog.ado
program myprog

. . .
mata: utility(”‘varlist’”)
. . .

end

mata:
function utility(string scalar varlist)
{

. . .
}
end

end myprog.ado

or you could separately compile utility() and put it in a .mo file or in a Mata library.

The fine distinction between syntaxes 3 and 4

Syntaxes 3 and 4 are both single-line syntaxes. You type mata, perhaps a colon, and follow that with the

Mata istmt.

The differences between the two syntaxes is whether they allow continuation lines. With a colon, no

continuation line is allowed. Without a colon, you may have continuation lines.

For instance, let’s consider

function renorm(scalar a, scalar b)
{

. . .
}

https://www.stata.com/manuals/m-3mata.pdf#m-3mataSyntaxsyntax1
https://www.stata.com/manuals/m-3mata.pdf#m-3mataSyntaxsyntax2
https://www.stata.com/manuals/m-3mata.pdf#m-3mataSyntaxsyntax4
https://www.stata.com/manuals/m-3mata.pdf#m-3mataSyntaxsyntax3
https://www.stata.com/manuals/m-3mata.pdf#m-3mataSyntaxsyntax4

mata — Mata invocation command 3

No matter how long the function, it is one istmt. Using mata:, if you were to try to enter that istmt, here

is what would happen:

. mata: function renorm(scalar a, scalar b)
<istmt> incomplete
r(197);

When you got to the end of the first line and pressed Enter, you got an error message. Using the mata:
command, the istmt must all fit on one line.

Now try the same thing using mata without the colon:

. mata function renorm(scalar a, scalar b)
> {
> . . .
> }
.

That worked! Single-line mata without the colon allows continuation lines and, on this score at least,

seems better than single-line mata with the colon. In programming contexts, however, this feature can

bite. Consider the following program fragment:

program example
. . .
mata utility(”‘varlist’”
replace ‘x’ = . . .
. . .

end

We used mata without the colon, and we made an error: we forgot the close parenthesis. mata without

the colon will be looking for that close parenthesis and so will eat the next line—a line not intended for

Mata. Here we will get an error message because “replace ‘x’ = . . .” will make no sense to Mata, but

that error will be different from the one we should have gotten. In the unlikely worse case, that next line

will make sense to Mata.

Ergo, programmers want to include the colon. It will make your programs easier to debug.

There is, however, a programmer’s use for single-line mata without the colon. In our sample ado-file

above when we included the routine utility(), we bound it in mata: and end. It would be satisfactory
if instead we coded

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(197)

mata — Mata invocation command 4

begin myprog.ado
program myprog

. . .
mata: utility(”‘varlist’”)
. . .

end

mata function utility(string scalar varlist)
{

. . .
}

end myprog.ado

Using mata without the colon, we can omit the end. We admit we sometimes do that.

The fine distinction between syntaxes 1 and 2

Nothing said above about continuation lines applies to syntaxes 1 and 2. The multiline mata, with or

without colon, always allows continuation lines because where the Mata session ends is clear enough:

end.

The difference between the two multiline syntaxes is whether Mata tolerates errors or instead dumps

you back into Stata. Interactive users appreciate tolerance. Programmers want strictness. Programmers,

consider the following (using mata without the colon):

program example2
. . .
mata

result = myfunc(”‘varlist’”)
st_local(”n” result) /* <- mistake here */
result = J(0,0,””)

end
. . .

end

In the above example, we omitted the comma between ”n” and result. We also used multiline mata
without the colon. Therefore, the incorrect line will be tolerated by Mata, which will merrily continue

executing our program until the end statement, at which point Mata will return control to Stata and not

tell Stata that anything went wrong! This could have serious consequences, all of which could be avoided

by substituting multiline mata with the colon.

Also see
[M-3] Intro — Commands for controlling Mata

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-3mata.pdf#m-3mataSyntaxsyntax1
https://www.stata.com/manuals/m-3mata.pdf#m-3mataSyntaxsyntax2
https://www.stata.com/manuals/m-3intro.pdf#m-3Intro
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

