
exp — Expressions

Description Syntax Remarks and examples Reference Also see

Description
exp is used in syntax diagrams to mean “any valid expression may appear here”. Expressions can range

from being simple constants

2
”this”
3+2i

to being names of variables

A
beta
varwithverylongname

to being a full-fledged scalar, string, or matrix expression:

sqrt(2)/2
substr(userinput, 15, strlen(otherstr))
conj(X)’X

Syntax
exp

Remarks and examples
Remarks are presented under the following headings:

What’s an expression
Assignment suppresses display, as does (void)
The pieces of an expression
Numeric literals
String literals
Variable names
Operators
Functions

What’s an expression

Everybody knows what an expression is: expressions are things like 2+3 and invsym(X’X)*X’y. Sim-
pler things are also expressions, such as numeric constants

2 is an expression

and string literals

”hi there” is an expression

1

exp — Expressions 2

and function calls:

sqrt(2) is an expression

Even when functions do not return anything (the function is void), the code that causes the function to

run is an expression. For instance, the function swap() (see [M-5] swap()) interchanges the contents of

its arguments and returns nothing. Even so,

swap(A, B) is an expression

Assignment suppresses display, as does (void)

The equal sign assigns the result of an expression to a variable. For instance,

a = 2 + 3

assigns 5 to a. When the result of an expression is not assigned to a variable, the result is displayed at

the terminal. This is true of expressions entered interactively and of expressions coded in programs. For

instance, given the program

function example(a, b)
{

”the answer is”
a+b

}

executing example() produces

: example(2, 3)
the answer is
5

The fact that 5 appeared is easy enough to understand; we coded the expression a+b without assigning

it to another variable. The fact that “the answer is” also appeared may surprise you. Nevertheless, we

coded ”the answer is” in our program, and that is an example of an expression, and because we did

not assign the expression to a variable, it was displayed.

In programming situations, there will be times when you want to execute a function—call it

setup()—but do not care what the function returns, even though the function itself is not void (that

is, it returns something). If you code

function example(. . .)
{

. . .
setup(. . .)
. . .

}

the result will be to display what setup() returns. You have two alternatives. You could assign the result
of setup to a variable even though you will subsequently not use the variable

https://www.stata.com/manuals/m-5swap.pdf#m-5swap()

exp — Expressions 3

function example(. . .)
{

. . .
result = setup(. . .)
. . .

}

or you could cast the result of the function to be void:

function example(. . .)
{

. . .
(void) setup(. . .)
. . .

}

Placing (void) in front of an expression prevents the result from being displayed.

The pieces of an expression

Expressions comprise

numeric literals

string literals

variable names

operators

functions

Numeric literals

Numeric literals are just numbers

2
3.14159
-7.2
5i
1.213e+32
1.213E+32
1.921fb54442d18X+001
1.921fb54442d18x+001
.
.a
.b

but you can suffix an i onto the end to mean imaginary, such as 5i above. To create complex numbers,
you combine real and imaginary numbers using the + operator, as in 2+5i. In any case, you can put the
i on the end of any literal, so 1.213e+32i is valid, as is 1.921fb54442d18X+001i.

1.921fb54442d18X+001i is a formidable-looking beast, with or without the i.
1.921fb54442d18X+001 is a way of writing floating-point numbers in binary; it is described in

[U] 12.5 Formats: Controlling how data are displayed. Most people never use it.

Also, numeric literals include Stata’s missing values, ., .a, .b, . . . , .z.

Complex variables may contain missing just as real variables may, but they get only one: .a+.bi is not
allowed. A complex variable contains a valid complex value, or it contains ., .a, .b, . . . , .z.

https://www.stata.com/manuals/m-2exp.pdf#m-2expRemarksandexamplesNumericliterals
https://www.stata.com/manuals/m-2exp.pdf#m-2expRemarksandexamplesStringliterals
https://www.stata.com/manuals/m-2exp.pdf#m-2expRemarksandexamplesVariablenames
https://www.stata.com/manuals/m-2exp.pdf#m-2expRemarksandexamplesOperators
https://www.stata.com/manuals/m-2exp.pdf#m-2expRemarksandexamplesFunctions
https://www.stata.com/manuals/u12.pdf#u12.5FormatsControllinghowdataaredisplayed

exp — Expressions 4

String literals

String literals are enclosed in double quotes or in compound double quotes:

”the answer is”
”a string”
‘”also a string”’
‘”The ”factor” of a matrix”’
””
‘””’

Strings in Mata contain between 0 and 2,147,483,647 bytes. ”” or ‘””’ is how one writes the 0-length

string.

Any plain ASCII or UTF-8 character may appear in the string, but no provision is provided for typing

unprintable characters into the string literal. Instead, you use the char() function; see [M-5] ascii(). For

instance, char(13) is carriage return, so the expression

”my string” + char(13)

produces “my string” followed by a carriage return.

No character is given a special interpretation. In particular, backslash (\) is given no special meaning by
Mata. The string literal ”my string\n” is just that: the characters “my string” followed by a backslash
followed by an “n”. Some functions, such as printf() (see [M-5] printf()), give a special meaning to

the two-character sequence \n, but that special interpretation is a property of the function, not Mata, and

is noted in the function’s documentation.

Strings are not zero (null) terminated in Mata. Mata knows that the string ”hello” is of length 5, but it
does not achieve that knowledge by padding a binary 0 as the string’s fifth character. Thus strings may

be used to hold binary information.

Although Mata gives no special interpretation to binary 0, some Mata functions do. For instance,

strmatch(s, pattern) returns 1 if s matches pattern and 0 otherwise; see [M-5] strmatch(). For this

function, both strings are considered to end at the point they contain a binary 0, if they contain a binary

0. Most strings do not, and then the function considers the entire string. In any case, if there is special

treatment of binary 0, that is on a function-by-function basis, and a note of that is made in the function’s

documentation.

Some string functions in Mata have variants that are designed specifically to deal with Unicode. For

examples, usubstr() is the Unicode-aware version of substr(). See [U] 12.4.2 Handling Unicode

strings for more details on working with Unicode strings.

Variable names

Variable names are just that. Names are case sensitive and no abbreviations are allowed:

X
x
MyVar
VeryLongVariableNameForUseInMata
MyVariable

The maximum length of a variable name is 32 characters.

https://www.stata.com/manuals/m-6glossary.pdf#m-6GlossaryMataglossaryutf8
https://www.stata.com/manuals/m-5ascii.pdf#m-5ascii()
https://www.stata.com/manuals/m-5printf.pdf#m-5printf()
https://www.stata.com/manuals/m-5strmatch.pdf#m-5strmatch()
https://www.stata.com/manuals/m-5usubstr.pdf#m-5usubstr()
https://www.stata.com/manuals/m-5substr.pdf#m-5substr()
https://www.stata.com/manuals/u12.pdf#u12.4.2HandlingUnicodestrings
https://www.stata.com/manuals/u12.pdf#u12.4.2HandlingUnicodestrings

exp — Expressions 5

Operators
Operators, listed by precedence, low to high

Operator Operator name Documentation

a = b assignment [M-2] op assignment

a ? b : c conditional [M-2] op conditional

a \ b column join [M-2] op join

a :: b column to [M-2] op range

a , b row join [M-2] op join

a .. b row to [M-2] op range

a :| b elementwise or [M-2] op colon

a | b or [M-2] op logical

a :& b elementwise and [M-2] op colon

a & b and [M-2] op logical

a :== b elementwise equal [M-2] op colon

a == b equal [M-2] op logical

a :>= b elementwise greater than or equal [M-2] op colon

a >= b greater than or equal [M-2] op logical

a :<= b elementwise less than or equal [M-2] op colon

a <= b less than or equal [M-2] op logical

a :< b elementwise less than [M-2] op colon

a < b less than [M-2] op logical

a :> b elementwise greater than [M-2] op colon

a > b greater than [M-2] op logical

a :!= b elementwise not equal [M-2] op colon

a != b not equal [M-2] op logical

a :+ b elementwise addition [M-2] op colon

a + b addition [M-2] op arith

a :- b elementwise subtraction [M-2] op colon

a - b subtraction [M-2] op arith

a :* b elementwise multiplication [M-2] op colon

a * b multiplication [M-2] op arith

a # b Kronecker [M-2] op kronecker

a :/ b elementwise division [M-2] op colon

a / b division [M-2] op arith

-a negation [M-2] op arith

a :^ b elementwise power [M-2] op colon

a ^ b power [M-2] op arith

a’ transposition [M-2] op transpose

*a contents of [M-2] pointers

&a address of [M-2] pointers

!a not [M-2] op logical

a[exp] subscript [M-2] Subscripts

a[|exp|] range subscript [M-2] Subscripts

a++ increment [M-2] op increment

a– decrement [M-2] op increment

++a increment [M-2] op increment

–a decrement [M-2] op increment

https://www.stata.com/manuals/m-2op_assignment.pdf#m-2op_assignment
https://www.stata.com/manuals/m-2op_conditional.pdf#m-2op_conditional
https://www.stata.com/manuals/m-2op_join.pdf#m-2op_join
https://www.stata.com/manuals/m-2op_range.pdf#m-2op_range
https://www.stata.com/manuals/m-2op_join.pdf#m-2op_join
https://www.stata.com/manuals/m-2op_range.pdf#m-2op_range
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_arith.pdf#m-2op_arith
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_arith.pdf#m-2op_arith
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_arith.pdf#m-2op_arith
https://www.stata.com/manuals/m-2op_kronecker.pdf#m-2op_kronecker
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_arith.pdf#m-2op_arith
https://www.stata.com/manuals/m-2op_arith.pdf#m-2op_arith
https://www.stata.com/manuals/m-2op_colon.pdf#m-2op_colon
https://www.stata.com/manuals/m-2op_arith.pdf#m-2op_arith
https://www.stata.com/manuals/m-2op_transpose.pdf#m-2op_transpose
https://www.stata.com/manuals/m-2pointers.pdf#m-2pointers
https://www.stata.com/manuals/m-2pointers.pdf#m-2pointers
https://www.stata.com/manuals/m-2op_logical.pdf#m-2op_logical
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-2subscripts.pdf#m-2Subscripts
https://www.stata.com/manuals/m-2op_increment.pdf#m-2op_increment
https://www.stata.com/manuals/m-2op_increment.pdf#m-2op_increment
https://www.stata.com/manuals/m-2op_increment.pdf#m-2op_increment
https://www.stata.com/manuals/m-2op_increment.pdf#m-2op_increment

exp — Expressions 6

Functions

Functions supplied with Mata are documented in [M-5]. An index to the functions can be found in

[M-4] Intro.

Reference
Gould, W. W. 2006. Mata Matters: Precision. Stata Journal 6: 550–560.

Also see
[M-2] Intro — Language definition

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5intro.pdf#m-5Intro
https://www.stata.com/manuals/m-4intro.pdf#m-4Intro
https://www.stata-journal.com/article.html?article=pr0025
https://www.stata.com/manuals/m-2intro.pdf#m-2Intro
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

