Description

`pologit` fits a lasso logistic regression model and reports odds ratios along with standard errors, test statistics, and confidence intervals for specified covariates of interest. The partialing-out method is used to estimate effects for these variables and to select from potential control variables to be included in the model.

Quick start

Report an odds ratio from a logistic regression of `y` on `d1`, and include `x1–x100` as potential control variables to be selected by lassos

```
pologit y d1, controls(x1-x100)
```

As above, and estimate odds ratios for the levels of categorical `d2`

```
pologit y d1 i.d2, controls(x1-x100)
```

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ^* in each lasso

```
pologit y d1 i.d2, controls(x1-x100) selection(cv)
```

As above, and set a random-number seed for reproducibility

```
pologit y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)
```

Specify CV for the lasso for `y` only, with the stopping rule criterion turned off

```
pologit y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))
```

As above, but apply the option to the lassos for `y`, `d1`, and `i.d2`

```
pologit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))
```

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

```
pologit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv, alllambdas))
```

Menu

`Statistics > Lasso > Lasso inferential models > Binary outcomes > Partialing-out logit model`
Syntax

```
pologit depvar varsofinterest [if] [in],
    controls([(alwaysvars)] othervars) [options]
```

varsofinterest are variables for which coefficients and their standard errors are estimated.

options

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>controls([(alwaysvars)] othervars)</td>
<td>alwaysvars and othervars make up the set of control variables; alwaysvars are always included; lassos choose whether to include or exclude othervars</td>
</tr>
<tr>
<td>selection(plugin)</td>
<td>use a plugin iterative formula to select an optimal value of the lasso penalty parameter λ^* for each lasso; the default</td>
</tr>
<tr>
<td>selection(cv)</td>
<td>use CV to select an optimal value of the lasso penalty parameter λ^* for each lasso</td>
</tr>
<tr>
<td>selection(adaptive)</td>
<td>use adaptive lasso to select an optimal value of the lasso penalty parameter λ^* for each lasso</td>
</tr>
<tr>
<td>sqrtlasso</td>
<td>use square-root lassos for varsofinterest</td>
</tr>
<tr>
<td>missingok</td>
<td>after fitting lassos, ignore missing values in any othervars not selected, and include these observations in the final model</td>
</tr>
<tr>
<td>offset(varname)</td>
<td>include varname in the lasso and model for depvar with its coefficient constrained to be 1</td>
</tr>
</tbody>
</table>

Reporting

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
<tr>
<td>or</td>
<td>report odds ratios; the default</td>
</tr>
<tr>
<td>coef</td>
<td>report estimated coefficients</td>
</tr>
<tr>
<td>display_options</td>
<td>control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling</td>
</tr>
</tbody>
</table>

Optimization

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[no] log</td>
<td>display or suppress an iteration log</td>
</tr>
<tr>
<td>verbose</td>
<td>display a verbose iteration log</td>
</tr>
<tr>
<td>rseed(#)</td>
<td>set random-number seed</td>
</tr>
</tbody>
</table>

Advanced

<table>
<thead>
<tr>
<th>Lasso</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lasso(varlist, lasso_options)</td>
<td>specify options for the lassos for variables in varlist; may be repeated</td>
</tr>
<tr>
<td>sqrtlasso(varlist, lasso_options)</td>
<td>specify options for square-root lassos for variables in varlist; may be repeated</td>
</tr>
<tr>
<td>vce(robust)</td>
<td>robust VCE is the only VCE available</td>
</tr>
<tr>
<td>reestimate</td>
<td>refit the model after using lassoselect to select a different λ^*</td>
</tr>
<tr>
<td>noheader</td>
<td>do not display the header on the coefficient table</td>
</tr>
<tr>
<td>coeflegend</td>
<td>display legend instead of statistics</td>
</tr>
</tbody>
</table>
*controls() is required.

\texttt{varsofinterest, alwaysvars, and othervars} may contain factor variables. Base levels of factor variables cannot be set for \texttt{alwaysvars} and \texttt{othervars}. See \[U\] 11.4.3 Factor variables.

\texttt{vce(robust), reestimate, noheader}, and \texttt{coeflegend} do not appear in the dialog box.

See \[U\] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

- **Model**

 \texttt{controls([alwaysvars] othervars)} specifies the set of control variables, which control for omitted variables. Control variables are also known as confounding variables. \texttt{pologit} fits lassos for \texttt{depvar} and each of the \texttt{varsofinterest}. \texttt{alwaysvars} are variables that are always to be included in these lassos. \texttt{alwaysvars} are optional. \texttt{othervars} are variables that each lasso will choose to include or exclude. That is, each lasso will select a subset of \texttt{othervars}. The selected subset of \texttt{othervars} may differ across lassos. \texttt{controls()} is required.

- **selection(plugin | cv | adaptive)** specifies the selection method for choosing an optimal value of the lasso penalty parameter λ^* for each lasso or square-root lasso estimation. Separate lassos are estimated for \texttt{depvar} and each variable in \texttt{varsofinterest}. Specifying \texttt{selection()} changes the selection method for all of these lassos. You can specify different selection methods for different lassos using the option \texttt{lasso()} or \texttt{sqrtlasso()}. When \texttt{lasso()} or \texttt{sqrtlasso()} is used to specify a different selection method for the lassos of some variables, they override the global setting made using \texttt{selection()} for the specified variables.

- **selection(plugin)** is the default. It selects λ^* based on a “plugin” iterative formula dependent on the data. See \[LASSO\] lasso options.

- **selection(cv)** selects the λ^* that gives the minimum of the CV function. See \[LASSO\] lasso options.

- **selection(adaptive)** selects λ^* using the adaptive lasso selection method. It cannot be specified when \texttt{sqrtlasso} is specified. See \[LASSO\] lasso options.

- **sqrtlasso** specifies that square-root lassos be done rather than regular lassos for the \texttt{varsofinterest}. This option does not apply to \texttt{depvar}. Square-root lassos are linear models, and the lasso for \texttt{depvar} is always a logit lasso. The option \texttt{lasso()} can be used with \texttt{sqrtlasso} to specify that regular lasso be done for some variables, overriding the global \texttt{sqrtlasso} setting for these variables. See \[LASSO\] lasso options.

- **missingok** specifies that, after fitting lassos, the estimation sample be redefined based on only the nonmissing observations of variables in the final model. In all cases, any observation with missing values for \texttt{depvar}, \texttt{varsofinterest}, \texttt{alwaysvars}, and \texttt{othervars} is omitted from the estimation sample for the lassos. By default, the same sample is used for calculation of the coefficients of the \texttt{varsofinterest} and their standard errors.

 When \texttt{missingok} is specified, the initial estimation sample is the same as the default, but the sample used for the calculation of the coefficients of the \texttt{varsofinterest} can be larger. Now observations with missing values for any \texttt{othervars} not selected will be added to the estimation sample (provided there are no missing values for any of the variables in the final model).

 \texttt{missingok} may produce more efficient estimates when data are missing completely at random. It does, however, have the consequence that estimation samples can change when selected variables differ in models fit using different selection methods. That is, when \texttt{othervars} contain missing
values, the estimation sample for a model fit using the default
selection(plugin) will likely differ from the estimation sample for a model fit using, for example, selection(cv).

offset(varname) specifies that varname be included in the lasso and model for depvar with its coefficient constrained to be 1.

Reporting

level(#); see \textit{\texttt{R} Estimation options}.

or reports the estimated coefficients transformed to odds ratios, that is, e^{α}. Standard errors and confidence intervals are similarly transformed. or is the default.

coeff reports the estimated coefficients α rather than the odds ratios (e^{α}). This option affects how results are displayed, not how they are estimated. coeff may be specified at estimation or when replaying previously estimated results.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nolabel, tpsformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see \textit{\texttt{R} Estimation options}.

Optimization

\texttt{no} log displays or suppresses a log showing the progress of the estimation. By default, one-line messages indicating when each lasso estimation begins are shown. Specify \texttt{verbose} to see a more detailed log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of the lasso estimations for these selection methods, which can be time consuming when there are many othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for selection(cv) and selection(adaptive). The default selection method selection(plugin) does not use random numbers. rseed(#) is equivalent to typing \texttt{set seed #} prior to running pologit. See \textit{\texttt{R} set seed}.

Advanced

lasso(varlist, lasso_options) lets you set different options for different lassos, or advanced options for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these variables. varlist consists of one or more variables from depvar or varsofinterest. _all or * may be used to specify depvar and all varsofinterest. This option is repeatable as long as different variables are given in each specification. lasso_options are selection(...), grid(...), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(...)) is specified, it overrides any global selection() option for the variables in varlist. It also overrides the global sqrtlasso option for these variables. See \textit{\texttt{LASSO} lasso options}.

sqrtlasso(varlist, lasso_options) works like the option lasso(), except square-root lassos for the variables in varlist are done rather than regular lassos. varlist consists of one or more variables from varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This option is repeatable as long as different variables are given in each specification. lasso_options are selection(...), grid(...), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(...)) is specified, it overrides any global selection() option for the variables in varlist. See \textit{\texttt{LASSO} lasso options}.
The following options are available with `pologit` but are not shown in the dialog box:

- `vce(robust)` is the only variance–covariance estimator available for these models. The large-sample variance of the method of moments estimator for the partialed-out model has the sandwich structure, the same structure that would be termed a “robust” variance estimator. Only under special assumptions, like a correctly specified parametric model, can the robust form be simplified. No such assumptions are commonly used for partialed-out models, so only the robust VCE is available.

- `reestimate` is an advanced option that refits the `pologit` model based on changes made to the underlying lassos using `lassoselect`. After running `pologit`, you can select a different λ^* for one or more of the lassos estimated by `pologit`. After selecting λ^*, you type `pologit, reestimate` to refit the `pologit` model based on the newly selected λ’s.

- `noheader` prevents the coefficient table header from being displayed.

- `coeflegend`; see [R] Estimation options.

Remarks and examples

`pologit` performs partialing-out lasso logistic regression. This command estimates odds ratios, standard errors, and confidence intervals and performs tests for variables of interest while using lassos to select from among potential control variables.

The logistic regression model is

$Pr(y = 1 | d, x) = \frac{\exp(d\alpha' + x\beta')}{1 + \exp(d\alpha' + x\beta')}$

where d are the variables for which we wish to make inferences and x are the potential control variables from which the lassos select. `pologit` estimates the α coefficients and reports the corresponding odds ratios, e^{α}. However, partialing-out does not provide estimates of the coefficients on the control variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use `pologit` and the other lasso inference commands are presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an introduction to the examples and to the vl command, which provides tools for working with the large lists of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential models for comparisons of the different methods of fitting inferential models that are available in Stata. Everything we say there about methods of selection is applicable to both linear and nonlinear models. See 3 Fitting logit inferential models to binary outcomes. What is different? for examples and discussion specific to logistic regression models. The primary difference from linear models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring inferential model lassos in [LASSO] Inference examples.
Stored results

`pologit` stores the following in `e()`:

Scalars
- `e(N)` number of observations
- `e(k_varsofinterest)` number of variables of interest
- `e(k_controls)` number of potential control variables
- `e(k_controls_sel)` number of selected control variables
- `e(df)` degrees of freedom for test of variables of interest
- `e(chi2)` χ^2
- `e(p)` p-value for test of variables of interest
- `e(rank)` rank of `e(V)`

Macros
- `e(cmd)` `pologit`
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(lasso_depvars)` names of dependent variables for all lassos
- `e(varsofinterest)` variables of interest
- `e(controls)` potential control variables
- `e(controls_sel)` selected control variables
- `e(model)` `logit`
- `e(title)` title in estimation output
- `e(offset)` linear offset variable
- `e(chi2type)` Wald; type of χ^2 test
- `e(vcetype)` `vcetype` specified in `vce()`
- `e(vce)` title used to label Std. Err.
- `e(rngstate)` random-number state used
- `e(properties)` `b V`
- `e(predict)` program used to implement `predict`
- `e(select_cmd)` program used to implement `lassoselect`
- `e(marginsnotok)` predictions disallowed by `margins`
- `e(asbalanced)` factor variables `fvset` as `asbalanced`
- `e(asobserved)` factor variables `fvset` as `asobserved`

Matrices
- `e(b)` coefficient vector
- `e(V)` variance–covariance matrix of the estimators

Functions
- `e(sample)` marks estimation sample

Methods and formulas

`pologit` implements partialing-out lasso logit regression (POLLR) as described in Belloni, Chernozhukov, and Wei (2016, table 1 and sec. 2.1). The regression model is

$$E[y|d, x] = G(d\alpha' + \beta_0 + x\beta')$$

where $G(a) = \exp(a)/\{1 + \exp(a)\}$, d contains the J covariates of interest, and x contains the p controls. The number of covariates in d must be small and fixed. The number of controls in x can be large and, in theory, can grow with the sample size; however, the number of nonzero elements in β must not be too large, which is to say that the model must be sparse.

POLLR algorithm

1. Perform a logit lasso of y on d and x, and denote the selected controls by \tilde{x}.

 This logit lasso can choose the lasso penalty parameter (λ^*) using the plugin estimator, adaptive lasso, or CV. The plugin value is the default.
2. Fit a logit regression of \(y \) on \(d \) and \(\tilde{x} \), denoting the estimated coefficient vectors by \(\tilde{\alpha} \) and \(\tilde{\beta} \), respectively.

3. Let \(\tilde{s}_i = \tilde{x}_i \tilde{\beta}' \) be the \(i \)th observation of the predicted value of \(x\beta' \) and \(w_i = G'(d_i \tilde{\alpha}' + \tilde{s}_i) \) be the \(i \)th observation of the predicted value of the derivative of \(G(\cdot) \).

4. For \(j = 1, \ldots, J \), perform a linear lasso of \(d_j \) on \(x \) using observation-level weights \(w_i \), and denote the selected controls by \(\tilde{x}_j \).

 Each of these lassos can choose the lasso penalty parameter \((\lambda^*_j) \) using one of the plugin estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

5. For \(j = 1, \ldots, J \), fit a linear regression of \(d_j \) on the selected controls \(\tilde{x}_j \) using observation-level weights \(w_i \), denote the unweighted residuals by \(\tilde{d}_j \), with \(\tilde{d}_{j,i} \) its \(i \)th observation, and create the instrument \(z_j \) with \(i \)th observation given by \(z_{j,i} = \tilde{d}_{j,i} \).

 Collect the \(J \) instruments for the \(i \)th observation into the vector \(z_i = (z_{1,i}, \ldots, z_{J,i}) \).

6. Compute \(\hat{\alpha} \) by solving the following \(J \) sample-moment equations

\[
\frac{1}{n} \sum_{i=1}^{n} \left\{ y_i - G(d_i \hat{\alpha}' + \tilde{s}_i) \right\} z_i' = 0
\]

7. Store the point estimates \(\hat{\alpha} \) in \(e(b) \) and their variance estimates (VCE) in \(e(V) \).

 The VCE is estimated by the robust estimator for method of moments.

See Methods and formulas in [LASSO lasso] for details on how the lassos in steps 1 and 4 choose their penalty parameter \((\lambda^*) \).

Reference

Also see

[LASSO lasso inference postestimation] — Postestimation tools for lasso inferential models
[LASSO dslogit] — Double-selection lasso logistic regression
[LASSO xpologit] — Cross-fit partialing-out lasso logistic regression
[R] logit — Logistic regression, reporting coefficients
[R] logistic — Logistic regression, reporting odds ratios
[U] 20 Estimation and postestimation commands