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Description
This entry describes the process of fitting lasso models.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Model selection
The process

Step 1. Set the grid range
Step 2. Fit the model for next lambda in grid
Selection method none
Step 3. Identifying a minimum of the CV function
Plotting the CV function
Selecting another model

What exactly is CV?
Adaptive lasso
Plugin selection
Selection using the BIC function

Introduction
If you are to fit lasso models successfully, you need to understand how the software computes them.

There are options you can specify to modify the process and specifying them is sometimes necessary just

to find the solution. This entry explains the process.

The process of fitting lasso models applies to the three commands that directly fit lasso and related

models:

lasso sqrtlasso elasticnet

The lasso inferential commands

dsregress poregress xporegress
dslogit pologit xpologit
dspoisson popoisson xpopoisson

poivregress xpoivregress

fit multiple lasso models under the hood, and you may want to try using different lasso model-selection

methods with these commands. If you do, then this entry is also for you. All the options described here

can be used with the inferential commands to specify different lasso model-selection methods andmodify

the settings that control the lasso-fitting process.
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Model selection
Fitting lasso models requires that the software fit lots of models behind the scenes from which one

will be selected. The trick to minimizing the time needed is to avoid fitting unnecessary models, while

ensuring that you fit the right one so it is there to select.

Lasso has a way of ordering models. They are ordered on scalar parameter 𝜆 defined over 0 to +∞. 𝜆
is a parameter of the penalty function. For ordinary lassos, the penalty is 𝜆 times the sum of the absolute

values of the coefficients of the normalized variables. Every possible model has a 𝜆 associated with it.

When 𝜆 is large, the penalty is large, and the model has few or no variables. Models with smaller 𝜆’s
have more variables.

We can think of lasso as fitting model(𝜆), where 𝜆 varies over a range, and then selecting one of them.

Which model do we select? That depends on the problem. Do we want a good model for prediction

or a parsimonious model that better reflects the “true” model?

One method of selection is called cross-validation (CV), and it works well for prediction. The criterion

is the CV function 𝑓(𝜆), an estimate of the out-of-sample prediction error, which weminimize. Themodel

for the 𝜆 that minimizes the CV function is the selected model.

To find 𝜆∗ that minimizes 𝑓(⋅), and thus find the corresponding model(𝜆∗), we need to fit models

with 𝜆’s near to 𝜆∗ to be certain that we identified the minimum. Only nearby 𝜆’s would be good enough
if your models were fit on infinite-observation datasets because this perfect 𝑓(𝜆) is globally convex.

Because your datasets will be finite, the empirically estimated function will jiggle around its Platonic

ideal, and that means that you will need to fit additional models to be reasonably certain that the one you

select is the one that corresponds to 𝜆∗.

Another method, adaptive lasso, works well when the goal is to find parsimonious models—models

with fewer variables in them—that might better reflect the true model. Adaptive lasso starts by finding

the CV solution and then, using weights on the coefficients in the penalty function, does another lasso

and selects a model that has fewer variables.

A third method is called plugin lasso. It is faster than CV or adaptive lasso. It is not just faster, it

will be approaching the finish line while the others are still working out where the finish line is. It is

faster because it does not minimize 𝑓(⋅). It uses an iterative formula to calculate the smallest 𝜆 that

is large enough to dominate the estimation error in the coefficients. Plugin will not produce as low an

out-of-sample prediction error as CV, but it will produce more parsimonious models than CV. Plugin is

the default selection method for the inferential commands because it is so fast. For prediction, CV has

better theoretical properties.

A fourth method uses the Bayesian information criterion (BIC) function to select 𝜆∗. That is, 𝑓(𝜆) is
the BIC function, and 𝜆∗ minimizes 𝑓(⋅). The number of covariates selected by minimizing BIC typically

lies between the number selected by CV and the number selected by the plugin method; however, BIC

tends to be more similar to the number selected by the plugin method. Furthermore, BIC does not require

a complex derivation as does the plugin, so like CV, it can be applied in a more general context. Typically,

selection using BIC is much faster than selection using CV, but this is not always the case.

We discuss CV, adaptive, plugin, and BIC lassos below, and we discuss a fifth selection method that

we call none. None is a do-it-yourself (DIY) method. It calculates model(𝜆) over a range of 𝜆’s and
stops. You then examine them and choose one.
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The process

Step 1. Set the grid range

Step 1 consumes virtually no time, but the total time steps 2 and 3 consume will depend on the grid

that step 1 sets. The grid that steps 2 and 3 will search and calculate over will range from 𝜆gmax to 𝜆gmin

and have 𝐺 points on it.

Large values of 𝜆 correspond to models with few or no variables in them. Small values correspond

to models with lots of variables. Given any two values of 𝜆, 𝜆1, and 𝜆2,

𝜆1 > 𝜆2 usually implies that # of variables in model 1 ≤ # of variables in model 2

Most of us think of parameters as running from smallest to largest, say, 0 to +∞, but with 𝜆, you will be
better served if you think of them as running from +∞ to 0.

The grid does not start at +∞, it starts at 𝜆gmax. The software does an excellent job of setting 𝜆gmax.

It sets 𝜆gmax to the smallest 𝜆 that puts no variables in the model. You cannot improve on this. There is

no option for resetting 𝜆gmax.

The software does a poor job of setting 𝜆gmin. There simply does not exist a scheme to set it optimally.

If we are to identify the minimum of the CV function, 𝑓(𝜆∗), 𝜆gmin must be less than 𝜆∗. That is difficult

to do because obviously we do not know the value of 𝜆∗.

Computing models for small 𝜆’s is computationally expensive because fitting a model for a small 𝜆
takes longer than fitting a model for a larger 𝜆. Our strategy is to hope we set 𝜆gmin small enough and

then stop iterating over 𝜆 as soon as we are assured that we have found the minimum of the CV function.

If we did not set 𝜆gmin small enough, the software will tell us this.

The initial grid is set to

𝜆gmax, 𝜆2, 𝜆3, . . . , 𝜆gmin (𝜆gmin too small we hope)

The software sets 𝜆gmin to ratio×𝜆gmax, where ratio defaults to 1e–4 when 𝑝 < 𝑁, where 𝑝 is the number

of potential covariates and 𝑁 the number of observations. When 𝑝 ≥ 𝑁, the default is 1e–2.

You can reset ratio with the grid(, ratio(#)) option, or you can reset 𝜆gmin directly by specifying

grid(, min(#)).

Finally, in addition to setting ratio or 𝜆gmin, you can reset the number of points on the grid. It is set to

100 by default, meaning the initial grid will be

𝜆gmin = 𝜆1, 𝜆2, 𝜆3, . . . , 𝜆99, 𝜆gmin = 𝜆100

You can reset the number of points by specifying grid(#). You can specify the number of points and a

value for ratio by typing grid(#, ratio(#)). See [LASSO] lasso.

Step 2. Fit the model for next lambda in grid

We have a grid range 𝜆gmax to 𝜆gmin and number of points on the grid, which we will simply denote

by their indices:

𝜆1, 𝜆2, 𝜆3, . . . , 𝜆99, 𝜆100

The software obtains the models

model(𝜆1), model(𝜆2), model(𝜆3), . . . , model(𝜆100)

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
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By “obtains”, we mean that the software chooses the variables that appear in each one. The software

proceeds from left to right. The first model, model(𝜆1), has no variables in it and was easy to find.

Once found, model(𝜆1) provides the starting point for finding model(𝜆2), and model(𝜆2) provides the

starting point for finding model(𝜆3), and so on. Working from the previous model to obtain the next

model is known as a warm start in the literature. Regardless of what the technique is called, this is why

the software does not allow you to set a different 𝜆gmax for 𝜆1. To calculate model(𝜆) for a small value

of 𝜆 , the software has to work its way there from previous model(𝜆) results.
The grid points are not equally spaced. The grid points are not

𝜆1 = 𝜆gmax

𝜆2 = 𝜆1 − Δ
𝜆3 = 𝜆2 − Δ
𝜆4 = 𝜆3 − Δ

⋮

The grid points are instead chosen so that ln𝜆 is equally spaced, which you can think of as the 𝜆’s being
closer together as they get smaller:

𝜆1 = 𝜆gmax

𝜆2 = 𝜆1 − Δ1

𝜆3 = 𝜆2 − Δ2, 0 < Δ2 < Δ1

𝜆4 = 𝜆3 − Δ3, 0 < Δ3 < Δ2

⋮

Model estimation involves not only choosing the variables that appear in the model but also estimating

their coefficients as well.

The computation will not usually be carried out all the way to 𝜆100. Because small 𝜆’s are computa-

tionally expensive, we want to stop before we get to 𝜆100. There are two criteria for stopping. The first

is when we have identified the minimum of the CV function.

After we fit model(𝜆1), we compute the value of the CV function for 𝜆1, 𝑓(𝜆1). Likewise after fitting
model(𝜆2), we compute 𝑓(𝜆2). For early 𝜆’s, typically we have 𝑓(𝜆𝑘) > 𝑓(𝜆𝑘+1). Now if we see

𝑓(𝜆𝑘−1) > 𝑓(𝜆𝑘) < 𝑓(𝜆𝑘+1)

𝜆𝑘 might give the minimum of the CV function. It is possible that the CV function is bouncing around a

bit, and it might not be the true minimum. We discuss how we declare a minimum in more detail in the

next section.

For now, assume that we have properly identified a minimum. We are done, and we need not do any

more estimations of model(𝜆).
But what if we do not find a minimum of the CV function? Sometimes, the CV function flattens out

and stays flat, barely changing and only slowly declining with each smaller 𝜆.
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As the software proceeds from the calculation of model(𝜆𝑘−1) to model(𝜆𝑘), it calculates the relative
differences in the in-sample deviances between models:

deviance{model(𝜆𝑘−1)} − deviance{model(𝜆𝑘)}
deviance{model(𝜆𝑘−1)}

This relative difference is a measure of howmuch predictive ability is added by proceeding to model(𝜆𝑘).
If it is small, that suggests the difference between the CV function values 𝑓(𝜆𝑘−1) and 𝑓(𝜆𝑘)will be small,

and changes in the function for smaller 𝜆’s smaller yet. So we think it is likely that we have gone far

enough.

If the relative difference is less than 1e–5, the software sets the selected 𝜆∗ = 𝜆stop = 𝜆𝑘 and stops

estimating models for more 𝜆’s. The output tells you that the selected 𝜆∗ was determined by this stopping

rule. This means model(𝜆∗) does not give the minimum of the CV function, but we believe something

close to it.

If you do not want this default behavior, there are three things you can do. The first is to change the

value of the stopping rule tolerance. If you want to use 1e–6 instead of 1e–5, specify

. lasso y x1 x2 ..., stop(1e-6)

With a smaller tolerance, it will iterate over more 𝜆’s, giving a greater chance that a minimum might be

identified.

The second possibility is to turn off the early stopping rule by setting the tolerance to 0. If there is a

minimum that can be identified, this will find it.

. lasso y x1 x2 ..., stop(0)

If, however, the CV function flattens out and stays flat, specifying stop(0) might mean that the software

iterates to the end of the 𝜆 grid, and this might take a long time.

A third choice is to specify

. lasso y x1 x2 ..., selection(cv, strict)

This is the same as the default behavior in this case, except that it throws an error! The suboption strict
says that if we do not find a minimum, end with an error. This is useful when using selection(cv)
with the inferential commands. It alerts us to the fact that we did not find a minimum, and it leaves the

lasso behind, so we can plot the CV function and decide what to do next.

Selection method none

If you specify selection(none) instead of selection(cv), the software stops when the stopping
rule tolerance is reached or when the end of the 𝜆 grid is reached.

You can specify selection(none) when you want to gain a feel for how the number of included

variables changes over 𝜆 or if you want to choose 𝜆∗ yourself. We provide a suite of postestimation

commands for this purpose:

• lassoknots shows you a table of the 𝜆’s and the properties of the models.

• lassocoef lists the variables in the selected model. It can compare multiple models in the

same table.

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef
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• lassoselect lets you choose a model to be treated as the selected model(𝜆∗).
• lassogof evaluates the selected model. It can also compare multiple models in the same table.

What you do not have, however, is the CV function and other CV-based measures of fit, which allow

you to evaluate how well models predict and so make an informed choice as to which model should be

model(𝜆∗).
There is another way. Do not specify selection(none), specify selection(cv) or

selection(adaptive). The above postestimation functions will work, and you can, based on your

own criteria if you wish, select the model for yourself.

Step 3. Identifying a minimum of the CV function

The minimum is identified when there are values of 𝑓(⋅) that rise above it on both sides. For example,

consider the following case:

𝑓(𝜆1) > 𝑓(𝜆2) > · · · > 𝑓(𝜆49)
and

𝑓(𝜆49) < 𝑓(𝜆50) < 𝑓(𝜆51) < 𝑓(𝜆52)

For linear models, 𝑓(𝜆49) is an identified minimum, and the software sets 𝜆∗ = 𝜆49. Linear mod-

els require that there be three smaller 𝜆’s with larger CV function values by a relative difference of

cvtolerance(#) or more.

Because the CV functions for nonlinear models are not as smooth, lasso has a stricter criterion for

declaring that a minimum of the CV function is found than it has for linear models. lasso requires that

five smaller 𝜆’s to the right of a nominal minimum be observed with larger CV function values by a

relative difference of cvtolerance(#) or more.

If you want more assurance that you have found a minimum, you can change cvtolerance(#) to a

larger value from its default of 1e–3.

. lasso y x1 x2 ..., cvtolerance(1e-2)

Making the tolerance larger typically means that a fewmore model(𝜆)’s are estimated to find the required

three (or five) with CV function values larger than the minimum by this tolerance.

https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
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The software provides three options that control how 𝜆∗ is set when a identifiedminimum is not found.

They work like this:

𝜆∗ is set to

Options Case 1 Case 2 Case 3

selection(cv, strict) 𝜆cvmin error error

selection(cv, stopok) 𝜆cvmin 𝜆stop error

selection(cv, gridminok) 𝜆cvmin 𝜆stop 𝜆gmin

Case 1 is an identified minimum.
Case 2 is falling over range, stopping rule tolerance reached.

Case 3 is falling over range, stopping rule tolerance not reached.

𝜆cvmin is the identified minimum of the CV function 𝑓(⋅).
𝜆stop is the 𝜆 that meant the stopping rule tolerance.

𝜆gmin is the last 𝜆 in the grid.

error indicates that 𝜆∗ is not set, and the software issues an error message.

You may specify only one of the three options. selection(cv, stopok) is the

default if you do not specify one.

We emphasize that these options affect the setting of 𝜆∗ only when an identified minimum is not

found.

selection(cv, stopok) is the default and selects 𝜆∗ = 𝜆stop when the stopping rule tolerance was

reached.

selection(cv, strict) is the purist’s option. 𝜆∗ is found only when a minimum is identified.

Otherwise, the software issues a minimum-not-found error.

selection(cv, gridminok) is an option that has an effect only when the early stopping rule toler-

ance is not reached. We have fallen off the right edge of the grid without finding an identified minimum.

𝜆∗ is set to 𝜆gmin. There is no theoretical justification for this rule. Practically, it means that 𝜆gmin was

set too large. We should make it smaller and refit the model.

Plotting the CV function

Run lasso if you have not already done so. After you do, there are two possible outcomes. The

software ended by setting a 𝜆∗, thus selecting a model, or it did not set a 𝜆∗. You will have no doubts

as to which occurred because when 𝜆∗ is not set, the software ends with an error message and a nonzero

return code. Note that even when it ends with a nonzero return code, results of the lasso are left behind.
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Regardless of how estimation ended, graph the CV function, 𝑓(⋅). It is easy to do. Type cvplot after

running a lasso. Here is one:

. lasso linear y x1 x2 ...

. cvplot
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λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

This lasso identified a minimum of the CV function. It identified the minimum and stopped iterating over

𝜆. If we want to see more of the CV function, we can set cvtolerance(#) to a larger value.

. lasso linear y x1 x2 ..., cvtolerance(0.05)

. cvplot
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λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

If we want to see more of the CV function, we can specify selection(cv, alllambdas). When the

alllambdas suboption is specified, estimation does not end when a minimum of the CV function is

found. In fact, it estimates model(𝜆) for all 𝜆’s first and then computes the CV function because this is

slightly more computationally efficient if we are not stopping after identifying a minimum.
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. lasso linear y x1 x2 ..., selection(cv, alllambdas)

. cvplot
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λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

Actually, alllambdas is a lie. In this case, it estimated only 73 𝜆’s. It ended when the stopping rule

tolerance was reached. If we really want to see all 100 𝜆’s, we need to turn off the stopping rule.
. lasso linear y x1 x2 ..., selection(cv, alllambdas) stop(0)
. cvplot
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λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

That is a plot of all 100 𝜆’s. Clearly, in this case, the default behavior worked fine to identify a minimum.
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Here is an example of a CV function for which a minimum was not identified. The stopping rule

tolerance was reached instead.

. lasso linear z w1 w2 ...

. cvplot
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λstop = .00097 is the λ where the stopping tolerance is reached; # coefficients = 16.

Cross-validation plot

To try more 𝜆’s in a search for a minimum, we turn off the stopping rule

. lasso linear z w1 w2 ..., stop(0)

. cvplot
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Cross-validation plot

It went to the end of the grid without finding a minimum. The default stopping rule tolerance usually

works fine. Setting stop(0) typically burns more computer time without identifying a minimum.

Selecting another model

Imagine that you have successfully found themodel that minimizes the CV function, 𝑓(𝜆), the estimate

of out-of-sample prediction error. If your interest is in prediction, the model that minimizes the CV

function really is best. If your interest is in model selection, however, youmaywant to look at alternatives

that are close in the out-of-sample prediction sense.
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You can use lassoknots to see a table of the 𝜆’s where variables were added or dropped. These are
called knot points.

You can then use lassoselect to choose one of the models. This command sets 𝜆∗ to the 𝜆 you

specify. Once you have selected a model, you can use all of lasso’s postestimation features on it.

And then, if you wish, you can lassoselect another model. If you use estimates store after each

lassoselect, you can compare multiple models side by side using lassogof.

See [LASSO] lassoselect for an example.

What exactly is CV?
We are done discussing using CV as a selection method, and yet we have never discussed CV itself.

CV is about using one subsample of data to fit models and another to evaluate their prediction error.

Here are the details. The 𝑓(⋅) function is an estimate of the out-of-sample prediction error, and the

function is calculated using CV. The method starts by dividing the data into 𝐾 partitions called folds.

Once that is done, for each fold 𝑘,
1. model(𝜆) is fit on all observations except those in fold 𝑘.
2. that result is used to predict the outcome in fold 𝑘.
3. steps 1 and 2 are repeated for each fold.

4. the prediction error is then averaged over all folds, which is to say, all observations. This is

𝑓(𝜆).
Option selection(cv, folds(#)) sets 𝐾, and folds(10) is used by default.

Adaptive lasso
In Plotting the CV function, we looked at a graph of the CV function for which 𝑓(𝜆) had a long flat

region and the stopping rule selected 𝜆∗. We explained that you could use the lasso DIY postestimation

commands to change the selected model to one with fewer variables in it.

Adaptive lasso is another approach for obtaining parsimonious models. It is a variation on CV, and

in fact, for each step, it uses CV. It uses the CV-selected model(𝜆∗) as a starting point and then amplifies

the important coefficients and attenuates the unimportant ones in one or more subsequent lassos that also

use CV.

For the second lasso, variables not selected in the first lasso’s model(𝜆∗) are dropped, and the penalty
term uses weights equal to the inverse of the absolute value of the coefficients from model(𝜆∗). The

justification being that important coefficients are large and unimportant ones, small. (Variables are stan-

dardized so that comparison of coefficient size makes sense.) These weights tend to drive small coeffi-

cients to zero in the second lasso. So the selected model from the second lasso almost always has fewer

variables than the selected model from the first lasso.

Plugin selection
CV selects model(𝜆∗) such that 𝑓(𝜆) is minimized. Adaptive is a variation on CV. It selects a final

model(𝜆∗) that minimizes a more restricted 𝑓(𝜆).

https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofittingRemarksandexamplesPlottingtheCVfunction
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Plugins—selection(plugin)—are a whole different thing. Parameter 𝜆 still plays a role, but 𝑓(⋅)
does not. Instead, the 𝜆∗ that determines model(𝜆∗) is produced by direct calculation using the plugin

function, 𝜆∗ = 𝑔(⋅). The function returns the smallest value of 𝜆 that is large enough to dominate the

estimation error in the coefficients.

No search over 𝜆 is required, nor is a grid necessary. This makes plugin the fastest of the methods

provided. It is fast, but it is not instantaneous. The plugin formula is solved iteratively, and if it is trying

to calculate a small value for 𝜆∗, it can take a little time. Those small 𝜆’s again!
Plugin’s selected model(𝜆∗) are almost always more parsimonious than the minimum-𝑓(𝜆) models

selected by CV. Plugin will not produce models with as low an out-of-sample prediction error as CV,

but it tends to select the most important variables and can be proven to do so for many data-generation

processes. Plugin is popular when the problem is model selection instead of out-of-sample prediction.

Selection using the BIC function
Selecting 𝜆∗ using the BIC function—selection(bic)—is similar to selection using CV. However,

rather than the CV function being minimized, the BIC function is minimized. The BIC function is

𝑓(𝜆) = −2 × log likelihood + 𝑘 ln𝑁

where 𝑘 is the number of coefficients in model(𝜆) and 𝑁 is the number of observations.

Just like selection using CV, selection using BIC searches for the minimum along a grid of 𝜆’s, starting
with large 𝜆’s and moving toward smaller 𝜆’s. The 𝜆 grid is set up exactly the same way as it is for CV,

and all the options to control the initialization of the grid that were described earlier work in exactly the

same manner.

The criterion for identifying the minimum with BIC is similar to that for CV. The main difference is

that a minimum 𝜆∗ will be identified when there are only two 𝜆’s on both sides of 𝜆∗ that have values of

𝑓(𝜆) that are larger than 𝑓(𝜆∗). CV requires three 𝜆’s for linear models and five for nonlinear models.

The stopping rules are the same for BIC as they are for CV, and the suboptions stopok, strict,
gridminok, and alllambdas can be specified with selection(bic), and all work the same

way. To change the tolerance for identifying the minimum, you set bictolerance(), rather than
cvtolerance(). See [LASSO] lasso.

Because the BIC function is computed analytically, there is no random component to its computation,

unlike CV. This means that BIC is typically much faster than CV. However, this is not always true. The BIC

function could have a flatter tail than the CV function and have to search more 𝜆’s in the grid. However,
simulations seem to indicate that BIC typically yields a larger 𝜆∗ than CV and so typically selects fewer

covariates than CV. In simulations, the number selected is typically close to but more than the number

selected by plugin.

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
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Also see
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] bicplot — Plot Bayesian information criterion function after lasso

[LASSO] cvplot — Plot cross-validation function after lasso

[LASSO] lassocoef — Display coefficients after lasso estimation results

[LASSO] lassogof — Goodness of fit after lasso for prediction

[LASSO] lassoknots — Display knot table after lasso estimation

[LASSO] lassoselect — Select lambda after lasso
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