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Description
Lasso was originally an acronym for “least absolute shrinkage and selection operator”. Today, lasso

is considered a word and not an acronym.

Lasso is used for prediction, for model selection, and as a component of estimators to perform infer-

ence.

Lasso, elastic net, and square-root lasso are designed for model selection and prediction. Stata’s

lasso, elasticnet, and sqrtlasso commands implement these methods. lasso and elasticnet fit

continuous, binary, count, and failure-time outcomes, while sqrtlasso fits continuous outcomes.

Stata also provides lasso commands for inference. They use lassos to select control variables that

appear in themodel, and they estimate coefficients and standard errors for a specified subset of covariates.

Stata’s lasso inference commands implement methods known as double selection, partialing out, and

cross-fit partialing out. With each of these methods, linear, logistic, or Poisson regression can be used to

model a continuous, binary, or count outcome. Partialing out and cross-fit partialing out also allow for

endogenous covariates in linear models.

Stata also provides a specialized lasso inference command for estimating treatment effects while us-

ing lassos to select control variables. telasso estimates the average treatment effect (ATE), average

treatment effect on the treated (ATET), or potential-outcome means (POMs); see [CAUSAL] telasso.

This entry provides an overview of lasso for prediction, model selection, and inference and an intro-

duction to Stata’s suite of lasso commands.

Remarks and examples
Remarks are presented under the following headings:

Summary of Stata’s lasso and elastic-net features
What is lasso?
Lasso for prediction

How lasso for prediction works
Stata commands for prediction

Lasso for model selection
Lasso for inference

Why do we need special lasso methods for inference?
Methods of lasso for inference
Stata commands for inference

Where to learn more
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https://www.stata.com/manuals/causaltelasso.pdf#causaltelasso
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Summary of Stata’s lasso and elastic-net features
For those of you who are already experts on lasso, here is an overview full of buzz words without

explanations.

Stata provides three estimation commands for prediction and model selection.

lasso fits linear, logit, probit, Poisson, and Cox proportional hazards models.

The final model is selected using cross-validation (CV), adaptive lasso,

plugin estimators, or the Bayesian information criterion (BIC) function.

elasticnet also fits linear, logit, probit, Poisson, and Cox proportional hazards models.

elasticnet uses CV or the BIC function to select models.

sqrtlasso fits square-root lassos for linear models. The final model is selected using

CV, plugin estimators, or the BIC function.

After fitting a model, you obtain out-of-sample predictions by loading another dataset and typing

. predict newvarname

Stata provides another 11 lasso commands for use in inference. These 11 commands are arranged in

three groups.

ds commands perform double-selection lasso:

dsregress for linear models,

dslogit for logit models, and

dspoisson for Poisson models.

po commands perform partialing-out lasso:

poregress for linear models,

pologit for logit models,

popoisson for Poisson models, and

poivregress for linear models with endogenous covariates.

xpo commands perform cross-fit partialing-out lasso, also known as double

machine learning:

xporegress for linear models,

xpologit for logit models,

xpopoisson for Poisson models, and

xpoivregress for linear models with endogenous covariates.

Stata provides one additional lasso command for use in inference when your objective is to estimate

treatment effects.

telasso fits linear, logit, probit, and Poisson models and estimates the ATE, ATET,

or POMs.

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlasso
https://www.stata.com/manuals/lassodsregress.pdf#lassodsregress
https://www.stata.com/manuals/lassodslogit.pdf#lassodslogit
https://www.stata.com/manuals/lassodspoisson.pdf#lassodspoisson
https://www.stata.com/manuals/lassoporegress.pdf#lassoporegress
https://www.stata.com/manuals/lassopologit.pdf#lassopologit
https://www.stata.com/manuals/lassopopoisson.pdf#lassopopoisson
https://www.stata.com/manuals/lassopoivregress.pdf#lassopoivregress
https://www.stata.com/manuals/lassoxporegress.pdf#lassoxporegress
https://www.stata.com/manuals/lassoxpologit.pdf#lassoxpologit
https://www.stata.com/manuals/lassoxpopoisson.pdf#lassoxpopoisson
https://www.stata.com/manuals/lassoxpoivregress.pdf#lassoxpoivregress
https://www.stata.com/manuals/causaltelasso.pdf#causaltelasso
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Stata provides two preestimation commands that help you prepare your data and specify covariates.

splitsample divides your sample into 𝑘 random subsamples. Use it for producing

subsamples for training, validation, and prediction.

vl creates named lists of variables to be included in lasso. Sometimes,

you will want to specify many potential covariates without typing every

variable name. vl creates named variable lists that can be used as

command arguments. Lists can contain hundreds or thousands of

variable names.

Stata provides eight postestimation commands that help you evaluate the selected model:

bicplot graphs the BIC function.

cvplot graphs the CV function.

coefpath graphs coefficient paths.

lassoknots displays a knot table for covariates as they enter or leave the model and

measures of fit.

lassogof reports fit statistics that help you evaluate the predictive ability of a model.

It does this for one model or for multiple models in the same table.

lassocoef lists the selected variables in the model. It does this for one model

or for multiple models in the same table.

lassoselect selects a different model from the one chosen by the estimation command.

lassoinfo reports lasso information such as the dependent variable, selection method,

and number of nonzero coefficients for one or more models.

What is lasso?
Lasso is a method for selecting and fitting covariates that appear in a model. The lasso command

can fit linear, logit, probit, Poisson, and Cox proportional hazards models. Let’s consider a linear model,

a model of y on x1, x2, . . . , xp. You would ordinarily fit this model by typing

. regress y x1 x2 ... xp

Now assume that you are uncertain which variables (covariates) belong in the model, although you

are certain that some of them do and the number of them is small relative to the number of observations

in your dataset, 𝑁. In that case, you can type

. lasso linear y x1 x2 ... xp

You can specify hundreds or even thousands of covariates. You can even specify more covariates than

there are observations in your data! The covariates you specify are the potential covariates from which

lasso selects.

https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample
https://www.stata.com/manuals/dvl.pdf#dvl
https://www.stata.com/manuals/lassobicplot.pdf#lassobicplot
https://www.stata.com/manuals/lassocvplot.pdf#lassocvplot
https://www.stata.com/manuals/lassocoefpath.pdf#lassocoefpath
https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef
https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/lassolassoinfo.pdf#lassolassoinfo
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Lasso is used in three ways:

1. Lasso is used for prediction.

2. Lasso is used for model selection.

3. Lasso is used for inference.

By prediction, we mean predicting the value of an outcome conditional on a large set of potential

regressors. And we mean predicting the outcome both in and out of sample.

By model selection, we mean selecting a set of variables that predicts the outcome well. We do

not mean selecting variables in the true model or placing a scientific interpretation on the coefficients.

Instead, we mean selecting variables that correlate well with the outcome in one dataset and testing

whether those same variables predict the outcome well in other datasets.

By inference, we mean inference for interpreting and giving meaning to the coefficients of the fitted

model. Inference is concerned with estimating effects of variables in the true model and estimating

standard errors, confidence intervals, 𝑝-values, and the like.

Lasso for prediction
Lasso was invented by Tibshirani (1996) and has been commonly used in building models for predic-

tion. Hastie, Tibshirani, andWainwright (2015) provide an excellent introduction to the mechanics of the

lasso and to the lasso as a tool for prediction. See Bühlmann and van de Geer (2011) for more technical

discussion and clear discussion of the properties of lasso under different assumptions. See Cameron and

Trivedi (2022, chap. 28) for an introduction to lasso for prediction and for inference with examples using

Stata.

Lasso does not necessarily select the covariates that appear in the true model, but it does select a

set of variables that are correlated with them. If lasso selects potential covariate x47, that means x47
belongs in the model or is correlated with variables that belong in the model. If lasso omits potential

covariate x52, that means x52 does not belong in the model or belongs but is correlated with covariates

that were already selected. Because we are interested only in prediction, we are not concerned with the

exact variables selected, only that they are useful for prediction.

The model lasso selects is suitable for making predictions in samples outside the one you used for

estimation. Everyone knows about the danger of overfitting. Fit a model on one set of data and include

too many variables, and the result will exploit features randomly unique to those data that will not be

replicated in other data.

“Oh,” you may be thinking, “you mean that I can split my data into an estimation sample and a hold-

out sample, and after fitting, I can evaluate the model in the hold-out sample.” That is not what we mean,

although you can do this, and it is sometimes a good idea to do so. We mean that lasso works to avoid

the problem of overfitting by minimizing an estimate of the out-of-sample prediction error.

How lasso for prediction works

Lasso finds a solution for

y = 𝛽1 x1 + 𝛽2 x2 + · · · + 𝛽𝑝 x𝑝 + ε



Lasso intro — Introduction to lasso 5

by minimizing the prediction error subject to the constraint that the model is not too complex—that is, it

is sparse. Lasso measures complexity by the sum of the absolute values of 𝛽1, 𝛽2, . . . , 𝛽𝑝. The solution

is obtained by minimizing

1
2𝑁

(y − Xβ′)′(y − Xβ′) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗| (1)

The first term, (y − Xβ′)′(y − Xβ′), is the in-sample prediction error. It is the same value that least

squares minimizes.

The second term, 𝜆 ∑𝑗 |𝛽𝑗|, is a penalty that increases in value the more complex the model. It is this

term that causes lasso to omit variables. They are omitted because of the nondifferentiable kinks in the

∑𝑗 |𝛽𝑗| absolute value terms. Had the kinks not been present—think of squared complexity terms rather

than absolute value—none of the coefficients would be exactly zero. The kinks cause some coefficients

to be zero.

If you minimized (1) with respect to the 𝛽𝑗’s and 𝜆, the solution would be 𝜆 = 0. That would set the

penalty to zero. 𝜆 = 0 corresponds to a model with maximum complexity.

Lasso proceeds differently. It minimizes (1) for given values of 𝜆. Lasso then chooses one of those

solutions as best based on another criterion, such as an estimate of the out-of-sample prediction error.

When we use lasso for prediction, we must assume the unknown true model contains few variables

relative to the number of observations, 𝑁. This is known as the sparsity assumption. How many true

variables are allowed for a given 𝑁? We can tell you that the number cannot be greater than something

proportional to
√

𝑁/ ln 𝑞, where 𝑞 = max{𝑁, 𝑝} and 𝑝 is the number of potential variables. We cannot,

however, say what the constant of proportionality is. That this upper bound decreases with 𝑞 can be

viewed as the cost of performing covariate selection.

Lasso provides various ways of selecting 𝜆: through CV, adaptive lasso, a plugin estimator, or min-

imizing the Bayesian information criterion (BIC) function. CV selects the 𝜆 that minimizes an estimate

of the out-of-sample prediction error. Adaptive lasso performs multiple lassos, each with CV. After each

lasso, variables with zero coefficients are removed, and remaining variables are given penalty weights

designed to drive small coefficients to zero. Thus, adaptive lasso typically selects fewer covariates than

CV.

The plugin method was designed to achieve an optimal sparsity rate. It tends to select a larger 𝜆 than

CV and, therefore, fewer covariates in the final model. The number of covariates selected by minimizing

BIC typically lies between the number selected by CV and the number selected by the plugin method;

however, BIC tends to be more similar to the number selected by the plugin method. Furthermore, BIC

does not require a complex derivation as does the plugin, so like CV, it can be applied in a more general

context. See [LASSO] lasso and [LASSO] lasso fitting for more information on the methods of selecting

𝜆, their differences, and how you can control the selection process.

Stata commands for prediction

We described the linear lasso model in the last section, but the concepts we have discussed apply to

models for binary and count outcomes as well.

To fit a linear lasso model, we might type

. lasso linear y x1-x500

and lasso will select a subset of variables from x1 to x500 that can be used in prediction.

https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointroRemarksandexampleseq1
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointroRemarksandexampleseq1
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
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If we have a binary outcome, we could instead fit a logit model by typing

. lasso logit y x1-x500

or a probit model by typing

. lasso probit y x1-x500

For a count outcome, we could fit a Poisson model by typing

. lasso poisson y x1-x500

For failure-time data that has been stset, we could fit a Cox proportional hazards model by typing

. lasso cox x1-x500

After any of these lasso commands, we can use predict to obtain predictions of y.

For examples demonstrating how to use the lasso command to fit models suitable for prediction, see

Remarks and examples in [LASSO] lasso and also see [LASSO] lasso examples.

Stata also has commands for fitting elastic nets and square-root lassos for prediction. See

[LASSO] elasticnet and [LASSO] sqrtlasso for more information and examples.

Lasso for model selection
Model selection is an overloaded term that implies different things in different disciplines. To some,

it implies finding a true model or data-generating process. To some, it implies less. Here model selec-

tion means finding a model that fits the data, not finding a model that allows for interpreting estimated

coefficients as effects. If this is your interest, see Lasso for inference below.

Lasso for model selection builds on lasso for prediction. In fact, the same lasso methods are used in

both cases. However, the goal of the analysis is different.

Model selection uses lasso to select variables in one dataset and then fits models using the selected

variables in other datasets. For example, consider finding genes correlated with an outcome inmicroarray

data. One approach starts with lasso. Researchers use it as a sieve to select the important predictors.

They go on to test whether those predictors (genetic markers) work in other datasets. Note that these

researchers are not giving scientific meaning to the estimated coefficients. They are looking only for

markers that correlate well with an outcome.

We can perform these types of tests because our interest lies in the selected model rather than the

true coefficients of the data-generating process (DGP), sometimes called the data-generating mechanism

(DGM). Interpretation is conditional on the selected model and cannot be interpreted as causal. See, for

instance, Lee et al. (2016). As Berk et al. (2013) put it, the goal is “. . . to merely describe association

between predictor and response variables; no data generating or causal claims are implied.”

Lasso for inference
When we use lasso for inference, we are interested in interpreting the estimated coefficients. We are

also interested in standard errors, hypothesis tests, confidence intervals, comparisons across levels, and

the like. We want to interpret the results in the same way we interpret results from standard regression

models.

https://www.stata.com/manuals/lassolasso.pdf#lassolassoRemarksandexamples
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlasso
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointroRemarksandexamplesLassoforinference


Lasso intro — Introduction to lasso 7

Why do we need special lasso methods for inference?

It may be tempting to use lasso to select covariates and then use regress (or logit, probit, or
poisson) to fit a model with the selected covariates. The results from the regression provide estimated

coefficients and standard errors, confidence intervals, and 𝑝-values.
This approach does not work. Why?

Consider fitting a classic regression model. The standard error for a coefficient tells us about the

distribution of the coefficient in repeated sampling. The 95% confidence interval includes the true value

of the coefficient in 95% of repeated samples. Although we do not actually have repeated samples from

the population, the standard errors allow us to account for sample-to-sample variability when making

inferences.

If we use lasso to select covariates and then use regress to fit a model with only the selected covari-

ates, the results will be problematic for use in inference for a few reasons.

First, when we use lasso, or any variable-selection method, we introduce a new source of variability.

If we actually drew repeated samples from a population and used lasso to select covariates on each

one, different covariates would be selected in each dataset. However, we have selected covariates using

only a single sample. The standard errors reported by regress do not account for the sample-to-sample

variability in the variable selection.

Second, lasso tends to omit covariates with small coefficients. This problem arises because lasso

minimizes prediction error subject to the constraint that the model is not too complex, and lasso measures

complexity by the sum of the absolute values of the coefficients. Covariates with small coefficients tend

to be entrapped by the constraint. Small coefficients of covariates that belong in the model look just

like small coefficients of variables that do not. Mistakenly omitted covariates, even those with small

coefficients, can bias other coefficients. That bias is not solely a function of the size of the coefficient.

See, for instance, Leeb and Pötscher (2005, 2006, 2008) and Belloni, Chernozhukov, and Hansen (2014).

And then there are more mundane reasons the selected variables can differ from the true variables.

Imagine that you have fit a lasso model. You look at the results and observe that region-of-country

covariates are included. You are surprised because you can think of no reason why they should be and

wonder whether you are about to make an interesting discovery. You look at the lasso results in hopes

of finding an explanation. You discover that income was excluded despite your expectations to the

contrary. You find that age and education were included, but that does not surprise you. But region,

age, and education are predictors of income. That could be the entire reason why region covariates were

included. They were included only because income was excluded. Or it could be something deeper.

In general, the variables selected by lasso do not even converge to the ones in the true model as the

number of observations goes to infinity. Lasso tends to omit covariates that have small coefficients in

favor of irrelevant ones (variables not in the true model) that are correlated with the error term.

For these reasons, we must use lasso-based methods that are designed specifically for inference when

we want to interpret coefficients.

Methods of lasso for inference

With lasso inferential methods, researchers wish to interpret the covariates selected by lasso in the

context of the DGP. They apply causal interpretations to the results. This approach accounts for the fact

that lasso does not select the true model with probability one, and it accounts for the errors that arise in

model selection. To achieve this DGP causal interpretation, you must perform the selection process with
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resampling. Thus, more than split sampling is needed to obtain consistent standard errors. See Belloni,

Chernozhukov, and Hansen (2014) for an excellent introduction to using lasso to perform inference and

make causal interpretations.

When your interest is in the underlying DGP, there are various ways of using lasso to estimate the

effects of a few covariates that you have chosen a priori. These methods may be used when you know

there are more covariates in the model and that they are sparse (relative to 𝑁). These methods apply, for

instance, to performing inference about the effect of smoking on a health outcome when you know that

lots of other variables potentially affect the outcome but do not know which ones.

The double-selection, partialing-out, and cross-fit partialing-out lassos provided by Stata can handle

such problems.

Other methods for inference have been discussed in the literature. For instance, see van de Geer et al.

(2014), Javanmard and Montanari (2014), and Zhang and Zhang (2014). The methods developed there

are not implemented in Stata. While they have some appealing theoretical properties, they have not yet

been much used in applied work.

Stata commands for inference

For inference, multistage extensions of lasso provide standard errors for a subset of variables that you

specify. Imagine that you wish to estimate the coefficients for d1 and d2 in the model that includes other

covariates:

. regress y d1 d2 x1-x500

Covariates x1 through x500 are control variables, some of which you need to include to obtain valid

results for d1 and d2. Suppose your data contain 1,000 observations.

If all 500 covariates belong in the model, there is no way to proceed. Get more data. If only a small

subset of them is required and you simply do not know which they are, there is a lasso-based solution.

Type

. dsregress y d1 d2, controls(x1-x500)

Coefficients and standard errors for d1 and d2 will be reported. dsregress will use lasso to select

from the 500 covariates and do that in a way that is robust to the model-selection mistakes that lasso

makes because of sampling variability. There is no a priori limit on the number of d variables you can

specify. But more variables mean more computation time. Time is roughly proportional to the number

of d variables.

Stata provides three methods to fit these types of inferential models. They are

1. the ds double-selection commands: dsregress, dslogit, and dspoisson.

2. the po partialing-out commands: poregress, pologit, popoisson, and poivregress.

3. the xpo cross-fit partialing-out commands, also known as double machine learning:

xporegress, xpologit, xpopoisson, and xpoivregress.

All three methods require a sparsity assumption. As with lasso for prediction, these methods of lasso

for inference rely on the assumption that the number of nonzero coefficients in the true model is small

relative to the number of observations and that the coefficients are large enough relative to error variance

to be selected by the lasso.
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ds and po are asymptotically equivalent. poivregress can handle d1 and d2 being endogenous in

linear models. It does this using instrumental variables. You specify a set of potential instruments, and

lasso will select from among them. You can have many potential control variables and many potential

instruments; the number of each can be greater than 𝑁.

xpo is the most computationally intensive of the three methods. It is also generally viewed as superior

to ds and po because it allows a weaker definition of sparsity. The sparsity bound for the ds and po
methods grows in proportion to

√
𝑁, while the sparsity bound for the xpo method grows in proportion

to 𝑁.

For information on the assumptions and how the ds, po, and xpo commands work, see [LASSO] Lasso

inference intro and [LASSO] Inference requirements.

For examples of fitting lasso inferential models, see [LASSO] Inference examples.

Where to learn more
After reading this intro, you may want to learn more about lasso for prediction and model selection,

lasso for inference, and syntax for lasso commands, or you may just want to see some examples. Here

we provide a guide to the entries in this manual that you may want to read next.

If you are interested in lasso for prediction or model selection, you may want to go directly to the

syntax and examples demonstrating lasso, square-root lasso, and elastic net in

[LASSO] lasso Lasso for prediction and model selection

[LASSO] sqrtlasso Square-root lasso for prediction and model selection

[LASSO] elasticnet Elastic net for prediction and model selection

[LASSO] lasso examples Examples of lasso for prediction

If you are interested in lasso for inference, you can read more about the concepts, methods, and

corresponding Stata commands in

[LASSO] Lasso inference intro Introduction to inferential lasso models

If you want to see syntax for one of the lassos for inference commands, see

[LASSO] dsregress Double-selection lasso linear regression

[LASSO] dslogit Double-selection lasso logistic regression

[LASSO] dspoisson Double-selection lasso Poisson regression

[LASSO] poregress Partialing-out lasso linear regression

[LASSO] pologit Partialing-out lasso logistic regression

[LASSO] popoisson Partialing-out lasso Poisson regression

[LASSO] poivregress Partialing-out lasso instrumental-variables regression

[LASSO] xporegress Cross-fit partialing-out lasso linear regression

[LASSO] xpologit Cross-fit partialing-out lasso logistic regression

[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression

[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression

[LASSO] lasso options Lasso options for inferential models

Youmight insteadwant to start with worked examples that demonstrate the lasso inference commands.

[LASSO] Inference examples Examples and workflow for inference

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassoinferencerequirements.pdf#lassoInferencerequirements
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamples
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlasso
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassodsregress.pdf#lassodsregress
https://www.stata.com/manuals/lassodslogit.pdf#lassodslogit
https://www.stata.com/manuals/lassodspoisson.pdf#lassodspoisson
https://www.stata.com/manuals/lassoporegress.pdf#lassoporegress
https://www.stata.com/manuals/lassopologit.pdf#lassopologit
https://www.stata.com/manuals/lassopopoisson.pdf#lassopopoisson
https://www.stata.com/manuals/lassopoivregress.pdf#lassopoivregress
https://www.stata.com/manuals/lassoxporegress.pdf#lassoxporegress
https://www.stata.com/manuals/lassoxpologit.pdf#lassoxpologit
https://www.stata.com/manuals/lassoxpopoisson.pdf#lassoxpopoisson
https://www.stata.com/manuals/lassoxpoivregress.pdf#lassoxpoivregress
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamples
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If your inference involves estimating treatment effects, you can read about the lasso inference com-

mand that estimates the ATE, ATET, or POMs at

[CAUSAL] telasso Treatment-effects estimation using lasso

Whether you are using lasso for prediction or for inference, you may want to learn more about the

process of fitting lasso models and how you can make modifications to this process.

[LASSO] lasso fitting The process (in a nutshell) of fitting lasso models
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