
op increment — Increment and decrement operators

Description Syntax Remarks and examples Conformability Diagnostics Also see

Description
++i and i++ increment i; they perform the operation i=i+1. ++i performs the operation before the evalu-
ation of the expression in which it appears, whereas i++ performs the operation afterward.

–i and i– decrement i; they perform the operation i=i-1. –i performs the operation before the evaluation
of the expression in which is appears, whereas i– performs the operation afterward.

Syntax
++i increment before

–i decrement before

i++ increment after

i– decrement after

where i must be a real scalar.

Remarks and examples
These operators are used in code, such as

x[i++] = 2
x[--i] = 3
for (i=0; i<100; i++) {

. . .
}
if (++n > 10) {

. . .
}

Where these expressions appear, results are as if the current value of i were substituted, and in addition,

i is incremented, either before or after the expression is evaluated. For instance,

x[i++] = 2

is equivalent to

x[i] = 2 ; i = i + 1

and

x[++i] = 3

1



op increment — Increment and decrement operators 2

is equivalent to

i = i + 1 ; x[i] = 3

Coding

for (i=0; i<100; i++) {
. . .

}

or

for (i=0; i<100; ++i) {
. . .

}

is equivalent to

for (i=0; i<100; i=i+1) {
. . .

}

because it does not matter whether the incrementation is performed before or after the otherwise null

expression.

if (++n > 10) {
. . .

}

is equivalent to

n = n + 1
if (n > 10) {

. . .
}

whereas

if (n++ > 10) {
. . .

}

is equivalent to

if (n > 10) {
n = n + 1
. . .

}
else n = n + 1

The ++ and – operators may be used only with real scalars and are usually associated with indexing or

counting. They result in fast and readable code.

Conformability
++i, –i, i++, and i–:

i: 1 × 1

result: 1 × 1



op increment — Increment and decrement operators 3

Diagnostics
++ and – are allowed with real scalars only. That is, ++i or i++ is valid, assuming i is a real scalar, but

x[i,j]++ is not valid.

++ and – abort with error if applied to a variable that is not a real scalar.

++i, i++, –i, and i– should be the only reference to i in the expression. Do not code, for instance,

x[i++] = y[i]
x[++i] = y[i]
x[i] = y[i++]
x[i] = y[++i]

The value of i in the above expressions is formally undefined; whatever is its value, you cannot depend

on that value being obtained by earlier or later versions of the compiler. Instead code

i++ ; x[i] = y[i]

or code

x[i] = y[i] ; i++

according to the desired outcome.

It is, however, perfectly reasonable to code

x[i++] = y[j++]

That is, multiple ++ and – operators may occur in the same expression; it is multiple references to the

target of the ++ and – that must be avoided.

Also see
[M-2] exp — Expressions

[M-2] Intro — Language definition

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-2exp.pdf#m-2exp
https://www.stata.com/manuals/m-2intro.pdf#m-2Intro
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

