Logical operators

<table>
<thead>
<tr>
<th>Description</th>
<th>Syntax</th>
<th>Remarks and examples</th>
<th>Conformability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

The operators above perform logical comparisons, and operator `!` performs logical negation. All operators evaluate to 1 or 0, meaning true or false.

Syntax

- `a == b` true if `a` equals `b`
- `a != b` true if `a` not equal to `b`
- `a > b` true if `a` greater than `b`
- `a >= b` true if `a` greater than or equal to `b`
- `a < b` true if `a` less than `b`
- `a <= b` true if `a` less than or equal to `b`
- `!a` logical negation; true if `a==0` and false otherwise
- `a & b` true if `a!=0` and `b!=0`
- `a | b` true if `a!=0` or `b!=0`
- `a && b` synonym for `a & b`
- `a || b` synonym for `a | b`

Remarks and examples

Remarks are presented under the following headings:

- **Introduction**
- **Use of logical operators with pointers**

Introduction

The operators above work as you would expect when used with scalars, and the comparison operators and the not operator have been generalized for use with matrices.

`a==b` evaluates to true if `a` and `b` are p-conformable, of the same type, and the corresponding elements are equal. Of the same type means `a` and `b` are both numeric, both strings, or both pointers. Thus it is not an error to ask if a 2 × 2 matrix is equal to a 4 × 1 vector or if a string variable is equal to a real variable; they are not. Also `a==b` is declared to be true if `a` or `b` are p-conformable and the number of rows or columns is zero.

`a!=b` is equivalent to `!(a==b)`. `a!=b` evaluates to true when `a==b` would evaluate to false and evaluates to true otherwise.
The remaining comparison operators $>$, \geq, $<$, and \leq work differently from $==$ and $!=$ in that they require a and b be p-conformable; if they are not, they abort with error. They return true if the corresponding elements have the stated relationship, and return false otherwise. If a or b is complex, the comparison is made in terms of the length of the complex vector; for instance, $a > b$ is equivalent to $\text{abs}(a) > \text{abs}(b)$, and so $-3 > 2 + 0i$ is true.

a, when a is a scalar, evaluates to 0 if a is not equal to zero and 1 otherwise. Applied to a vector or matrix, the same operation is carried out, element by element: $!(-1, 0, 1, 2, ..)$ evaluates to $(0, 1, 0, 0, 0)$.

& and | (and and or) may be used with scalars only. Because so many people are familiar with programming in the C language, Mata provides && as a synonym for & and || as a synonym for |.

Use of logical operators with pointers

In a pointer expression, NULL is treated as false and all other pointer values (address values) are treated as true. Thus the following code is equivalent

```c
pointer x
...
if (x) {
  ...
}  
if (x!=NULL) {
  ...
}
```

The logical operators $a == b$, $a != b$, $a \& b$, and $a | b$ may be used with pointers.

Conformability

$a == b$, $a != b$:

- a: $r_1 \times c_1$
- b: $r_2 \times c_2$
- Result: 1×1

$a > b$, $a >= b$, $a < b$, $a <= b$:

- a: $r \times c$
- b: $r \times c$
- Result: 1×1

$! a$:

- a: $r \times c$
- Result: $r \times c$

$a \& b$, $a | b$:

- a: 1×1
- b: 1×1
- Result: 1×1

Diagnostics

$a == b$ and $a != b$ cannot fail.

$a > b$, $a >= b$, $a < b$, $a <= b$ abort with error if a and b are not p-conformable, if a and b are not of the same general type (numeric and numeric or string and string), or if a or b are pointers.
\(!a \) aborts with error if \(a \) is not real.

\(a \& b \) and \(a \mid b \) abort with error if \(a \) and \(b \) are not both real or not both pointers. If \(a \) and \(b \) are pointers, pointer value NULL is treated as false and all other pointer values are treated as true. In all cases, a real equal to 0 or 1 is returned.

Also see

[M-2] exp — Expressions

[M-2] Intro — Language definition