Description

`poregress` fits a lasso linear regression model and reports coefficients along with standard errors, test statistics, and confidence intervals for specified covariates of interest. The partialing-out method is used to estimate effects for these variables and to select from potential control variables to be included in the model.

Quick start

Estimate a coefficient for `d1` in a linear regression of `y` on `d1`, and include `x1–x100` as potential control variables to be selected by lassos

```
poregress y d1, controls(x1-x100)
```

As above, and estimate coefficients for the levels of categorical `d2`

```
poregress y d1 i.d2, controls(x1-x100)
```

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ^* in each lasso

```
poregress y d1 i.d2, controls(x1-x100) selection(cv)
```

As above, and set a random-number seed for reproducibility

```
poregress y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)
```

Specify CV for the lasso for `y` only, with the stopping rule criterion turned off

```
poregress y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))
```

As above, but apply the option to the lassos for `y`, `d1`, and `i.d2`

```
poregress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))
```

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

```
poregress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv, alllambdas))
```

Menu

Statistics > Lasso > Lasso inferential models > Continuous outcomes > Partialing-out model
Syntax

```plaintext
poregress depvar varsofinterest [if] [in],
    controls([alwaysvars] othervars) [options]
```

`varsofinterest` are variables for which coefficients and their standard errors are estimated.

options Description

Model

`controls([alwaysvars] othervars)` alwaysvars and othervars make up the set of control variables; alwaysvars are always included; lassos choose whether to include or exclude othervars

- **selection(plugin)**
 use a plugin iterative formula to select an optimal value of the lasso penalty parameter λ^* for each lasso; the default

- **selection(cv)**
 use CV to select an optimal value of the lasso penalty parameter λ^* for each lasso

- **selection(adaptive)**
 use adaptive lasso to select an optimal value of the lasso penalty parameter λ^* for each lasso

- **sqrtlasso**
 use square-root lassos

- **semi**
 use semi partialing-out lasso regression estimator

- **missingok**
 after fitting lassos, ignore missing values in any othervars not selected, and include these observations in the final model

Reporting

- **level(#)***
 set confidence level; default is level(95)

- **display_options**
 control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Optimization

- **[no] log**
 display or suppress an iteration log

- **verbose**
 display a verbose iteration log

- **rseed(#)***
 set random-number seed

Advanced

- **lasso(varlist, lasso_options)**
 specify options for the lassos for variables in varlist; may be repeated

- **sqrtlasso(varlist, lasso_options)**
 specify options for square-root lassos for variables in varlist; may be repeated

- **vce(robust)**
 robust VCE is the only VCE available

- **reestimate**
 refit the model after using lassoselect to select a different λ^*

- **noheader**
 do not display the header on the coefficient table

- **coeflegend**
 display legend instead of statistics

*controls() is required.

`varsofinterest`, `alwaysvars`, and `othervars` may contain factor variables. Base levels of factor variables cannot be set for alwaysvars and othervars. See [U] 11.4.3 Factor variables.

vce(robust), reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
Options

controls([alwaysvars] othervars) specifies the set of control variables, which control for omitted variables. Control variables are also known as confounding variables. _poregress_ fits lassos for _depvar_ and each of the _varsofinterest_. _alwaysvars_ are variables that are always to be included in these lassos. _alwaysvars_ are optional. _othervars_ are variables that each lasso will choose to include or exclude. That is, each lasso will select a subset of _othervars_. The selected subset of _othervars_ may differ across lassos. _controls_() is required.

_selection(plugin|cv|adaptive) specifies the selection method for choosing an optimal value of the lasso penalty parameter _\lambda^*_ for each lasso or square-root lasso estimation. Separate lassos are estimated for _depvar_ and each variable in _varsofinterest_. Specifying _selection_() changes the selection method for all of these lassos. You can specify different selection methods for different lassos using the option _lasso_() or _sqrtlasso_(). When _lasso_() or _sqrtlasso_() is used to specify a different selection method for the lassos of some variables, they override the global setting made using _selection_() for the specified variables.

_selection(plugin) is the default. It selects _\lambda^*_ based on a “plugin” iterative formula dependent on the data. See [LASSO] lasso options.

_selection(cv) selects the _\lambda^*_ that gives the minimum of the CV function. See [LASSO] lasso options.

_selection(adaptive) selects _\lambda^*_ using the adaptive lasso selection method. It cannot be specified when _sqrtlasso_ is specified. See [LASSO] lasso options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option _lasso_() can be used with _sqrtlasso_ to specify that regular lasso be done for some variables, overriding the global _sqrtlasso_ setting for these variables. See [LASSO] lasso options.

semi specifies that the semi partialing-out lasso regression estimator be used instead of the fully partialing-out lasso estimator, which is the default. See Methods and formulas in [LASSO] _poregress_.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the nonmissing observations of variables in the final model. In all cases, any observation with missing values for _depvar_, _varsofinterest_, _alwaysvars_, and _othervars_ is omitted from the estimation sample for the lassos. By default, the same sample is used for calculation of the coefficients of the _varsofinterest_ and their standard errors.

When _missingok_ is specified, the initial estimation sample is the same as the default, but the sample used for the calculation of the coefficients of the _varsofinterest_ can be larger. Now observations with missing values for any _othervars_ not selected will be added to the estimation sample (provided there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It does, however, have the consequence that estimation samples can change when selected variables differ in models fit using different selection methods. That is, when _othervars_ contain missing values, the estimation sample for a model fit using the default _selection(plugin) will likely differ from the estimation sample for a model fit using, for example, _selection(cv)_.

poregress — Partialing-out lasso linear regression

Estimation options

display_options: `no`, `nopvalues`, `noomitted`, `vsquish`, `noemptycells`, `baselevels`, `allbaselevels`, `nofvlabel`, `fwrap(#)`, `fwrapon(style)`, `cformat(%,fmt)`, `pformat(%,fmt)`, `sformat(%,fmt)`, and `nolstretch`; see [R] Estimation options.

level(#); see [R] Estimation options.

Optimization

[no]log displays or suppresses a log showing the progress of the estimation. By default, one-line messages indicating when each lasso estimation begins are shown. Specify `verbose` to see a more detailed log.

`verbose` displays a verbose log showing the iterations of each lasso estimation. This option is useful when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of the lasso estimations for these selection methods, which can be time consuming when there are many `othervars` specified in `controls()`.

`rseed(#)` sets the random-number seed. This option can be used to reproduce results for selection(cv) and selection(adaptive). The default selection method `selection(plugin)` does not use random numbers. `rseed(#)` is equivalent to typing `set seed #` prior to running `poregress`. See [R] `set` seed.

Advanced

`lasso(varlist, lasso_options)` lets you set different options for different lassos, or advanced options for all lassos. You specify a `varlist` followed by the options you want to apply to the lassos for these variables. `varlist` consists of one or more variables from `depvar` or `varsofinterest`. `all` or `*` may be used to specify `depvar` and all `varsofinterest`. This option is repeatable as long as different variables are given in each specification. `lasso_options` are `selection(...), grid(...), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#). When `lasso(varlist, selection(...))` is specified, it overrides any global `selection()` option for the variables in `varlist`. It also overrides the global `sqrtlasso` option for these variables. See [LASSO] lasso options.

`sqrtlasso(varlist, lasso_options)` works like the option `lasso()`, except square-root lassos for the variables in `varlist` are done rather than regular lassos. `varlist` consists of one or more variables from `depvar` or `varsofinterest`. This option is repeatable as long as different variables are given in each specification. `lasso_options` are `selection(...), grid(...), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#). When `sqrtlasso(varlist, selection(...))` is specified, it overrides any global `selection()` option for the variables in `varlist`. See [LASSO] lasso options.

The following options are available with `poregress` but are not shown in the dialog box:

`vce(robust)` is the only variance–covariance estimator available for these models. The large-sample variance of the method of moments estimator for the partialed-out model has the sandwich structure, the same structure that would be termed a “robust” variance estimator. Only under special assumptions, like a correctly specified parametric model, can the robust form be simplified. No such assumptions are commonly used for partialed-out models, so only the robust VCE is available.

`reestimate` is an advanced option that refits the `poregress` model based on changes made to the underlying lassos using `lassoselect`. After running `poregress`, you can select a different λ^* for one or more of the lassos estimated by `poregress`. After selecting λ^*, you type `poregress, reestimate` to refit the `poregress` model based on the newly selected λ’s.

`reestimate` may be combined only with reporting options.
noheader prevents the coefficient table header from being displayed. coeflegend; see [R] Estimation options.

Remarks and examples

poregress performs partialing-out lasso linear regression. This command estimates coefficients, standard errors, and confidence intervals and performs tests for variables of interest while using lassos to select from among potential control variables.

The linear regression model is

\[E[y|d, x] = d\alpha' + x\beta' \]

where \(d \) are the variables for which we wish to make inferences and \(x \) are the potential control variables from which the lassos select. poregress reports estimated coefficients for \(\alpha \). However, partialing-out does not provide estimates of the coefficients on the control variables (\(\beta \)) or their standard errors. No estimation results can be reported for \(\beta \).

For an introduction to the partialing-out lasso method for inference, as well as the double-selection and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use poregress and the other lasso inference commands are presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an introduction to the examples and to the vl command, which provides tools for working with the large lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential models for examples of fitting inferential lasso linear models and comparisons of the different methods available in Stata.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring inferential model lassos in [LASSO] Inference examples.

Stored results

poregress stores the following in e():

Scalars

- e(N) number of observations
- e(k_varsofinterest) number of variables of interest
- e(k_controls) number of potential control variables
- e(k_controls_sel) number of selected control variables
- e(df) degrees of freedom for test of variables of interest
- e(chi2) \(\chi^2 \)
- e(p) p-value for test of variables of interest
- e(rank) rank of e(V)

Macros

- e(cmd) poregress
- e(cmdline) command as typed
- e(depvar) name of dependent variable
- e(lasso_depvars) names of dependent variables for all lassos
- e(varsofinterest) variables of interest
- e(controls) potential control variables
- e(controls_sel) selected control variables
- e(model) linear
- e(title) title in estimation output
- e(chi2type) Wald; type of \(\chi^2 \) test
poregress — Partialing-out lasso linear regression

<table>
<thead>
<tr>
<th>e(vce)</th>
<th>vcetype specified in vce()</th>
</tr>
</thead>
<tbody>
<tr>
<td>e(vcetype)</td>
<td>title used to label Std. Err.</td>
</tr>
<tr>
<td>e(rngstate)</td>
<td>random-number state used</td>
</tr>
<tr>
<td>e(properties)</td>
<td>b V</td>
</tr>
<tr>
<td>e(predict)</td>
<td>program used to implement predict</td>
</tr>
<tr>
<td>e(select_cmd)</td>
<td>program used to implement lassoselect</td>
</tr>
<tr>
<td>e(marginsnotok)</td>
<td>predictions disallowed by margins</td>
</tr>
<tr>
<td>e(asbalanced)</td>
<td>factor variables fvset as asbalanced</td>
</tr>
<tr>
<td>e(asobserved)</td>
<td>factor variables fvset as asobserved</td>
</tr>
</tbody>
</table>

Matrices
- e(b) — coefficient vector
- e(V) — variance–covariance matrix of the estimators

Functions
- e(sample) — marks estimation sample

Methods and formulas

poregress implements two methods for the partialing-out lasso regression. We call the default method partialing-out lasso regression (POLR). We call the optional method, obtained by specifying option **semi**, a semi partialing-out lasso regression (SPOLR). We refer to these methods as versions of partialing-out regression because they reduce to the classic method of partialing-out regression in a special case discussed below.

The POLR was derived by Belloni et al. (2012) and Chernozhukov, Hansen, and Spindler (2015a, 2015b). The SPOLR was derived by Belloni et al. (2012), Belloni, Chernozhukov, and Hansen (2014), Belloni, Chernozhukov, and Kato (2015), and Belloni, Chernozhukov, and Wei (2016).

The authors referred to their methods as “instrumental-variable methods”. We refer to these methods as partialing-out regression methods because the idea of partialing-out regression is more cross-disciplinary and because these methods do not need outside instrumental variables when the covariates are exogenous.

Mechanically, the POLR and the SPOLR methods are method of moments estimators in which the moment conditions are the score equations from an ordinary least-squares (OLS) estimator of a partial outcome on one or more partial covariates. The partial outcome is the residual from a regression of the outcome on the controls selected by a lasso. Each of the partial covariates is a residual from a regression of the covariate on the controls selected by a lasso.

The POLR method is limited to a linear model for the outcome. This method follows from Chernozhukov, Hansen, and Spindler (2015a; 2015b, sec. 5) and Chernozhukov et al. (2018, C18). The algorithm described in Chernozhukov, Hansen, and Spindler (2015a, 2015b) is for endogenous variables with many outside instruments and many controls. As they note, imposing an exogeneity assumption and assuming that there are no outside instruments reduces their algorithm to one for exogenous covariates with many controls.

The SPOLR method extends naturally to nonlinear models for the outcome and has two sources. It is implied by Belloni, Chernozhukov, and Kato (2015, algorithm 1), which is for a median regression of \(y \) on \(x \). Replacing median regression with mean regression in their step (i) and replacing the median moment condition with the mean moment condition in step (iii) produces the SPOLR algorithm detailed below. This algorithm is also implied by Belloni, Chernozhukov, and Wei (2016, table 1 and sec. 2.1) for a linear model.
The regression model is

$$E[y|d, x] = d\alpha' + \beta_0 + x\beta'$$

where d contains the J covariates of interest and x contains the p controls. The number of covariates in d must be small and fixed. The number of controls in x can be large and, in theory, can grow with the sample size; however, the number of nonzero elements in β must not be too large, which is to say that the model must be sparse.

POLR algorithm

1. For $j = 1, \ldots, J$, perform a linear lasso of d_j on x, and denote the selected controls by \tilde{x}_j.

 Each of these lassos can choose the lasso penalty parameter (λ_j^*) using the plugin estimator, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

2. For $j = 1, \ldots, J$, fit a linear regression of d_j on \tilde{x}_j, denote the estimated coefficients by $\hat{\gamma}_j$, and define the partial-covariate variable $z_j = d_j - \tilde{x}_j \hat{\gamma}_j$, with its ith observation denoted by $z_{j,i}$.

 Collect the J partial covariates for the ith observation into the vector $z_i = (z_{1,i}, \ldots, z_{J,i})$.

3. Perform a linear lasso of y on x to select covariates \tilde{x}_y.

 This lasso can choose the lasso penalty parameter (λ^*) using the plugin estimator, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

4. Fit a linear regression of y on \tilde{x}_y, denote the estimated coefficients by $\tilde{\beta}_y$, and define the partial outcome for the ith observation by $\tilde{y}_i = y_i - \tilde{x}_{y,i} \tilde{\beta}_y$.

5. Compute $\hat{\alpha}$ by solving the following J sample-moment equations.

$$\frac{1}{n} \sum_{i=1}^{n} (\tilde{y}_i - z_i \alpha') z_i' = 0$$

The VCE is estimated by the robust estimator for method of moments.

SPOLR algorithm

1. For $j = 1, \ldots, J$, perform a linear lasso of d_j on x, and denote the selected controls by \tilde{x}_j.

 Each of these lassos can choose the lasso penalty parameter (λ_j^*) using the plugin estimator, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

2. For $j = 1, \ldots, J$, fit a linear regression of d_j on \tilde{x}_j, denote the estimated coefficients by $\hat{\gamma}_j$, and define the partial-covariate variable $z_j = d_j - \tilde{x}_j \hat{\gamma}_j$, with its ith observation denoted by $z_{j,i}$.

 Collect the J partial covariates for the ith observation into the vector $z_i = (z_{1,i}, \ldots, z_{J,i})$.

3. Perform a linear lasso of y on d and x to select covariates \tilde{x}_y.

 This lasso can choose the lasso penalty parameter (λ^*) using the plugin estimator, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

4. Fit a linear regression of y on d and \tilde{x}_y, let $\hat{\beta}$ be the estimated coefficients on \tilde{x}_y, and define the partial outcome for the ith observation by $\tilde{y}_i = y_i - \tilde{x}_{y,i} \hat{\beta}'$.
5. Compute \(\hat{\alpha} \) by solving the following \(J \) sample-moment equations.

\[
\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - d_i \alpha') z_i' = 0
\]

The VCE is estimated by the robust estimator for method of moments.

See Methods and formulas in [LASSO lasso] for details on how the lassos in steps 1 and 3 of both algorithms choose their penalty parameter (\(\lambda^* \)).

References

Also see

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dsregress — Double-selection lasso linear regression

[LASSO] xporegress — Cross-fit partialing-out lasso linear regression

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands