Description

The conditional operator returns \(b \) if \(a \) is true (\(a \) is not equal to 0) and \(c \) otherwise.

Syntax

\[
a ? b : c
\]

where \(a \) must evaluate to a real scalar, and \(b \) and \(c \) may be of any type whatsoever.

Remarks and examples

Conditional operators

\[
dof = (k==0 ? n-1 : n-k)
\]

are more compact than the if–else alternative

\[
\begin{align*}
\text{if } (k==0) & \, \text{dof} = n-1 \\
\text{else} & \, \text{dof} = n-k
\end{align*}
\]

and they can be used as parts of expressions:

\[
\text{mse} = \text{ess}/(k==0 ? n-1 : n-k)
\]

Conformability

\[
a ? b : c:
\]

\[
\begin{array}{ll}
a: & 1 \times 1 \\
b: & r_1 \times c_1 \\
c: & r_2 \times c_2 \\
\text{result:} & r_1 \times c_1 \text{ or } r_2 \times c_2
\end{array}
\]

Diagnostics

In \(a ? b : c \), only the necessary parts are evaluated: \(a \) and \(b \) if \(a \) is true, or \(a \) and \(c \) if \(a \) is false. However, the ++ and -- operators are always evaluated:

\[
(k==0 ? i++ : j++)
\]

increments both \(i \) and \(j \), regardless of the value of \(k \).
Also see

[M-2] exp — Expressions

[M-2] Intro — Language definition