
struct — Structures

Description Syntax Remarks and examples References Also see

Description
A structure contains a set of variables tied together under one name. For a more detailed description of

structures and how they are used, see Gould (2018).

Syntax
struct structname {

declaration(s)

}

such as

struct mystruct {
real scalar n1, n2
real matrix X

}

Remarks and examples
Remarks are presented under the following headings:

Introduction
Structures and functions must have different names
Structure variables must be explicitly declared
Declare structure variables to be scalars whenever possible

Vectors and matrices of structures
Structures of structures
Pointers to structures

Operators and functions for use with structure members
Operators and functions for use with entire structures

Listing structures

Use of transmorphics as passthrus
Saving compiled structure definitions
Saving structure variables

1

struct — Structures 2

Introduction

Here is an overview of the use of structures:

struct mystruct {
real scalar n1, n2
real matrix X

}

function myfunc()
{

struct mystruct scalar e

. . .
e.n1 = . . .
e.n2 = . . .
e.X = . . .
. . .
. . . mysubroutine(e, . . .)
. . .

}

function mysubroutine(struct mystruct scalar x, . . .)
{

struct mystruct scalar y
. . .
. . . x.n1 . . . x.n2 . . . x.X . . .
. . .
y = mysubfcn(x)
. . .
. . . y.n1 . . . y.n2 . . . y.X . . .
. . . x.n1 . . . x.n2 . . . x.X . . .
. . .

}

struct mystruct scalar mysubfcn(struct mystruct scalar x)
{

struct mystruct scalar result

result = x
. . . result.n1 . . . result.n2 . . . result.X . . .
return(result)

}

Note the following:

1. We first defined the structure. Definition does not create variables; definition defines what we

mean when we refer to a struct mystruct in the future. This definition is done outside and

separately from the definition of the functions that will use it. The structure is defined before

the functions.

2. In myfunc(), we declared that variable e is a struct mystruct scalar. We then used

variables e.n1, e.n2, and e.X just as we would use any other variable. In the call to

mysubroutine(), however, we passed the entire e structure.

3. In mysubroutine(), we declared that the first argument received is a struct mystruct
scalar. We chose to call it x rather than e to emphasize that names are not important. y
is also a struct mystruct scalar.

struct — Structures 3

4. mysubfcn() not only accepts a struct mystruct as an argument but also returns a struct
mystruct. One of the best uses of structures is as a way to return multiple, related values.

The line result=x copied all the values in the structure; we did not need to code result.n1=x.n1,
result.n2=x.n2, and result.X=x.X.

Structures and functions must have different names

You define structures much as you define functions, at the colon prompt, with the definition enclosed in

braces:

: struct twopart {
> real scalar n1, n2
> }
: function setuphistory()
> {
> . . .
> }

Structures and functions may not have the same names. If you call a structure twopart, then you cannot
have a function named twopart(), and vice versa.

Structure variables must be explicitly declared

Declarations are usually optional in Mata. You can code

real matrix swaprows(real matrix A, real scalar i1, real scalar i2)
{

real matrix B
real rowvector v

B = A
v = B[i1, .]
B[i1, .] = B[i2, .]
B[i2, .] = v
return(B)

}

or you can code

function swaprows(A, i1, i2)
{

B = A
v = B[i1, .]
B[i1, .] = B[i2, .]
B[i2, .] = v
return(B)

}

struct — Structures 4

When a variable, argument, or returned value is a structure, however, you must explicitly declare it:

function makecalc()
{

struct twopart scalar t

t.n1 = t.n2 = 0
. . .

}

function clear_twopart(struct twopart scalar t)
{

t.n1 = t.n2 = 0
}

struct twopart scalar new_twopart()

{
struct twopart scalar t

t.n1 = t.n2 = 0
return(t)

}

In the functions above, we refer to variables t.n1 and t.n2. The Mata compiler cannot interpret those

names unless it knows the definition of the structure.

Aside: All structure references are resolved at compile time, not run time. That is, terms like t.n1 are

not stored in the compiled code and resolved during execution. Instead, the Mata compiler accesses the

structure definition when it compiles your code. The compiler knows that t.n1 refers to the first element

of the structure and generates efficient code to access it.

Declare structure variables to be scalars whenever possible

In our declarations, we code things like

struct twopart scalar t

and do not simply code

struct twopart t

although the simpler statement would be valid.

Structure variables can be scalars, vectors, or matrices; when you do not say which, matrix is assumed.

Most uses of structures are as scalars, and the compiler will generate more efficient code if you tell it

that the structures are scalars. Also, when you use structure vectors or matrices, there is an extra step you

need to fill in, as described in the next section.

Vectors and matrices of structures

Just as you can have real scalars, vectors, or matrices, you can have structure scalars, vectors, or matri-

ces. The following are all valid:

struct — Structures 5

struct twopart scalar t
struct twopart vector t
struct twopart rowvector t
struct twopart colvector t
struct twopart matrix t

In a struct twopart matrix, every element of the matrix is a separate structure. Say that the matrix

were 2 × 3. Then you could refer to any of the following variables,

t[1,1].n1
t[1,2].n1
t[1,3].n1
t[2,1].n1
t[2,2].n1
t[2,3].n1

and similarly for t[i, j].n2.

If struct twopart also contained a matrix X, then

t[i, j].X

would refer to the (i, j)th matrix.

t[i, j].X[k, l]

would refer to the (k, l)th element of the (i, j)th matrix.

If t is to be a 2 × 3 matrix, you must arrange to make it 2 × 3. After the declaration

struct twopart matrix t

t is 0 × 0. This result is no different from the situation where t is a real matrix and after declaration,

t is 0 × 0.

Whether t is a real matrix or a struct twopart matrix, you allocate t by assignment. Let’s pretend

that t is a real matrix. There are three solutions to the allocation problem:

(1) t = x

(2) t = somefunction(. . .)

(3) t = J(r, c, v)

All three are so natural that you do not even think of them as allocation; you think of them as definition.

The situation with structures is the same.

Let’s take each in turn.

1. x contains a 2 × 3 struct twopart. You code

t = x

and now t contains a copy of x. t is 2 × 3.

struct — Structures 6

2. somefunction(. . .) returns a 2 × 3 struct twopart. You code

t = somefunction(. . .)

and now t contains the 2 × 3 result.

3. Mata function J(r, c, v) returns an r × cmatrix, every element of which is set to v. So pretend

that variable tpc contains a struct twopart scalar. You code

t = J(2, 3, tpc)

and now t is 2 × 3, every element of which is a copy of tpc. Here is how you might do that:

function . . .(. . .)
{

struct twopart scalar tpc
struct twopart matrix t

. . .
t = J(2, 3, tpc)
. . .

}

Finally, there is a fourth way to create structure vectors and matrices. When you defined

struct twopart {
real scalar n1, n2

}

Mata not only recorded the structure definition but also created a function named twopart() that returns

a struct twopart. Thus, rather than enduring all the rigmarole of creating a matrix from a preallocated

scalar, you could simply code

t = J(2, 3, twopart())

In fact, the function twopart() that Mata creates for you allows zero, one, or two arguments:

twopart() returns a 1 × 1 struct twopart

twopart(r) returns an r × 1 struct twopart

twopart(r, c) returns an r × c struct twopart

so you could code

t = twopart(2, 3)

or you could code

t = J(2, 3, twopart())

and whichever you code makes no difference.

Either way, what is in t? Each element contains a separate struct twopart. In each struct twopart,
the scalars have been set to missing (., ””, or NULL, as appropriate), the vectors and row vectors have

been made 1 × 0, the column vectors 0 × 1, and the matrices 0 × 0.

struct — Structures 7

Structures of structures

Structures may contain other structures:

struct twopart {
real scalar n1, n2

}

struct pair_of_twoparts {
struct twopart scalar t1, t2

}

If t were a struct pair of twoparts scalar, then the members of t would be

t.t1 a struct twopart scalar
t.t2 a struct twopart scalar
t.t1.n1 a real scalar
t.t1.n2 a real scalar
t.t2.n1 a real scalar
t.t2.n2 a real scalar

You may also create structures of structures of structures, structures of structures of structures of struc-

tures, and so on. You may not, however, include a structure in itself:

struct recursive {
. . .
struct recursive scalar r
. . .

}

Do you see how, even in the scalar case, struct recursivewould require an infinite amount of memory
to store?

Pointers to structures

What you can do is this:

struct recursive {
. . .
pointer(struct recursive scalar) scalar r
. . .

}

Thus, if r were a struct recursive scalar, then *r.r would be the next structure, or r.r would be

NULL if there were no next structure. Immediately after allocation, r.r would equal NULL.

In this way, you may create linked lists.

Mata provides operator -> for accessing members of pointers to structures.

Let rec be a struct recursive, and assume that struct recursive also had member real scalar n,
so that rec.n would be rec’s n value. The value of the next structure’s n would be rec.r->n (assuming

rec.r!=NULL).

struct — Structures 8

The syntax of -> is

exp1 -> exp2

where exp1 evaluates to a structure pointer and exp2 indexes the structure.

Operators and functions for use with structure members

All operators, all functions, and all features of Mata work with members of structures. That is, given

struct example {
real scalar n
real matrix X

}

function . . .(. . .)
{

real scalar rs
real matrix rm
struct example scalar ex
. . .

}

then ex.n and ex.X may be used anyplace rs and rm would be valid.

Operators and functions for use with entire structures

Some operators and functions can be used with entire structures, not just the structure’s elements. Given

struct mystruct scalar ex1, ex2, ex3, ex4
struct mystruct matrix E, F, G

1. You may use == and != to test for equality:

if (ex1==ex2) . . .

if (ex1!=ex2) . . .

Two structures are equal if their members are equal.

In the example, struct mystruct itself contains no substructures. If it did, the definition of

equality would include checking the equality of substructures, sub-substructures, etc.

In the example, ex1 and ex2 are scalars. If they were matrices, each element would be com-

pared, and the matrices would be equal if the corresponding elements were equal.

2. You may use :== and :!= to form pattern matrices of equality and inequality.

3. You may use the comma and backslash operators to form vectors and matrices of structures:

ex = ex1, ex2 \ ex3, ex4

4. You may use & to obtain pointers to structures:

ptr_to_ex1 = &ex1

https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_join.pdf#m-2op_join

struct — Structures 9

5. You may use subscripting to access and copy structure members:

ex1 = E[1,2]
E[1,2] = ex1
F = E[2,.]
E[2,.] = F
G = E[|1,1\2,2|]
E[|1,1\2,2|] = G

6. You may use the rows() and cols() functions to obtain the number of rows and columns of

a matrix of structures.

7. Youmay use eltype() and orgtype()with structures. eltype() returns struct; orgtype()
returns the usual results.

8. You may use most functions that start with the letters is, as in isreal(), iscomplex(),
isstring(), etc. These functions return 1 if true and 0 if false and with structures, usually

return 0.

9. You may use swap() with structures.

Listing structures

To list the contents of a structure variable, as for debugging purposes, use function liststruct(); see
[M-5] liststruct().

Using the default, unassigned-expression method to list structures is not recommended, because all that

is shown is a pointer value instead of the structure itself.

Use of transmorphics as passthrus

A transmorphic matrix can theoretically hold anything, so when we told you that structures had to be

explicitly declared, that was not exactly right. Say that function twopart() returns a struct twopart
scalar. You could code

x = twopart()

without declaring x (or declaring it transmorphic), and that would not be an error. What you could

not do would be to then refer to x.n1 or x.n2, because the compiler would not know that x contains a

struct twopart and so would have no way of interpreting the variable references.

This property can be put to good use in implementing handles and passthrus.

Say that you are implementing a complicated system. Just to fix ideas, we’ll pretend that the system

finds the maximum of user-specified functions and that the system has many bells and whistles. To

track a given problem, let’s assume that your system needs many variables. One variable records the

method to be used. Another records whether numerical derivatives are to be used. Another records the

current gradient vector. Another records the iteration count, and so on. There might be hundreds of these

variables.

https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-5rows.pdf#m-5rows()
https://www.stata.com/manuals/m-5eltype.pdf#m-5eltype()
https://www.stata.com/manuals/m-5isreal.pdf#m-5isreal()
https://www.stata.com/manuals/m-5isreal.pdf#m-5isreal()
https://www.stata.com/manuals/m-5swap.pdf#m-5swap()
https://www.stata.com/manuals/m-5liststruct.pdf#m-5liststruct()

struct — Structures 10

You bind all of these variables together in one structure:

struct maxvariables {
real scalar method
real scalar use_numeric_d
real vector gradient
real scalar iteration
. . .

}

You design a system with many functions, and some functions call others, but because all the status

variables are bound together in one structure, it is easy to pass the values from one function to another.

You also design a system that is easy to use. It starts by the user “opening” a problem,

handle = maximize_open()

and from that point on the user passes the handle around to the other maximize routines:

maximize_set_use_numeric_d(handle, 1)
maximize_set_function_to_max(handle, &myfunc())
. . .
maximize_maximize_my_function(handle)

In this way, you, the programmer of this system, can hold on to values from one call to the next, and you

can change the values, too.

What you never do, however, is tell the user that the handle is a struct maxvariables. You just tell

the user to open a problem by typing

handle = maximize_open()

and then to pass the handle returned to the other maximize *() routines. If the user feels that he must

explicitly declare the handle, you tell him to declare it:

transmorphic scalar handle

What is the advantage of this secrecy? You can be certain that the user never changes any of the values

in your struct maxvariables because the compiler does not even know what they are.

Thus you have made your system more robust to user errors.

Saving compiled structure definitions

You save compiled structure definitions just as you save compiled function definitions; see [M-3] mata

mosave and [M-3] mata mlib.

When you define a structure, such as twopart,
struct twopart {

real scalar n1, n2
}

that also creates a function, twopart(), that creates instances of the structure.

Saving twopart() in a .mo file, or in a .mlib library, saves the compiled definition as well. Once

twopart() has been saved, youmaywrite future programswithout bothering to define struct twopart.
The definition will be automatically found.

https://www.stata.com/manuals/m-3matamosave.pdf#m-3matamosave
https://www.stata.com/manuals/m-3matamosave.pdf#m-3matamosave
https://www.stata.com/manuals/m-3matamlib.pdf#m-3matamlib

struct — Structures 11

Saving structure variables

Variables containing structures may be saved on disk just as you would save any other variable. No

special action is required. See [M-3]matamatsave and see the function fputmatrix() in [M-5] fopen().

mata matsave and fputmatrix() both work with structure variables, although their entries do not

mention them.

References
Gould, W. W. 2007. Mata Matters: Structures. Stata Journal 7: 556–570.

———. 2018. The Mata Book: A Book for Serious Programmers and Those Who Want to Be. College Station, TX: Stata

Press.

Also see
[M-2] Declarations — Declarations and types

[M-2] Intro — Language definition

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-3matamatsave.pdf#m-3matamatsave
https://www.stata.com/manuals/m-5fopen.pdf#m-5fopen()
https://www.stata-journal.com/article.html?article=pr0035
https://www.stata-press.com/books/mata-book
https://www.stata.com/manuals/m-2declarations.pdf#m-2Declarations
https://www.stata.com/manuals/m-2intro.pdf#m-2Intro
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

