lasso postestimation — Postestimation tools for lasso for prediction

Postestimation commands	predict	stcurve	Remarks and examples
Methods and formulas	References	Also see	

Postestimation commands

The following postestimation commands are of special interest after lasso, sqrtlasso, and elasticnet:

Command	Description	
bicplot	plot Bayesian information criterion function	
coefpath	plot path of coefficients	
cvplot	plot cross-validation function	
lassocoef	display selected coefficients	
lassogof	goodness of fit after lasso for prediction	
lassoinfo	information about lasso estimation results	
lassoknots	knot table of coefficient selection and measures of fit	
lassoselect	select alternative λ^* (and α^* for elasticnet)	
* stcurve	plot the survivor, failure, hazard, or cumulative hazard function	

*stcurve is appropriate only after lasso cox or elasticnet cox.

The following standard postestimation commands are also available:

Command	Description
estat summarize	summary statistics for the estimation sample
estimates	cataloging estimation results
etable	table of estimation results
predict	linear predictions

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions; probabilities when the model is logit or probit; number of events when the model is Poisson; or hazard ratios and baseline survivor, cumulative hazard, and hazard functions when the model is Cox.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic options]
```

statistic	Description	
Vain		
xb	linear predictions; the default for the linear model	
pr	probability of a positive outcome; the default for the logit and probit models	
n	number of events; the default for the poisson model	
ir	incidence rate; optional for the poisson model	
hr	predicted hazard ratio, also known as the relative hazard; the default for the cox model	
<u>bases</u> urv	baseline survivor function	
<u>basec</u> hazard	baseline cumulative hazard function	
basehc	baseline hazard contributions	

pr is allowed only when the model is logit or probit.

 ${\tt n}$ and ${\tt ir}$ are allowed only when the model is poisson.

hr, basesurv, basechazard, and basehc are allowed only when the model is cox.

options	Description
Main	
penalized	use penalized coefficients; the default
postselection	use postselection (unpenalized) coefficients
nooffset	ignore the offset or exposure variable (if any)

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when e(sample) is not specified. nooffset is allowed only with unstarred statistics.

Options for predict

ŀ.	r ·
L	Main
L	Iviain
	Iviaiii

xb, the default for the linear model, calculates linear predictions.

- pr, the default for and only allowed with the logit and probit models, calculates the probability of a positive event.
- n, the default for and only allowed with the poisson model, calculates the number of events, which is $\exp(\mathbf{x}_{j}\beta)$ if neither offset() nor exposure() was specified when the model was fit; $\exp(\mathbf{x}_{j}\beta + \text{offset}_{j})$ if offset() was specified; or $\exp(\mathbf{x}_{j}\beta) \times \exp(\operatorname{sure}_{j})$ if exposure() was specified.
- ir applies to the poisson model only. It calculates the incidence rate $\exp(\mathbf{x}\beta')$, which is the predicted number of events when exposure is 1. Specifying ir is equivalent to specifying n when neither offset() nor exposure() was specified when the model was fit.
- hr, the default for the cox model, calculates the relative hazard (hazard ratio), that is, the exponentiated linear prediction $\exp(\mathbf{x}\beta')$.
- basesurv applies to the cox model only. It calculates the baseline survivor function. In the null model, this is equivalent to the Kaplan-Meier product-limit estimate.
- basechazard applies to the cox model only. It calculates the cumulative baseline hazard.
- basehc applies to the cox model only. It calculates the baseline hazard contributions. These are used to construct the product-limit type estimator for the baseline survivor function generated by basesurv.
- penalized specifies that penalized coefficients be used to calculate predictions. This is the default. Penalized coefficients are those estimated by lasso in the calculation of the lasso penalty. See *Methods* and formulas in [LASSO] lasso.
- postselection specifies that postselection coefficients be used to calculate predictions. Postselection coefficients are calculated by taking the variables selected by lasso and refitting the model with the appropriate ordinary estimator: linear regression for linear models, logistic regression for logit models, probit regression for probit models, Poisson regression for poisson models, and Cox regression for cox models.
- nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $\mathbf{x}\beta'$ rather than $\mathbf{x}\beta' + \text{offset or } \mathbf{x}\beta' + \ln(\text{exposure})$. For the poisson model, specifying predict ..., nooffset is equivalent to specifying predict ..., ir. This option is not allowed when basesurv, basechazard, or basehc is specified.

stcurve

Description for stcurve

stcurve plots the survivor, failure, hazard, or cumulative hazard function after lasso cox or elasticnet cox.

Menu for stcurve

Statistics > Survival analysis > Regression models > Plot survivor or related function

Syntax for stcurve

stcurve [, penalized postselection stcurve_options]

Options for stcurve

- penalized, the default, specifies that penalized coefficients be used to calculate predictions. Penalized coefficients are those estimated by lasso in the calculation of the lasso penalty. See *Methods and formulas* in [LASSO] lasso.
- postselection specifies that postselection coefficients be used to calculate predictions. Postselection coefficients are calculated by taking the variables selected by lasso and refitting the model with stcox.

stcurve_options are options available for stcurve; see Options in [ST] stcurve.

Remarks and examples

By default, predict after lasso uses the penalized coefficient estimates to predict the outcome. Specifying the postselection option causes predict to use the postselection coefficients to calculate predictions. Postselection coefficients are calculated by taking the variables selected by lasso and refitting the model with the unpenalized estimator.

stcurve after lasso cox or elasticnet cox also uses the penalized coefficients by default. Specifying the postselection option causes stcurve to use the postselection coefficients.

Belloni and Chernozhukov (2013) and Belloni et al. (2012) provide results under which predictions using postselection coefficients perform at least as well as predictions using penalized coefficients. Their results are only for linear models. Their conditions essentially limit the cases to ones in which the co-variates selected by the lasso are close to the set of covariates that best approximates the outcome. Said plainly, this means that under the conditions for which lasso provides valid predictions, the postselection coefficients should do slightly better than the penalized coefficients in most cases; in other cases, they should be about the same.

Rather than relying on theorems, standard practice in prediction applications uses split-sample techniques to find which of several models produces the best predictions. One standard practice in prediction applications is to randomly split the sample into training and testing samples. When you use the training data, the coefficients for several competing predictors are computed. When you use the testing data, an out-of-sample prediction error is computed for each of the predictors whose coefficients were estimated on the training data. The predictor with the smallest out-of-sample prediction error is preferred. This practice is illustrated in [LASSO] lassogof.

Methods and formulas

Below, we discuss the methods and formulas for the predictions of baseline survivor function, baseline cumulative hazard function, and baseline hazard contributions after lasso cox or elasticnet cox.

Define $z_i = \mathbf{x}_i \widehat{\boldsymbol{\beta}}' + \text{offset}_i$, where $\widehat{\boldsymbol{\beta}}$ is either the penalized or the postselection coefficients. The estimated baseline hazard contribution is obtained at each failure time as $h_j = 1 - \widehat{\alpha}_j$, where $\widehat{\alpha}_j$ is the solution to

$$\sum_{k \in D_j} \frac{\exp(z_k)}{1 - \hat{\alpha}_j^{\exp(z_k)}} = \sum_{\ell \in R_j} \, \exp(z_\ell)$$

(Kalbfleisch and Prentice 2002, eq. 4.34, 115), where j indexes the ordered failure times t_j (j = 1, ..., D); D_j is the set of d_j observations that fail at t_j ; d_j is the number of failures at t_j ; and R_j is the set of observations k that are at risk at time t_j (that is, all k such that $t_{0k} < t_j \le t_k$, and t_{0k} is the entry time for the kth observation).

The estimated baseline survivor function is

$$\hat{S}_0(t) = \prod_{j: t_j \leq t} \hat{\alpha}_j$$

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor function calculation; yet the values of $\hat{\alpha}_i$ are set at their starting values and are not iterated. Equivalently,

$$\widehat{H}_0(t) = \sum_{j: t_j \leq t} \frac{d_j}{\sum_{\ell \in R_j} \exp(z_\ell)}$$

For an application of this formula in the context of lasso cox, see Ternès, Rotolo, and Michiels (2017).

References

- Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments with an application to eminent domain. *Econometrica* 80: 2369–2429. https://doi.org/10.3982/ECTA9626.
- Belloni, A., and V. Chernozhukov. 2013. Least squares after model selection in high-dimensional sparse models. *Bernoulli* 19: 521–547. https://doi.org/10.3150/11-BEJ410.
- Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.
- Ternès, N., F. Rotolo, and S. Michiels. 2017. Robust estimation of the expected survival probabilities from highdimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials. BMC Medical Research Methodology 17(art. 83). https://doi.org/10.1186/s12874-017-0354-0.

Also see

- [LASSO] lasso examples Examples of lasso for prediction
- [LASSO] elasticnet Elastic net for prediction and model selection
- [LASSO] lasso Lasso for prediction and model selection
- [LASSO] sqrtlasso Square-root lasso for prediction and model selection

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.