Colon operators perform element-by-element operations.

Syntax

- \(a :+ b \)
- \(a :- b \)
- \(a :* b \)
- \(a :/ b \)
- \(a :^ b \)
- \(a :== b \)
- \(a :!= b \)
- \(a :> b \)
- \(a :>= b \)
- \(a :< b \)
- \(a :<= b \)
- \(a :& b \)
- \(a :| b \)

Remarks and examples

Remarks are presented under the following headings:

- C-conformability: element by element
- Usefulness of colon logical operators
- Use parentheses

C-conformability: element by element

The colon operators perform the indicated operation on each pair of elements of \(a \) and \(b \). For instance,

\[
\begin{bmatrix} c & d \\ f & g \\ h & i \end{bmatrix} :* \begin{bmatrix} j & k \\ l & m \\ n & o \end{bmatrix} = \begin{bmatrix} c*j & d*k \\ f*l & g*m \\ h*n & i*o \end{bmatrix}
\]
Also colon operators have a relaxed definition of conformability:

\[
\begin{bmatrix}
 c \\
 f \\
 g
\end{bmatrix}
:\star
\begin{bmatrix}
 j & k \\
 l & m \\
 n & o
\end{bmatrix}
= \begin{bmatrix}
 c \cdot j & c \cdot k \\
 f \cdot l & f \cdot m \\
 g \cdot n & g \cdot o
\end{bmatrix}
\]

\[
\begin{bmatrix}
 c & d \\
 f & g \\
 h & i
\end{bmatrix}
:\star
\begin{bmatrix}
 j \\
 l \\
 n
\end{bmatrix}
= \begin{bmatrix}
 c \cdot j & d \cdot j \\
 f \cdot l & g \cdot l \\
 h \cdot n & i \cdot n
\end{bmatrix}
\]

\[
\begin{bmatrix}
 c \\
 f \\
 h
\end{bmatrix}
:\star
\begin{bmatrix}
 j & k \\
 l & m \\
 n & o
\end{bmatrix}
= \begin{bmatrix}
 c \cdot j & c \cdot k \\
 f \cdot l & f \cdot m \\
 c \cdot n & d \cdot o
\end{bmatrix}
\]

\[
\begin{bmatrix}
 c & d \\
 f & g \\
 h & i
\end{bmatrix}
:\star
\begin{bmatrix}
 j \\
 l \\
 n
\end{bmatrix}
= \begin{bmatrix}
 c \cdot j & d \cdot j \\
 f \cdot l & g \cdot j \\
 c \cdot n & i \cdot j
\end{bmatrix}
\]

The matrices above are said to be c-conformable; the c stands for colon. The matrices have the same number of rows and columns, or one or the other is a vector with the same number of rows or columns as the matrix, or one or the other is a scalar.

C-conformability is relaxed, but not everything is allowed. The following is an error:

\[(c \ d \ e) \ : \star \begin{bmatrix}
 f \\
 g \\
 h
\end{bmatrix}\]

Usefulness of colon logical operators

It is worth paying particular attention to the colon logical operators because they can produce pattern vectors and matrices. Consider the matrix

\[
: x = (5, 0 \ 0 \ 2 \ 3, 8)
\]

\[
\begin{array}{ccc}
1 & 5 & 0 \\
2 & 0 & 2 \\
3 & 3 & 8
\end{array}
\]
Which elements of \(x \) contain 0?

\[
\begin{array}{ccc}
1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0 \\
3 & 0 & 0 \\
\end{array}
\]

How many zeros are there in \(x \)?

\[
\text{sum}(x::==0) = 2
\]

Use parentheses

Because of their relaxed conformability requirements, colon operators are not associative even when the underlying operator is. For instance, you expect \((a+b)+c == a+(b+c)\), at least ignoring numerical roundoff error. Nevertheless, \((a+b):+c == a:+(b:+c)\) does not necessarily hold. Consider what happens when

\[
a: 1 \times 4 \\
b: 5 \times 1 \\
c: 5 \times 4
\]

Then \((a:+b):+c\) is an error because \(a:+b\) is not c-conformable.

Nevertheless, \(a:+(b:+c)\) is not an error and in fact produces a \(5 \times 4\) matrix because \(b:+c\) is \(5 \times 4\), which is c-conformable with \(a\).

Conformability

\[
a : op b:\n\]

\[
a: r_1 \times c_1 \\
b: r_2 \times c_2, \text{ } a \text{ and } b \text{ c-conformable} \\
\text{result: } \max(r_1, r_2) \times \max(c_1, c_2)
\]

Diagnostics

The colon operators return missing and abort with error under the same conditions that the underlying operator returns missing and aborts with error.

Also see

[M-2] exp — Expressions

[M-2] intro — Language definition