Description

The conditional operator returns \(b \) if \(a \) is true (\(a \) is not equal to 0) and \(c \) otherwise.

Syntax

\[
a ? b : c
\]

where \(a \) must evaluate to a real scalar, and \(b \) and \(c \) may be of any type whatsoever.

Remarks and examples

Conditional operators

\[
dof = (k==0 ? n-1 : n-k)
\]

are more compact than the if–else alternative

\[
\begin{align*}
\text{if } (k==0) & \quad \text{dof} = n-1 \\
\text{else} & \quad \text{dof} = n-k
\end{align*}
\]

and they can be used as parts of expressions:

\[
\text{mse} = \text{ess}/(k==0 ? n-1 : n-k)
\]

Conformability

\[
a ? b : c:
\]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1 × 1</td>
<td>(r_1 \times c_1)</td>
<td>(r_2 \times c_2)</td>
<td>(r_1 \times c_1) or (r_2 \times c_2)</td>
</tr>
</tbody>
</table>

Diagnostics

In \(a ? b : c \), only the necessary parts are evaluated: \(a \) and \(b \) if \(a \) is true, or \(a \) and \(c \) if \(a \) is false. However, the ++ and -- operators are always evaluated:

\[
(k==0 ? i++ : j++)
\]

increments both \(i \) and \(j \), regardless of the value of \(k \).
Also see

[M-2] exp — Expressions

[M-2] Intro — Language definition