
Title stata.com

sqrtlasso — Square-root lasso for prediction and model selection

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

sqrtlasso selects covariates and fits linear models using square-root lasso. Results from sqrt-
lasso can be used for prediction and model selection. Results from sqrtlasso are typically similar
to results from lasso.

sqrtlasso saves but does not display estimated coefficients. The [LASSO] lasso postestimation
commands can be used to generate predictions, report coefficients, and display measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

sqrtlasso y x1-x100

Same as above, but force x1 and x2 to be in the model while square-root lasso selects from x3 to
x100

sqrtlasso y (x1 x2) x3-x100

Set a random-number seed for reproducibility
sqrtlasso y x1-x100, rseed(1234)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.
sqrtlasso y x1-x100, selection(cv, alllambdas)

Menu
Statistics > Lasso > Square-root lasso

Syntax

sqrtlasso depvar
[
(alwaysvars)

]
othervars

[
if
] [

in
] [

weight
] [

, options
]

alwaysvars are variables that are always included in the model.

othervars are variables that sqrtlasso will choose to include in or exclude from the model.

1

http://stata.com
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange

2 sqrtlasso — Square-root lasso for prediction and model selection

options Description

Model

noconstant suppress constant term
selection(sel method) selection method to select a value of the square-root

lasso penalty parameter λ∗ from the set of possible λ’s
offset(varnameo) include varnameo in model with coefficient constrained to 1
cluster(clustvar) specify cluster variable clustvar

Optimization[
no
]
log display or suppress an iteration log

rseed(#) set random-number seed
grid(#g

[
, ratio(#) min(#)

]
) specify the set of possible λ’s using a logarithmic grid with

#g grid points
stop(#) tolerance for stopping the iteration over the λ grid early
cvtolerance(#) tolerance for identification of the CV function minimum
bictolerance(#) tolerance for identification of the BIC function minimum
tolerance(#) convergence tolerance for coefficients based on their values
dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

sel method Description

cv
[
, cv opts

]
select λ∗ using CV; the default

plugin
[
, plugin opts

]
select λ∗ using a plugin iterative formula

bic
[
, bic opts

]
select λ∗ using BIC function

none do not select λ∗

cv opts Description

folds(#) use # folds for CV
alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;

by default, the CV function is calculated sequentially by λ, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select λ∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

https://www.stata.com/manuals/lassolasso.pdf#lassolassoSyntaxselmethod
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

sqrtlasso — Square-root lasso for prediction and model selection 3

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default
homoskedastic assume model errors are homoskedastic

bic opts Description

alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by λ, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
Default weights are not allowed. iweights are allowed with all sel method options. See [U] 11.1.6 weight.
penaltywt(matname) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

See [LASSO] lasso fitting for an overview of the lasso estimation procedure and a detailed description
of how to set options to control it.

� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the
othervars, sqrtlasso can potentially create the equivalent of the constant term by including all
levels of a factor variable. This option is likely best used only when all the othervars are continuous
variables and there is a conceptual reason why there should be no constant term.

selection(cv), selection(plugin), selection(bic), and selection(none) specify the se-
lection method used to select λ∗. These options also allow suboptions for controlling the specified
selection method.

selection(cv
[
, cv opts

]
) is the default. It selects λ∗ to be the λ that gives the minimum of

the CV function. lasso postestimation commands can be used after selection(cv) to assess
alternative λ∗ values.

cv opts are folds(#), alllambdas, serule, stopok, strict, and gridminok.

folds(#) specifies that CV with # folds be done. The default is folds(10).

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation

4 sqrtlasso — Square-root lasso for prediction and model selection

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and
the CV function is calculated after each model is fit. If a minimum of the CV function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the CV function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

serule selects λ∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani,
and Wainwright (2015, 13–14) instead of the λ that minimizes the CV function. The one-
standard-error rule selects the largest λ for which the CV function is within a standard error
of the minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have
an identified minimum. A minimum is identified at λ∗ when the CV function at both larger
and smaller adjacent λ’s is greater than it is at λ∗. When the CV function has an identified
minimum, these options all do the same thing: the selected λ∗ is the λ that gives the
minimum. In some cases, however, the CV function declines monotonically as λ gets smaller
and never rises to identify a minimum. When the CV function does not have an identified
minimum, stopok and gridminok make alternative selections for λ∗, and strict makes
no selection. You may specify only one of stopok, strict, or gridminok; stopok is the
default if you do not specify one. With each of these options, estimation results are always
left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a CV function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the CV function has no identified
minimum and the stop(#) stopping criterion was not met, λgmin, the minimum of the
λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

selection(plugin
[
, plugin opts

]
) selects λ∗ based on a “plugin” iterative formula dependent

on the data. The plugin method was designed for lasso inference methods and is useful when
using sqrtlasso to manually implement inference methods, such as double-selection lasso.
The plugin estimator calculates a value for λ∗ that dominates the noise in the estimating
equations, which makes it less likely to include variables that are not in the true model. See
Methods and formulas.

selection(plugin) does not estimate coefficients for any other values of λ, so it does not
require a λ grid, and none of the grid options apply. It is much faster than selection(cv)
because estimation is done only for a single value of λ. It is an iterative procedure, however,
and if the plugin is computing estimates for a small λ (which means many nonzero coefficients),

sqrtlasso — Square-root lasso for prediction and model selection 5

the estimation can still be time consuming. Because estimation is done only for one λ, you
cannot assess alternative λ∗ as the other selection methods allow.

plugin opts are heteroskedastic and homoskedastic.

heteroskedastic assumes model errors are heteroskedastic. It is the default. Specifying se-
lection(plugin) is equivalent to specifying selection(plugin, heteroskedastic).

homoskedastic assumes model errors are homoskedastic. See Methods and formulas.

selection(bic
[
, bic opts

]
) selects λ∗ by using the Bayesian information criterion function.

It selects the λ∗ with the minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and
the BIC function is calculated after each model is fit. If a minimum of the BIC function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have
an identified minimum. A minimum is identified at λ∗ when the BIC function at both
larger and smaller adjacent λ’s is greater than it is at λ∗. When the BIC function has an
identified minimum, these options all do the same thing: the selected λ∗ is the λ that gives
the minimum. In some cases, however, the BIC function declines monotonically as λ gets
smaller and never rises to identify a minimum. When the BIC function does not have an
identified minimum, stopok and gridminok make alternative selections for λ∗, and strict
makes no selection. You may specify only one of stopok, strict, or gridminok; stopok
is the default if you do not specify one. With each of these options, estimation results are
always left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a BIC function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified
minimum and the stop(#) stopping criterion was not met, then λgmin, the minimum of
the λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function.
By default, the penalized coefficients are used.

6 sqrtlasso — Square-root lasso for prediction and model selection

selection(none) does not select a λ∗. Square-root lasso is estimated for the grid of values
for λ, but no attempt is made to determine which λ should be selected. The postestimation
command lassoknots can be run to view a table of λ’s that define the knots (the sets of
nonzero coefficients) for the estimation. The lassoselect command can be used to select a
value for λ∗, and lassogof can be run to evaluate the prediction performance of λ∗.

When selection(none) is specified, the CV function is not computed. If you want to view
the knot table with values of the CV function shown and then select λ∗, you must specify
selection(cv). There are no suboptions for selection(none).

offset(varnameo) specifies that varnameo be included in the model with its coefficient constrained
to be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how
the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood
function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the
subsample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are
kept together in the same subsample.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for selec-
tion(cv). The other selection methods, selection(plugin) and selection(none), do not
use random numbers. rseed(#) is equivalent to typing set seed # prior to running sqrtlasso.
See [R] set seed.

grid(#g
[
, ratio(#) min(#)

]
) specifies the set of possible λ’s using a logarithmic grid with #g

grid points.

#g is the number of grid points for λ. The default is #g = 100. The grid is logarithmic with
the ith grid point (i = 1, . . . , n = #g) given by lnλi = [(i − 1)/(n − 1)] ln r + lnλgmax,
where λgmax = λ1 is the maximum, λgmin = λn = min(#) is the minimum, and r =
λgmin/λgmax = ratio(#) is the ratio of the minimum to the maximum.

ratio(#) specifies λgmin/λgmax. The maximum of the grid, λgmax, is set to the smallest λ
for which all the coefficients in the lasso are estimated to be zero (except the coefficients of
the alwaysvars). λgmin is then set based on ratio(#). When p < N , where p is the total
number of othervars and alwaysvars (not including the constant term) and N is the number of
observations, the default value of ratio(#) is 1e−4. When p ≥ N , the default is 1e−2.

min(#) sets λgmin. By default, λgmin is based on ratio(#) and λgmax, which is computed from
the data.

stop(#) specifies a tolerance that is the stopping criterion for the λ iterations. The default is 1e−5.
This option does not apply when the selection method is selection(plugin). Estimation starts
with the maximum grid value, λgmax, and iterates toward the minimum grid value, λgmin. When
the relative difference in the deviance produced by two adjacent λ grid values is less than stop(#),
the iteration stops and no smaller λ’s are evaluated. The value of λ that meets this tolerance is
denoted by λstop. Typically, this stopping criterion is met before the iteration reaches λgmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger λstop. To
produce coefficient estimates for all values of the λ grid, you can specify stop(0). Note, however,
that computations for small λ’s can be extremely time consuming. In terms of time, when you use
selection(cv), the optimal value of stop(#) is the largest value that allows estimates for just
enough λ’s to be computed to identify the minimum of the CV function. When setting stop(#)

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed

sqrtlasso — Square-root lasso for prediction and model selection 7

to larger values, be aware of the consequences of the default λ∗ selection procedure given by the
default stopok. You may want to override the stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller λ’s with a relative difference in the CV function greater than
#. For nonlinear models, at least five smaller λ’s are required. The default is 1e−3. Setting # to
a bigger value makes a stricter criterion for identifying a minimum and brings more assurance
that a declared minimum is a true minimum, but it also means that models may need to be fit for
additional smaller λ, which can be time consuming. See Methods and formulas for [LASSO] lasso
for more information about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum
BIC function. A minimum is identified when the BIC function rises above a nominal minimum for
at least two smaller λ’s with a relative difference in the BIC function greater than #. The default is
1e−2. Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings
more assurance that a declared minimum is a true minimum, but it also means that models may
need to be fit for additional smaller λ, which can be time consuming. See Methods and formulas
in [LASSO] lasso for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients.
Convergence is achieved when the relative change in each coefficient is less than this tolerance.
The default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients.
When dtolerance(#) is specified, the convergence criterion is based on the change in deviance
instead of the change in the values of coefficient estimates. Convergence is declared when the
relative change in the deviance is less than #. More-accurate coefficient estimates are typically
achieved by not specifying this option and instead using the default tolerance(1e-7) criterion
or specifying a smaller value for tolerance(#).

The following option is available with sqrtlasso but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients
in the penalty term. The contribution of each coefficient to the square-root lasso penalty term is
multiplied by its corresponding weight. Weights must be nonnegative. By default, each coefficient’s
penalty weight is 1.

Remarks and examples stata.com

We assume you have read the lasso introduction [LASSO] Lasso intro.

The square-root lasso is an alternative version of lasso. Lasso minimizes

1

2N
(y −Xβ′)′(y −Xβ′) + λ

p∑
j=1

|βj |

whereas square-root lasso minimizes

√
1

N
(y −Xβ′)′(y −Xβ′) +

λ

N

p∑
j=1

|βj |

https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
http://stata.com
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro

8 sqrtlasso — Square-root lasso for prediction and model selection

In the square-root formulation, the standard deviation of the error term becomes a multiplicative
constant that drops out of the minimization. This lack of dependence facilitates the derivation of
plugin estimators for the lasso penalty parameter λ∗ because there is no need to estimate the standard
deviation of the error term as part of the plugin formula.

Square-root lasso is primarily used in combination with a plugin estimator for λ∗. The resulting
square-root lasso estimation can be used with the double-selection or partialing-out methods described
in [LASSO] Lasso inference intro.

Square-root lasso can also be used on its own for prediction or model selection. To be consistent
with lasso, the default selection method for λ∗ is CV. To use the plugin estimator, specify the option
selection(plugin).

Square-root lasso was formulated by Belloni, Chernozhukov, and Wang (2011), who also derived
the square-root lasso plugin estimator for λ, which is implemented here.

Example 1: Square-root lasso and lasso

Let’s compare square-root lasso with an ordinary lasso to illustrate that their results are numerically
similar when used with CV.

We load the example dataset we used in [LASSO] lasso examples. It has stored variable lists created
by vl. See [D] vl for a complete description of the vl system and how to use it to manage large
variable lists.

After we load the dataset, we type vl rebuild to make the saved variable lists active again.

. use https://www.stata-press.com/data/r18/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We randomly split our data into two samples of equal sizes. One we will fit lassos on, and the
other we will use to test their predictions. We use splitsample to generate a variable indicating the
samples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/dvl.pdf#dvl
https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample

sqrtlasso — Square-root lasso for prediction and model selection 9

We have four user-defined variable lists, demographics, factors, idemographics, and ifac-
tors. The variable lists idemographics and ifactors contain factor-variable versions of the
categorical variables in demographics and factors. That is, a variable q3 in demographics is
i.q3 in idemographics. See the examples in [LASSO] lasso examples to see how we created these
variable lists.

We are going to use idemographics and ifactors along with the system-defined variable list
vlcontinuous as arguments to sqrtlasso. Together they contain the potential variables we want to
specify. Variable lists are actually global macros, and when we use them as arguments in commands,
we put a $ in front of them.

We also set the random-number seed using the rseed() option so we can reproduce our results.

. sqrtlasso q104 $idemographics $ifactors $vlcontinuous if sample == 1,
> rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 104.6235 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 17.2848

(output omitted)
Grid value 23: lambda = 13.51264 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 12.35321
... cross-validation complete ... minimum found

Square-root lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 104.6235 0 -0.0058 17.2848
17 lambda before 23.61373 53 0.2890 12.21892

* 18 selected lambda 21.51595 61 0.2901 12.19933
19 lambda after 19.60453 67 0.2899 12.20295
23 last lambda 13.51264 87 0.2812 12.35321

* lambda selected by cross-validation.

. estimates store sqrtcv

The square-root lasso with the default CV selection method selected a model with 61 variables in it.

https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/rsetseed.pdf#rsetseed

10 sqrtlasso — Square-root lasso for prediction and model selection

Let’s run lasso with the same potential variables.

. lasso linear q104 $idemographics $ifactors $vlcontinuous if sample == 1,
> rseed(1234)

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9469819 no. of nonzero coef. = 0

(output omitted)
Grid value 25: lambda = .1015418 no. of nonzero coef. = 78
Folds: 1...5....10 CVF = 12.26768
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9469819 0 -0.0046 17.26383
19 lambda before .1774471 47 0.2899 12.20399

* 20 selected lambda .1616832 51 0.2912 12.18122
21 lambda after .1473197 60 0.2908 12.18739
25 last lambda .1015418 78 0.2862 12.26768

* lambda selected by cross-validation.

. estimates store lassocv

Lasso selected a model with 51 variables in it.

After we ran sqrtlasso and lasso, we used estimates store to keep the results in memory.
This lets us compare the models. We can use lassocoef to view the coefficient estimates. We display
the standardized coefficients and sort them so that the biggest in absolute values are shown first.

. lassocoef sqrtcv lassocv, display(coef, standardized) sort(coef, standardized)

sqrtcv lassocv

q19
No -.8446332 -.8119414

q85
No -.7089993 -.6940387

3.q156 -.6843823 -.6727969

q101
No .5981556 .5785246

q48
No -.5867942 -.5502145

q88
No .5793049 .553872

q38
4 -.5275709 -.5089004

q5
No -.4795077 -.467305
q22 -.4610605 -.4410858
q31 .4556527 .4047143

https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef

sqrtlasso — Square-root lasso for prediction and model selection 11

q56
No -.4482692 -.4026312

q139 -.4189969 -.4118033

q73
No -.3565698 -.3368294

q96
No -.3149921 -.2950566

3.q16 -.263147 -.2278278

q43
No -.2605833 -.2355772

q50
No .2455526 .2307073

q149
No -.2407299 -.2070948

2.q84 -.2321074 -.2150944

q109
No .1965246 .1530308

q49
No .1937052 .1626059

q159
No .1870743 .1771646

q115
No .153256 .1272736

3.q134 .1525998 .1418469

q108
No -.1491124 -.1469051

q91
No -.1475877 -.1252736

q140
No -.142592 -.1192079

2.q34 .1397604 .1155922
q93 -.1379424 -.0964044

q14
No -.1377481 -.0964684

gender
Female -.1296337 -.1047897

q153
No .1238655 .0835772
q53 .1123144 .0813566

q65
3 .1035524 .084643

q38
3 .0922535 .086774

12 sqrtlasso — Square-root lasso for prediction and model selection

q160
No -.0901901 -.0763008

q3
No -.082771 -.0574645
age -.0707354 -.0590426

q102
No -.0578734 -.0427812

q44
No .0561402 .0301015

1.q110 -.0556488 -.0268615

q154
No .0492342 .0188979

q130
No -.0453674 -.0288351
q18 -.0428028 -.018666

q97
No .0427896 .021222

q142
No -.0427358 -.0188524

q75
No -.0341663 -.0011199

q111 -.0333302 -.0294021
3.q95 -.0214817

q65
4 -.0213682

q38
2 .0197855

0.q74 .0165583
0.q33 -.016441

q20 .0147089

q94
No .0136563 .013323
q52 .0132519

0.q138 -.0125278
0.q71 .012269

q13
No .0094304 .0027091

q105
Fair .0052163 .00026
0.q59 .0036381
_cons -3.55e-15 0

Legend:
b - base level
e - empty cell
o - omitted

sqrtlasso — Square-root lasso for prediction and model selection 13

Numerically, the coefficients are similar. The six variables that square-root lasso selected—but lasso
did not—are among the variables with the smallest coefficients.

We split the sample in half so we could look at the out-of-sample prediction. We use lassogof
to do this using postselection coefficients.

. lassogof sqrtcv lassocv, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs

sqrtcv
Training 8.419174 0.5184 503
Testing 15.09863 0.2402 487

lassocv
Training 8.595046 0.5083 503
Testing 14.66581 0.2600 491

Both square-root lasso and lasso did significantly worse predicting out of sample than they did in
sample. This is typical in many cases when there are many variables with small coefficients in the
models.

Let’s compare the plugin estimators for both square-root lasso and lasso.

. sqrtlasso q104 $idemographics $ifactors $vlcontinuous, selection(plugin)

Computing plugin lambda ...
Iteration 1: lambda = 134.4262 no. of nonzero coef. = 5
Iteration 2: lambda = 134.4262 no. of nonzero coef. = 8
Iteration 3: lambda = 134.4262 no. of nonzero coef. = 8

Square-root lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda 134.4262 8 0.0835 5233.117

* lambda selected by plugin formula assuming heteroskedastic errors.

https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof

14 sqrtlasso — Square-root lasso for prediction and model selection

Square-root lasso with plugin selected only 8 variables. Let’s see what lasso does.

. lasso linear q104 $idemographics $ifactors $vlcontinuous,
> selection(plugin) rseed(1234)

Computing plugin lambda ...
Iteration 1: lambda = .1470747 no. of nonzero coef. = 8
Iteration 2: lambda = .1470747 no. of nonzero coef. = 11
Iteration 3: lambda = .1470747 no. of nonzero coef. = 13
Iteration 4: lambda = .1470747 no. of nonzero coef. = 15
Iteration 5: lambda = .1470747 no. of nonzero coef. = 15

Lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda .1470747 15 0.1549 5206.721

* lambda selected by plugin formula assuming heteroskedastic errors.

Lasso with plugin selected a few more—15 variables in total. We can see from the in-sample R2 that
the predictive capabilities of models using plugin are much lower than those using CV. We expect
this because plugin estimators were designed as a tool for inferential models, not for prediction.

Stored results
sqrtlasso stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k allvars) number of potential variables
e(k nonzero sel) number of nonzero coefficients for selected model
e(k nonzero cv) number of nonzero coefficients at CV mean function minimum
e(k nonzero serule) number of nonzero coefficients for one-standard-error rule
e(k nonzero min) minimum number of nonzero coefficients among estimated λ’s
e(k nonzero max) maximum number of nonzero coefficients among estimated λ’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum
e(lambda sel) value of selected λ∗

e(lambda gmin) value of λ at grid minimum
e(lambda gmax) value of λ at grid maximum
e(lambda last) value of last λ computed
e(lambda cv) value of λ at CV mean function minimum
e(lambda serule) value of λ for one-standard-error rule
e(lambda bic) value of λ at BIC function minimum
e(ID sel) ID of selected λ∗

e(ID cv) ID of λ at CV mean function minimum
e(ID serule) ID of λ for one-standard-error rule
e(ID bic) ID of λ at BIC function minimum
e(cvm min) minimum CV mean function value
e(cvm serule) CV mean function value at one-standard-error rule
e(devratio min) minimum deviance ratio
e(devratio max) maximum deviance ratio
e(L1 min) minimum value of `1-norm of penalized unstandardized coefficients
e(L1 max) maximum value of `1-norm of penalized unstandardized coefficients
e(L2 min) minimum value of `2-norm of penalized unstandardized coefficients

sqrtlasso — Square-root lasso for prediction and model selection 15

e(L2 max) maximum value of `2-norm of penalized unstandardized coefficients
e(ll sel) log-likelihood value of selected model
e(n lambda) number of λ’s
e(n fold) number of CV folds
e(stop) stopping rule tolerance

Macros
e(cmd) sqrtlasso
e(cmdline) command as typed
e(depvar) name of dependent variable
e(allvars) names of all potential variables
e(allvars sel) names of all selected variables
e(alwaysvars) names of always-included variables
e(othervars sel) names of other selected variables
e(post sel vars) all variables needed for post-square-root lasso
e(clustvar) name of cluster variable
e(lasso selection) selection method
e(sel criterion) criterion used to select λ∗

e(plugin type) type of plugin λ
e(model) linear, logit, poisson, or probit
e(title) title in estimation output
e(rngstate) random-number state used
e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) penalized unstandardized coefficient vector
e(b standardized) penalized standardized coefficient vector
e(b postselection) postselection coefficient vector

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
This section provides the methods and formulas for the methods implemented in sqrtlasso. The

square-root lasso was derived by Belloni and Chernozhukov (2011).

Methods and formulas are presented under the following headings:

Notation
Plugin estimators

Notation

sqrtlasso estimates the parameters by finding the minimum of a penalized objective function.
The penalized objective function is

Q =

√√√√ 1

N

N∑
i=1

wi(yi − β0 − xiβ
′)2 +

λ

N

p∑
j=1

κj |βj | (1)

16 sqrtlasso — Square-root lasso for prediction and model selection

where N is the number of observations, wi are observation-level weights, β0 is the intercept, xi is
the 1× p vector of covariates, β is the 1× p vector of coefficients, λ is the lasso penalty parameter
that must be ≥ 0, and κj are coefficient-level weights.

When λ = 0, there is no penalty term, and Q is the objective function for a version of the
reweighted least-squares estimator.

By default, the coefficient-level weights κj are 1. The heteroskedastic plugin estimator uses
coefficient-level weights that differ from 1. In addition, they may be set to other values using option
penaltywt().

sqrtlasso uses the coordinate descent algorithm to minimize Q for a given value of λ. See
Friedman et al. (2007) for an introduction to the coordinate descent algorithm.

The numerical problem is made much easier and more stable by standardizing all the covariates
to have mean 0 and standard deviation 1. The standardization also removes β0 from the problem.

The grid of values for λ is specified as described in Methods and formulas in [LASSO] lasso.

As with lasso and elastic net, we need to select a value of λ∗. The available selection methods are
selection(cv) (CV, the default), selection(plugin), selection(bic), and selection(none).
The square-root lasso was designed to facilitate the derivation of the plugin estimator for λ∗ discussed
below. CV and BIC for the square-root lasso use the same algorithm as the regular lasso; see Methods
and formulas in [LASSO] lasso for details.

If option cluster() is specified, the penalized objective function with clusters is

Q =

√√√√ 1

Nclust

Nclust∑
i=1

{
1

Ti

Ti∑
t=1

wit(yit − β0 − xitβ
′)2

}
+

λ

Nclust

p∑
j=1

κj |βj |

where Nclust is the total number of clusters and Ti is the number of observations in cluster i. For
the tth observation in cluster i, wit is its observational level weight, yit is the dependent variable,
and xit are the covariates.

Plugin estimators

The same formula for the plugin estimator is used for the homoskedastic and the heteroskedastic
cases with the square-root lasso. This result is essentially why the square-root lasso was derived; see
Belloni, Chernozhukov, and Wang (2011). In the homoskedastic case, the coefficient-level weights
are all 1 because the variables have been normalized. In the heteroskedastic case, the coefficient-level
weights are estimated using algorithm 1, which comes from Belloni, Chernozhukov, and Wang (2011,
769).

The formula for λ∗ is

λsqrt = 2c
√
N Φ−1

(
1− γ

2p

)
where c = 1.1 per the recommendation of Belloni and Chernozhukov (2011), N is the sample size, γ
is the probability of not removing variable xj when it has a coefficient of 0, and p is the number of
candidate covariates in the model. Also, per the recommendation of Belloni and Chernozhukov (2011),
we set γ = 0.1/ ln[max{p,N}].

https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso

sqrtlasso — Square-root lasso for prediction and model selection 17

Algorithm 1: Estimate coefficient-level weights for the heteroskedastic case
1. Remove the mean and standardize each of the covariates xj to have variance one. Remove the

mean from y.

2. Initialize the maximum number of iterations K = 15, initialize the iteration counter k = 0,
and initialize each of the coefficient-level weights,

κj,0 = max1≤i≤N |xij | for j ∈ {1, . . . , p}

3. Update k = k + 1, and estimate the square-root lasso coefficients β̂ using the coefficient-level
weights κj,k−1 and the above formula for λsqrt.

4. Update the coefficient-level weights,

κj,k = max

1,

√
1
N

∑N
i=1(xijri)2√

1
N

∑N
i=1 r

2
i

where ri = yi − xiβ̂

′
.

References
Belloni, A., and V. Chernozhukov. 2011. High dimensional sparse econometric models: An Introduction. In Inverse

Problems of High-Dimensional Estimation, ed. P. Alguier, E. Gautier, and G. Stoltz, 121–156. Berlin: Springer.

Belloni, A., V. Chernozhukov, and L. Wang. 2011. Square-root lasso: Pivotal recovery of sparse signals via conic
programming. Biometrika 98: 791–806. https://doi.org/10.1093/biomet/asr043.

Friedman, J. H., T. J. Hastie, H. Höfling, and R. J. Tibshirani. 2007. Pathwise coordinate optimization. Annals of
Applied Statistics 1: 302–332. https://doi.org/10.1214/07-AOAS131.

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and
Generalizations. Boca Raton, FL: CRC Press.

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] elasticnet — Elastic net for prediction and model selection

[LASSO] lasso — Lasso for prediction and model selection

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://doi.org/10.1093/biomet/asr043
https://doi.org/10.1214/07-AOAS131
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands

