
Inference examples — Examples and workflow for inference

Description Remarks and examples References Also see

Description
Lasso for inference comprises 11 related estimation commands and several postestimation commands

for performing inference about a true model. Fitting and interpreting inferential lasso models is demon-

strated via examples.

Remarks and examples
Remarks are presented under the following major headings:

1 Overview
2 Fitting and interpreting inferential models
3 Fitting logit inferential models to binary outcomes. What is different?
4 Fitting inferential models to count outcomes. What is different?
5 Exploring inferential model lassos
6 Fitting an inferential model with endogenous covariates

1 Overview

1.1 How to read the example entries

All the examples demonstrate something about the inferential lasso models, so we obviously think

you should read this entire section. That said, there are a lot of pages, so here are some other options.

Everyone should read 1.3 Review of concepts, 2.1 Overview of inferential estimation methods, and

2.2 Fitting via cross-fit partialing out (xpo) using plugin. What you read there is essential to using and

understanding all the inferential models. We are pretty sure you will also want to read 2.3 Fitting via

cross-fit partialing out (xpo) using cross-validation, 2.4 Fitting via double selection (ds) using cross-

validation, and 2.5 Fitting via the other 22 methods.

We use the variable-management tool vl to manage the variable lists used in all the examples, and

most of the examples use a common dataset. We introduce both in 1.4 The primary dataset. We say

enough in sections 2.1 and 2.2 that you will not be lost if you do not read section 1.4. But you will better

understand the dataset—and how we are manipulating it—if you read section 1.4.

If you are only interested in logit models for binary outcomes, then 3 Fitting logit inferential models

to binary outcomes. What is different? is essential reading, but only after reading sections 1.3, 2.1, and

2.2. Similarly, if your sole interest is Poisson models for count outcomes, then read 4 Fitting inferential

models to count outcomes. What is different?, but only after reading sections 1.3, 2.1, and 2.2.

The titles on all other sections are relatively self explanatory. So, if you are not reading all the sections,

choose from them based on your interest.
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https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_cv
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_cv
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesds_cv
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesds_cv
https://www.stata.com/manuals/dvl.pdf#dvl
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1.2 Detailed outline of the topics

1 Overview
1.1 How to read the example entries
1.2 Detailed outline of the topics
1.3 Review of concepts
1.4 The primary dataset

2 Fitting and interpreting inferential models
2.1 Overview of inferential estimation methods
2.2 Fitting via cross-fit partialing out (xpo) using plugin
2.3 Fitting via cross-fit partialing out (xpo) using cross-validation
2.4 Fitting via double selection (ds) using cross-validation
2.5 Fitting via the other 22 methods
2.6 Fitting models with several variables of interest
2.7 Fitting models with factor variables of interest
2.8 Fitting models with interactions of interest
2.9 Fitting models with a nonlinear relationship of interest
2.10 Controls are controls

3 Fitting logit inferential models to binary outcomes. What is different?
3.1 Interpreting standard odds ratios
3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

4 Fitting inferential models to count outcomes. What is different?
4.1 Interpreting standard incidence-rate ratios
4.2 Interpreting models with factor variables

5 Exploring inferential model lassos
6 Fitting an inferential model with endogenous covariates

1.3 Review of concepts

We have said a lot about the inferential estimation commands elsewhere in this manual. For a quick

overview that describes what you need to know, and just what you need to know, see [LASSO] Lasso

intro. For a deeper understanding of lasso for inference, read [LASSO] Lasso inference intro. We highly

recommend reading both of those sections.

The inferential lasso estimators require you to break up your model into two parts: the part about

which you need to perform inference and the part about which you do not care. Let’s call the first part

the “inference part” and the second part the “noninference part”.

Often, the inference part is a single variable, perhaps even a single indicator variable, such as “walks

at least three miles a week”. The inference part could be more complicated than a single variable. It

might involve several variables, polynomials, or interactions. But, it will generally be relatively small.

The noninference part can bemuch larger. What you include there will sometimes reflect an ignorance

of how that part relates to your outcome. Often, our theory or intuition involves only a few variables, our

variables of interest. We know lots of other things affect our outcome; we just have little or no guidance

about which things are important or how they relate to our outcome. We will call the variables in this

noninference part controls. What makes lasso for inference special is that you need not understand how

those controls affect the outcome.

There are other requirements. We said that the inference part will typically be small. The number of

controls that lasso needs to include must also be small with respect to the sample size. See Solutions that

focus on the true model in [LASSO] Lasso inference intro.

https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamplesSolutionsthatfocusonthetruemodel
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamplesSolutionsthatfocusonthetruemodel
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
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1.4 The primary dataset

To demonstrate the inference commands, we will mostly use one dataset—a real-world dataset that

includes children’s performance on a test of reaction time, levels of nitrogen dioxide (NO2) pollution, the

children’s physical and socioeconomic characteristics, and some other environmental factors. The data

were collected and analyzed by Sunyer et al. (2017).

Our interest is in how levels of nitrogen dioxide in the classroom affect the children’s performance on

the test, while adjusting for other factors. We will focus on two outcomes from the Attention Network

Test (ANT)—reaction time and omissions. For linear models, we will use hit reaction time—a measure

of speed in responding to stimuli. For Poisson models, we will use omissions—the number of times the

child failed to respond to a stimulus. For logit models, we will use whether there were any omissions.

We are using an extract of the data and focusing on how to use the software, so let’s not get ideas

about publishing any of this.

Let’s take a quick look at the dataset.

. use https://www.stata-press.com/data/r19/breathe
(Nitrogen dioxide and attention)
. describe
Contains data from https://www.stata-press.com/data/r19/breathe.dta
Observations: 1,089 Nitrogen dioxide and attention

Variables: 22 21 Jun 2024 12:43
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

react double %10.0g * Reaction time (ms)
correct int %10.0g * Number of correct responses
omissions byte %10.0g * Failure to respond to stimulus
no2_class float %9.0g Classroom NO2 levels (ug/m3)
no2_home float %9.0g Home NO2 levels (ug/m3)
age float %9.0g Age (years)
age0 double %4.1f Age started school
sex byte %9.0g sex Sex
grade byte %9.0g grade Grade in school
overweight byte %32.0g overwt * Overweight by WHO/CDC definition
lbweight byte %18.0g lowbw * Low birthweight
breastfeed byte %19.0f bfeed Duration of breastfeeding
msmoke byte %10.0f smoke * Mother smoked during pregnancy
meducation byte %17.0g edu Mother’s education level
feducation byte %17.0g edu Father’s education level
siblings_old byte %1.0f Number of older siblings in house
siblings_young byte %1.0f Number of younger siblings in

house
sev_home float %9.0g Home socio-economic vulnerability

index
green_home double %10.0g Home greenness (NDVI), 300m

buffer
noise_school float %9.0g School noise levels (dB)
sev_school float %9.0g School socio-economic

vulnerability index
precip double %10.0g Daily total precipitation

* indicated variables have notes

Sorted by:
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This is not a large dataset, just 22 variables. Regardless, we are going to use the vl tools to create

the variable lists we need for our analysis. This may seem like a detour, but vl is useful even for small

datasets, and it is nearly indispensable if your dataset has hundreds or even tens of thousands of variables.

Our goal is to create two lists of control covariates, for example, independent variables. One list will

contain continuous control covariates and the other will contain categorical control covariates. Why not

just one list? Because we want the categorical variables to enter our model as indicator variables for each

level (distinct value) of the categorical variable. To expand a categorical variable into indicator variables

for its levels, we must prefix it with an i., for example, i.grade.

Starting with vl is easy: we just type vl set,

. vl set

Macro’s contents

Macro # Vars Description

System
$vlcategorical 10 categorical variables
$vlcontinuous 10 continuous variables
$vluncertain 2 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Notes
1. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.
2. If there are any variables in vluncertain, you can reallocate them

to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

vl has divided our 22 variables into 4 groups and placed those groups into global macros. Do not

worry about the technical term global macro. Just know that once the macro $vlcategorical has been

created, any time you type $vlcategorical, you will get the full list of categorical variables.

. display ”$vlcategorical”
sex grade overweight lbweight breastfeed msmoke meducation feducation
> siblings_old siblings_young

That is convenient! vl has placed all of our categorical variables into one bin called

$vlcategorical. Now let’s follow the instructions in the notes after vl to be sure we like what vl
did on our behalf.

https://www.stata.com/manuals/dvl.pdf#dvl
https://www.stata.com/manuals/pmacro.pdf#pmacro
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. vl list vlcategorical

Variable Macro Values Levels

sex $vlcategorical 0 and 1 2
grade $vlcategorical integers >=0 3

overweight $vlcategorical 0 and 1 2
lbweight $vlcategorical 0 and 1 2

breastfeed $vlcategorical integers >=0 3
msmoke $vlcategorical 0 and 1 2

meducation $vlcategorical integers >=0 4
feducation $vlcategorical integers >=0 4

siblings_old $vlcategorical integers >=0 5
siblings_young $vlcategorical integers >=0 5

Among other things, we see that sex has just two values, 0 and 1; and meducation (mother’s educa-

tion level) has four values that are integers greater than or equal to 0.

Usually with categorical variables, we intend to create indicator variables for each unique value (level)

the variable takes on. So we are looking for variables that do not fit that purpose. siblings old and

siblings young have five values, but even their names make one think they might be counts. Let’s

look further at siblings old:

. tabulate siblings_old
Number of

older
siblings in

house Freq. Percent Cum.

0 564 52.17 52.17
1 424 39.22 91.40
2 84 7.77 99.17
3 8 0.74 99.91
4 1 0.09 100.00

Total 1,081 100.00

It does look like a count of siblings. We might want indicators for each count (level), or we might

want it to enter our model linearly as a continuous variable. That singleton count of 4 older siblings will

have to be dropped whenever we perform cross-validation or cross-fitting because it cannot be in both

the estimation and the validation samples. We could recode the values to represent 0, 1, 2, and 3-or-more

siblings and keep it a factor variable. After all, lasso is a technique built for handling lots of variables. It

is easier for our examples to simply redesignate the two counts of siblings as continuous:

. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.

Macro # Added/Removed

$vlcategorical -2
$vlcontinuous 2
$vluncertain 0
$vlother 0
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Let’s now take a look at all variables designated continuous. We will use summarize to get a bit more

detail:

. summarize $vlcontinuous
Variable Obs Mean Std. dev. Min Max

react 1,084 742.4808 145.4446 434.0714 1303.26
no2_class 1,089 30.16779 9.895886 7.794096 52.56397
no2_home 1,089 54.71832 18.04786 2.076335 118.6568

age 1,089 9.08788 .886907 7.45243 11.63313
age0 1,082 3.218022 1.293168 0 9

sev_home 1,089 .4196807 .1999143 .0645161 .9677419
green_home 1,089 .1980721 .077777 .0184283 .5258679

noise_school 1,089 37.96354 4.491651 28.8 51.1
sev_school 1,089 .4096389 .2064394 .1290323 .8387097

precip 1,089 .5593205 1.2364 0 5.8

siblings_old 1,081 .573543 .6752252 0 4
siblings_y~g 1,083 .565097 .6906831 0 6

We notice three things. First, age0 has a min of 0 and a max of 9—both integers. Did vl set make

a mistake? Let’s look carefully:

. tabulate age0
Age started

school Freq. Percent Cum.

0.0 4 0.37 0.37
0.3 1 0.09 0.46
0.5 1 0.09 0.55
0.8 1 0.09 0.65
0.9 1 0.09 0.74
1.0 33 3.05 3.79
1.4 1 0.09 3.88
1.5 8 0.74 4.62
1.7 1 0.09 4.71
2.0 116 10.72 15.43
2.5 4 0.37 15.80
2.8 3 0.28 16.08
2.9 1 0.09 16.17
3.0 739 68.30 84.47
4.0 35 3.23 87.71
5.0 39 3.60 91.31
6.0 54 4.99 96.30
7.0 25 2.31 98.61
8.0 8 0.74 99.35
9.0 7 0.65 100.00

Total 1,082 100.00

No mistake. There are fractional values. Also, looking back at the results of our describe, we see
that age 0 is the age at which the students started school. We do want to treat that as continuous.

Second, our dependent variable, react, is in the list. It is continuous, and so it belongs there. How-
ever, we will need to take care that we do not include it among our control covariates.

Third, our covariate of interest, no2 class, is also in the list. As with react, we will need to exclude
it from the control covariates.
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What of those two variables that were in $vluncertain?

. vl list vluncertain

Variable Macro Values Levels

correct $vluncertain integers >=0 41
omissions $vluncertain integers >=0 27

vl set knows they are integer, but one has 41 distinct values and the other has 27. vl was unwilling

to classify them as either continuous or categorical. See [D] vl for how to change vl’s rules. We said

earlier that omissions is another outcome variable from the ANT. correct is also an outcome variable

from the ANT. Both are potential dependent variables, meaning that neither are valid controls. We will

leave them where they are.

We were fortunate that correct and omissions were already left out of $vlcategorical and

$vlcontinuous. Otherwise, it would be our job to ensure they are not included among the controls.

vl is convenient for classifying variables, but it does not truly understand anything about the meaning

of the variables. It is our job to know which variables are actually other outcomes or transformations of

the outcomes.

Let’s now create our own two global macros. One will have continuous covariates, and we will call

that macro cc. The other will have categorical covariates, which we will treat as factor covariates, and

we will call that macro fc.

. vl create cc = vlcontinuous - (react no2_class)
note: $cc initialized with 10 variables.
. vl create fc = vlcategorical
note: $fc initialized with 8 variables.

fc is just a copy of vlcategorical. We could just use vlcategorical, but it is best to create our
own macro in case we want to change it later. When we created cc, we removed our dependent variable,

react, and covariate of interest, no2 class. That gives us a list of continuous controls.

Now we have control covariate lists we can use in our inference commands.

No one at StataCorp would ever type everything we just typed interactively. We would open an editor

or the Do-file Editor and work there. I suggest you do the same thing. Click on the Do-file Editor button,

. Then type in the Editor

describe
vl set
vl list vlcategorical
tabulate siblings_old
vl move (siblings_old siblings_young) vlcontinuous
summarize $vlcontinuous
tabulate age0
vl list vluncertain
vl create cc = vlcontinuous - (react no2_class)
vl create fc = vlcategorical

Save the file as no2.do. Then you can type do no2 to re-create your control covariate lists.

If you want to exclude the exploratory commands, just type

vl set
vl move (siblings_old siblings_young) vlcontinuous
vl create cc = vlcontinuous - (react no2_class)
vl create fc = vlcategorical

https://www.stata.com/manuals/dvl.pdf#dvl
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2 Fitting and interpreting inferential models

2.1 Overview of inferential estimation methods

Considering only the linear models for continuous outcomes and ignoring endogeneity, there are 25

methods to fit any givenmodel. There are three commands—dsregress, poregress, and xporegress.
The po and xpo commands allow the option semi, which adjusts how they partial out, making five

methods. Within each of these methods, there is an option allowing three ways of selecting the lasso

penalty 𝜆—selection(plugin), selection(cv), and selection(adaptive). And, for 10 of these
15 methods, there is an option (sqrtlasso) to specify that the square-root lasso rather than the standard
lasso be used to select covariates. Square-root lasso cannot be combined with selection(adaptive).

What you type differs only a little when requesting any of these 25 methods. More importantly, you

interpret the coefficient estimates, standard errors, and confidence intervals exactly the same across all

25 methods. Which is to say, you interpret them exactly as you would interpret the estimates from linear

regression.

Let’s see how to request each of these 25 methods.

Assume that our dependent variable is y. We will include two covariates of interest—d1 and d2. We

will specify 100 potential continuous control covariates—x1-x100. And, we have 30 potential factor

control variables—f1-f30. The factor variables could be ordered, unordered, or just indicators. We

specify them as i.(f1-f30) so that each level of each covariate is included as its own term. So, if f3
has four levels, then it introduces four indicator variables (covariates) into the potential controls. See

[U] 11.4.3 Factor variables. We could also introduce interactions among the factor variables, among the

continuous variables, or both. Do that if you wish.

All these commands will run if you use lassoex.dta.

To make the commands easier to read, we do not specify option rseed() to make reproducible the

commands that randomly split the samples repeatedly. If you want the results to be the same each time

you run the commands, add rseed(12345) (or whatever number you like).

. use https://www.stata-press.com/data/r19/lassoex

We can first fit the model using the cross-fit partialing-out method, the partialing-out method, and the

double-selection method. In all cases, we are using the default plugin method for choosing the included

controls via its choice of the lasso penalty parameter 𝜆.
. xporegress y d1 d2, controls(x1-x100 i.(f1-f30))
. poregress y d1 d2, controls(x1-x100 i.(f1-f30))
. dsregress y d1 d2, controls(x1-x100 i.(f1-f30))

We can fit the samemodels, but this time using the cross-validation method to choose the lasso penalty

parameter 𝜆 and thereby to choose the included control covariates.

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

. poregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

. dsregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

Again, we can fit the same models, but this time using the adaptive method to choose the included

control covariates.

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)

. poregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)

. dsregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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We can rerun each of the first six methods using the square-root lasso rather than the standard lasso,

by adding the option sqrtlasso. Here is one example that uses the cross-fit partialing-out method with

plugin selection:

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) sqrtlasso

And, we can rerun any of the 10 methods that use commands poregress or xporegress, including
those with sqrtlasso, using the semi option to specify an alternate form of partialing out. Here is one

example:

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) semi

We apologize for the bewildering array of choices. Lasso and machine learning is an active area of

research, and you may want the flexibility to choose among these options. That said, if your interest is

in your research and not in researching lasso, we feel reasonably comfortable making some suggestions

based on the state of the lasso literature at the time this manual was written.

1. Use xporegress with no options to fit your model using the cross-fit partialing-out method with 𝜆,
and thereby the control covariates, selected using the plugin method.

The plugin method was designed for variable selection in this inferential framework and has the

strongest theoretical justification.

2. If you want to explore the process whereby the control covariates were selected, add option

selection(cv) to your xporegress specification.

You can then explore the path by which each lasso selected control covariates.

You are still on firm theoretical footing. Cross-validation meets the requirements of a sufficient

variable-selection method.

Cross-validation has a long history in machine learning. Moreover, what cross-validation is doing

and how it chooses the covariates is easy to explain.

3. If you do not want to explore lots of lassos and you want to fit models much more quickly, use

commands dsregress or poregress rather than using xporegress.

xporegress fits 10 lassos for the dependent variable and 10more lassos for each covariate of interest!

That is the default; you can request more. Or you can request fewer, but that is not recommended.

So, xporegress is orders of magnitude slower than poregress and dsregress. And it has orders
of magnitude more lassos to explore. Overwhelming.

Why then is xporegress our first recommendation? It is safer if you think that the process that gen-

erated your data has lots of covariates relative to your sample size. Similarly, it is also safer if you

want to explore lots of potential controls. The number of potential controls is not as problematic as

the number of true covariates because it is the natural log of the potential control that counts. For

example, needing 10 additional true covariates is the same as requesting just over 22,000 poten-

tial controls. The jargon term for this is sparsity. xporegress has a weaker sparsity requirement

than do poregress and dsregress. See Solutions that focus on the true model in [LASSO] Lasso

inference intro.

Despite this benefit, if your model is weakly identified by the data, dsregress can be more stable

than either poregress or xporegress. dsregress uses a union of all the selected controls from

all the lassos for all of its computations after selection. Both poregress and xporegress use the

results of each lasso separately to perform parts of their computations (specifically, to compute

their moments), and then put all that together when solving the moment conditions. This makes

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamplesSolutionsthatfocusonthetruemodel
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
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poregress and xporegress sensitive to which controls are selected for each lasso. So if you

change your specification slightly, dsregress may be more stable. To be clear, we said more

stable, not better.

4. We have suggested xporegress without a selection option and xporegress, poregress, and
dsregress with option selection(cv). Feel free to try any of the remaining 21 methods. They all

meet the requirements of sufficient variable-selection methods, so all can be theoretically justified.

Everything we said above applies to models for binary outcomes fit using xpologit, pologit,
and dslogit; and it applies to models for count outcomes fit using xpopoisson, popoisson, and
dspoisson.

These suggestions are based on the assumption that you are not concerned that you have violated

or are near the method’s sparsity bound. See Solutions that focus on the true model in [LASSO] Lasso

inference intro for a discussion of sparsity bounds. Data that fit your model poorly can trigger a sparsity

bound sooner than data that fit well. If you are concerned, see some alternate but similar suggestions in

[LASSO] Inference requirements.

2.2 Fitting via cross-fit partialing out (xpo) using plugin

In the previous section, we recommended using the cross-fit partialing-out estimator xporegress as

your first option. We will use that method to fit a model of how levels of nitrogen dioxide (no2 class)
in a classroom affect the reaction time (react) of students. We use the dataset described in section 1.4.

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

We created a do-file in section 1.4 that collects our variables into groups that are convenient for

specifying inferential lasso models. If you have it saved, great. We will run the one from the Stata Press

website:

. do https://www.stata-press.com/data/r19/no2
(output omitted )

Recall that the purpose of the inferential lasso estimators is to estimate the relationship between one,

or a few, covariates of interest and a dependent variable, while adjusting for a possibly large set of control

variables. And by “large”, we mean perhaps many more controls than you have observations.

We now have our list of continuous control variables in global macro $cc and our list of factor-variable
control variables in global macro $fc. What does that mean? Anywhere we type $cc, Stata substitutes
the list of continuous controls, and anywhere we type $fc, Stata substitutes the list of factor controls.
Let’s display them:

. display ”$cc”
no2_home age age0 sev_home green_home noise_school sev_school precip
> siblings_old siblings_young
. display ”$fc”
sex grade overweight lbweight breastfeed msmoke meducation feducation

That is going to save us a lot of typing.

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamplesSolutionsthatfocusonthetruemodel
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassoinferencerequirements.pdf#lassoInferencerequirements
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamples1.4Theprimarydataset
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Now we are ready to fit our model.

. xporegress react no2_class, controls($cc i.($fc)) rseed(12345)
Cross-fit fold 1 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 2 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 3 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 4 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 5 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 6 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 7 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 8 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 9 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 10 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 10
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 22.87
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.316063 .4843097 4.78 0.000 1.366834 3.265293

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The construct i.($fc) in controls() is factor-variable notation that expands each variable in $fc
into indicator variables for each distinct value of the variable. We specified rseed(12345) to set the seed
of the random-number generator so that our results are reproducible. We did this because the cross-fit

estimator uses cross-fitting and so divides the sample into random groups. If we do not set the seed, we

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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will get slightly different results each time we run the command. There is nothing special about 12345;
choose any number you like. You will get different, but hopefully similar, results for any seed. The same

seed will always produce the same results.

Now to the output. That is a long log. xporegress is just reporting on its progress as it performs 10

cross-fits and then performs 2 lassos within each group. We see in the header that 1,036 observations

were used, that we specified 32 controls, that 10 controls were selected from the 32, and that we did

not resample. From the Wald statistic and its 𝑝-value, we see that our covariate of interest is highly

significant.

We interpret the coefficient estimates just as we would for a standard linear regression. Because this

is linear regression, that effect can be interpreted as the population average effect, the effect for any

individual, or the effect for any group. What we lose with the inferential lasso estimators is the ability to

interpret any other coefficients.

Our point estimate for the effect of nitrogen dioxide on reaction time is 2.3, meaning that we expect

reaction time to go up by 2.3 milliseconds for each microgram per cubic meter increase in nitrogen

dioxide. This value is statistically different from 0 well beyond the 5% level, in fact, beyond the 0.1%

level. Our 95% confidence interval is 1.4 to 3.3.

We also note that xporegress estimates robust standard errors, so all the associated statistics are also

robust. With xporegress, we are robust to nonnormality of the error and to heteroskedasticity.

We can see how stable the lasso selection of controls is by typing lassoinfo.

. lassoinfo
Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

no2_class linear plugin 5 5 5
react linear plugin 3 5 5

We see that, over the 10 cross-fits, the plugin method selected 5 controls for the lasso on the covariate

of interest—no2 class. It selected 5 controls every time. For the dependent variable, react, the plugin
method selected between 3 and 5 controls. Even though these are real data, they look to be easy for the

lasso and plugin to handle. There is nothing to interpret in this table, though if some of the lassos are

consistently selecting 0 controls, you might want to explore further. See Solutions that focus on the true

model in [LASSO] Lasso inference intro and see [LASSO] Inference requirements.

2.3 Fitting via cross-fit partialing out (xpo) using cross-validation

Continuing with the example above, we can use cross-validation to select our controls rather than

plugin. Cross-validation is a well-established method in the machine learning literature. Even so, it is

known to select more variables than are absolutely necessary. We add selection(cv) to our previous

xporegress command:

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamplesSolutionsthatfocusonthetruemodel
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamplesSolutionsthatfocusonthetruemodel
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassoinferencerequirements.pdf#lassoInferencerequirements
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. xporegress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 26
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 23.34
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.348458 .4861133 4.83 0.000 1.395693 3.301222

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

If you run this command, you will see that cross-validation takes much longer than plugin. For each

cross-fit, cross-validation performs its own 10-way partition of the data and runs lassos on each of those

10 partitions for the variables react and no2 class. After all this computation, the results look re-

markably similar. Our coefficient estimate is still 2.3 and is still highly significant. Our 95% confidence

interval is 1.4 to 3.3. This point estimate and the one obtained by plugin are close and well within each

respective confidence interval.

This high degree of similarity is not always the case. Sometimes different methods produce different

results.

Given that the results are so similar, you might guess that plugin and cross-validation selected similar

controls. A quick glance at the header will dispel that thought. Cross-validation selected 26 controls, far

more than the 10 controls selected by plugin. Remember that picking the “right” model is not what these

methods are about. As long as the selected controls adequately control for everything necessary to fit the

variables of interest, they are doing their job.

For these data and this model, the results simply are not very sensitive to the number of controls

selected. This is true over a broad range—at the least from the 10 controls selected by plugin to the 26

controls selected by cross-validation.

Let’s take a quick look at the lassos:

. lassoinfo
Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

no2_class linear cv 9 13 16
react linear cv 6 15 19

Even within cross-fits, cross-validation shows a lot more variation than plugin. The number of se-

lected controls from the lassos on no2 class ranges from 9 to 16. The lassos for react show even more

variation, ranging from 6 to 19 selected controls. Where did the 26 controls in the output of xporegress
come from? It is a count of the union of all controls from any lasso.
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Let’s peer a bit deeper into the lassos by using lassoinfo:

. lassoinfo, each
Estimate: active
Command: xporegress

No. of
Dependent Selection xfold Selection selected
variable Model method no. criterion lambda variables

no2_class linear cv 1 CV min. .1801304 14
no2_class linear cv 2 CV min. .2561599 10
no2_class linear cv 3 CV min. .2181624 13
no2_class linear cv 4 CV min. .1963854 13
no2_class linear cv 5 CV min. .2352711 11
no2_class linear cv 6 CV min. .2663564 12
no2_class linear cv 7 CV min. .1293717 16
no2_class linear cv 8 CV min. .1722497 15
no2_class linear cv 9 CV min. .264197 9
no2_class linear cv 10 CV min. .1184878 16

react linear cv 1 CV min. 2.130811 19
react linear cv 2 CV min. 2.443412 16
react linear cv 3 CV min. 2.062956 17
react linear cv 4 CV min. 4.220311 13
react linear cv 5 CV min. 7.434224 8
react linear cv 6 CV min. 3.356193 14
react linear cv 7 CV min. 7.954354 6
react linear cv 8 CV min. 6.422852 8
react linear cv 9 CV min. 2.982171 15
react linear cv 10 CV min. 2.738883 18

We see that the lasso penalty parameter 𝜆 and the associated number of selected variables varies

widely. This is particularly true of the lassos for react. It simply does not matter; the estimates for

no2 class, our covariate of interest, are not affected.

2.4 Fitting via double selection (ds) using cross-validation

Continuing with the example above, we will fit the model using double selection and cross-validation.

We recommend this for three reasons.

First, the double-selection method works quite a bit differently from the partialing out done by cross-

fit. Instead of working with the lasso results one at a time and then using method of moments to estimate

the parameters, double selection takes the union of selected covariates from all lassos and then just does

a linear regression of react on no2 class and that union of selected covariates. The two methods

are asymptotically equivalent if both sparsity bounds are met, but in finite samples, they can respond

differently to any violation of the conditions required by the inferential lasso estimators. See Solutions

that focus on the true model in [LASSO] Lasso inference intro for a discussion of sparsity bounds.

Second, double selection requires only two lassos for our model, making it much easier to explore the

lassos.

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamplesSolutionsthatfocusonthetruemodel
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamplesSolutionsthatfocusonthetruemodel
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
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Third, double selection is much easier to explain. We just did it above in half a sentence.

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
Estimating lasso for react using cv
Estimating lasso for no2_class using cv
Double-selection linear model Number of obs = 1,036

Number of controls = 32
Number of selected controls = 22
Wald chi2(1) = 24.17
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.404191 .4890458 4.92 0.000 1.445679 3.362704

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient estimate for no2 class is now to 2.4, still almost the same as fitting by xporegress
with plugin selection. The associated confidence interval is 1.4 to 3.4. Our test against 0 was strong and

is still strong. This really is a benign dataset for these linear models.

As with cross-validation, with cross-fit the number of selected controls is large—22.

What we are seeing are incredibly stable estimates.
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2.5 Fitting via the other 22 methods

We will not show the results of the other 22 methods for fitting this model. Here is what you would

type for each method:

. xporegress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(adaptive) semi ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(adaptive) semi ///
rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) sqrtlasso semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso semi ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) sqrtlasso semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso semi ///
rseed(12345)

By now, the commands are nearly self explanatory.

Command xporegress fits via the cross-fit partialing-out method. Command poregress fits via

the partialing-out method. Command dsregress fits via the double-selection method.

Adding option selection(cv) specifies that cross-validation select the covariates. Adding option

selection(adaptive) specifies that adaptive lasso select the covariates. No selection() op-

tion implies that the plugin method (the default) select the covariates.

Adding option sqrtlasso specifies the square-root lasso rather than standard lasso.

Adding option semi specifies an alternate way of combining themoments for the po and xpomethods.

If you are interested, run some or all of these commands.

If you do, you will find that for these data and this model, the method we choose makes little differ-

ence. The results for these 22 methods look a lot like the results for the first 3 methods. The maximum

coefficient for no2 class is 2.4, and the minimum coefficient is 2.3. The maximum standard error is

0.51, and the minimum is 0.48. All methods reject that the coefficient for no2 class is 0 well beyond

the 1% level of significance.
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The close similarity of the results from all 25 methods may seem surprising. Are they all selecting

the same controls? The answer is no. Recall from 2.2 Fitting via cross-fit partialing out (xpo) using

plugin that the selected number of controls is 10, whereas from 2.4 Fitting via double selection (ds)

using cross-validation, the selected number of controls is 22—over twice as many.

Let’s look at just two of the methods to see which controls they are selecting. We can easily do this

only lasso by lasso (not command by command), so we will use two double-selection methods. Double

selection creates only two lassos for our model. Comparing the cross-fit methods would require looking

at 20 lassos per method. Let’s use lassocoef to compare double selection using plugin and double

selection using cross-validation.

First, we rerun those two models and store their estimates.

. dsregress react no2_class, controls($cc i.($fc)) rseed(12345)
(output omitted )

. estimates store ds_plugin

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted )

. estimates store ds_cv
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Then, we compare the selected controls from each lasso.

. lassocoef (ds_plugin, for(react))
> (ds_cv , for(react))
> (ds_plugin, for(no2_class))
> (ds_cv , for(no2_class))

ds_plugin ds_cv ds_plugin ds_cv
react react no2_class no2_class

age x x x
0.sex x x

grade
2nd x x
4th x x
3rd x

feducation
University x x x

Primary x
<Primary x

age0 x
sev_home x x

siblings_young x x
0.lbweight x

meducation
1 x
2 x

no2_home x x
green_home x x

noise_school x x
sev_school x x

precip x x

breastfeed
No breastfeeding x

>6 months x

msmoke
No smoking x

_cons x x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

The first two columns of x’s show which controls were selected from the lassos for the dependent

variable, react—the first column for the plugin method and the second for cross-validation. The third

and fourth columns of x’s show which controls were selected by the lassos for the covariate of interest,

no2 class.
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Cross-validation selected more controls than did plugin in the lassos for both the dependent variable,

react, and the covariate of interest, no2 class. That is not surprising because plugin is designed

to be cautious about adding noise through variable selection while cross-validation cares only about

minimizing the cross-validation mean squared error.

Perhapsmore interesting is that for both react and no2 class, cross-validation selected a superset of
the variables selected by plugin. While not guaranteed, that result is a reflection of how the lasso works.

Plugin and cross-validation select their covariates by setting an “optimal” value of 𝜆, the lasso penalty.

Plugin selects a larger 𝜆 and thereby a stronger penalty that selects fewer variables. As the penalty gets

weaker, lasso can drop selected variables when adding others, but lasso is more likely to simply add

variables. So, in this case, cross-validation’s weaker penalty leads to a superset of the variables selected

by plugin. That is a bit of an oversimplification because plugin selects variables that have been weighted

by the inverse standard deviation of their scores while cross-validation does not weight the variables.

This means that the lambda for plugin and the lambda for cross-validation are on different scales.

Recall, though, that the only role of the selected controls is to adequately capture the unmodeled

correlations among the dependent variable, the variables of interest, and the model’s error.

2.6 Fitting models with several variables of interest

All 11 inferential models in Stata allow you to have more than one variable of interest. Let’s extend

our base example from section 2.2 to include both no2 class and student’s age as variables of interest.

The only trick is that wemust remove our new variables of interest from our list of continuous controls.

vl makes that easy:

. vl create cc6 = cc - (age)
note: $cc6 initialized with 9 variables.

We have now created the global macro cc6, which has the same variables as cc except that age has

been removed.

We fit the model using cross-fit partialing-out with the default plugin selection by typing

. xporegress react no2_class age, controls($cc6 i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 31

Number of selected controls = 9
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 25.24
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.353826 .4892462 4.81 0.000 1.394921 3.312731
age -25.01451 11.38901 -2.20 0.028 -47.33656 -2.69245

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient for no2 class has barely changed at all from its estimate in section 2.2.

https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
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Again, we interpret the coefficients on the variables of interest just as we would if they were part of a

standard linear regression. So a 1-unit change in no2 class elicits a 2.4-unit change in react. A 1-unit

change in age elicits a −25-unit change in react. Because the relationship is linear, these changes can
be interpreted as the expected change for any individual or as the expected change for any population or

subpopulation of interest.

2.7 Fitting models with factor variables of interest

Having a factor variable of interest is really no different than having several variables of interest.

Factor variables just provide a convenient way to add several indicator variables to our model.

Those who study response times for children know that they decrease (improve) as the child is exposed

over time to educational stimuli. We might then be interested in how the response times vary across the

child’s grade level. Ignoring our original interest in the effect of nitrogen dioxide for the moment, let’s

pretend our only variable of interest is grade in school.

The distribution of grades in our sample looks like this:

. tabulate grade
Grade in

school Freq. Percent Cum.

2nd 412 37.83 37.83
3rd 397 36.46 74.29
4th 280 25.71 100.00

Total 1,089 100.00

If we wish to use the levels of grade as our variables of interest, we need to remove it from our list

of factor-variable controls:

. vl create fc7 = fc - (grade)
note: $fc7 initialized with 7 variables.

We are not currently interested in the effect of nitrogen dioxide, so we need to add it back to the list

of continuous controls:

. vl create cc7 = cc + (no2_class)
note: $cc7 initialized with 11 variables.
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We can now fit our model with the levels of grade as our variables of interest. We add the option

baselevels so that we can see which level of grade has been made the base level.

. xporegress react i.grade, controls($cc7 i.($fc7)) baselevels rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 30

Number of selected controls = 5
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 16.82
Prob > chi2 = 0.0002

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

grade
2nd 0 (base)
3rd -62.07497 15.26513 -4.07 0.000 -91.99408 -32.15587
4th -92.52593 25.02151 -3.70 0.000 -141.5672 -43.48467

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Acommon theme in these sections is that we interpret the results for the variables of interest just as we

would if they were part of a linear regression. This is no different for factor variables. As we would with

a simple linear regression, we interpret each of the coefficients as the increases in performance relative

to the base level for second graders. We can see that mean reaction time is 62 milliseconds faster for

third graders than it is for second graders. Fourth graders are, on average, 93 milliseconds faster than

second graders.

That common theme extends to the tools that are available after fitting a model with any of the lasso

inference commands. For example, we can use contrast to do comparisons of the grade levels that are

not against a reference category, as they were in the regression. We could use a reverse adjacent (ar.)
contrast to compare each grade to the prior grade:

. contrast ar.grade
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 16.54 0.0000
(4th vs 3rd) 1 4.23 0.0397

Joint 2 16.82 0.0002

Contrast Std. err. [95% conf. interval]

grade
(3rd vs 2nd) -62.07497 15.26513 -91.99408 -32.15587
(4th vs 3rd) -30.45096 14.80702 -59.47218 -1.429727
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The regression showed a 62-millisecond decrease in response time when comparing third graders to

second graders, and that is reproduced by contrast. The difference with reverse-adjacent comparisons

is that the comparison group for fourth graders is now third graders, and we estimate that difference

to be a 30-millisecond decrease. It would take a bit more work to determine if the apparently slower

improvement from third to fourth grade is indeed significantly different from the improvement from

second to third grade. If you are interested, and without explanation, you could type

. contrast ar.grade, post

. lincom _b[ar2vs1.grade] - _b[ar3vs2.grade]

You will find that, by a slim margin, we fail to distinguish between the effect of going from second to

third grade and the effect of going from third to fourth grade.

If we had a more complicated set of interest, we would find contrast indispensable. If you have factor

variables of interest, we suggest you become familiar with contrast.

What we cannot do with results from the inferential lasso models is use margins to estimate popula-

tion and subpopulation means. margins requires a full coefficient vector and variance matrix for those

coefficients. The lasso inference commands can only tell us about a subset of that coefficient vector and

associated variance matrix.

If you are epidemiologically inclined, you might wonder if the effect of grade is not just a proxy for

increasing age. Now that we have multiple variables of interest and factor variables of interest, we can

check that too:

https://www.stata.com/manuals/rcontrast.pdf#rcontrast
https://www.stata.com/manuals/rmargins.pdf#rmargins
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. vl create cc7b = cc7 - (age)
note: $cc7b initialized with 10 variables.
. xporegress react age i.grade, controls($cc7b i.($fc7)) baselevels rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 29

Number of selected controls = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(3) = 203.93
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

age -18.50751 11.16037 -1.66 0.097 -40.38143 3.366418

grade
2nd 0 (base)
3rd -67.35294 15.4679 -4.35 0.000 -97.66947 -37.03641
4th -100.7346 25.0814 -4.02 0.000 -149.8932 -51.57594

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The estimates for grade level have changed only a bit. Response times may improve with age, but

we cannot detect that at the 5% level. Regardless, the effect of educational stimulation appears to be

independent. Most importantly, we see that all of our contrast tools can be used with these estimators.

2.8 Fitting models with interactions of interest

Not surprisingly, tools for evaluating interactions for other estimation commands are also available to

evaluate interactions among our variables of interest, whether those interactions are strictly among factor

variables or are with factor variables and continuous variables. Let’s arbitrarily check for an interaction

between the child’s sex and his or her age. Again, we need to manage our list of controls by removing

sex and age from the list of factor-variable controls. And we again need to put no2 class, which is no
longer a variable of interest, back into the continuous controls.

. vl create fc8 = fc - (sex grade)
note: $fc8 initialized with 6 variables.
. vl create cc8 = cc + (no2_class)
note: $cc8 initialized with 11 variables.
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We can then fit a cross-fit model of reaction time where our variable of interest is sex##grade—the

interaction of sex and grade while also including individual indicators for the levels of sex and grade.

. xporegress react sex##grade, controls($cc8 i.($fc8)) baselevels rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 28

Number of selected controls = 6
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(5) = 64.57
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

sex
Male 0 (base)

Female 45.10077 13.73912 3.28 0.001 18.17259 72.02896

grade
2nd 0 (base)
3rd -65.62381 17.72386 -3.70 0.000 -100.362 -30.88568
4th -102.2437 26.5379 -3.85 0.000 -154.257 -50.23033

sex#grade
Female#3rd 3.173242 19.09434 0.17 0.868 -34.25098 40.59747
Female#4th 18.42495 19.98327 0.92 0.357 -20.74154 57.59144

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The two coefficients of the interaction sex#grade and their associated statistics do not give us much

hope that an interaction is statistically detectable. Let’s check anyway:

. contrast sex#grade
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

sex#grade 2 0.96 0.6188

Definitely not statistically significant, at any level.

What about the individual effects of sex and grade?

. contrast sex
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

sex 1 42.33 0.0000
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. contrast grade
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

grade 2 17.83 0.0001

Both individual effects are significant at any level you would care to consider.

Some studies have found differences in some types of reaction times between the sexes, but we might

want to consider another factor—the interaction between sex and no2 class.

We can put grade back into the controls because it has no interaction with sex.

. vl create fc8b = fc - (sex)
note: $fc8b initialized with 7 variables.

We are ready to fit a model that includes sex, no2 class, and their interaction. That can be written
in shorthand, by typing c.no2 class##i.sex. We fit the model:

. xporegress react c.no2_class##i.sex, controls($cc i.($fc8b)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 30

Number of selected controls = 9
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(3) = 63.42
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 1.708798 .5961435 2.87 0.004 .5403779 2.877217

sex
Female 17.47061 24.31548 0.72 0.472 -30.18686 65.12807

sex#
c.no2_class

Female 1.099669 .7737183 1.42 0.155 -.4167913 2.616129

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Everything we need to know is in this output.

The effect of no2 class is still positive, as it was for all of our earlier fits. The effect is now a bit

smaller at a 1.7-millisecond increase in response for every microgram increase in NO2 per cubic meter.

There is no longer a significant difference in response times for females compared with males. The

point estimate is 17, but its 𝑧 statistic is a scant 0.72.

The interaction between sex and no2 class is also not significant, though you might wish you had

more data.
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You might be curious if the effect of nitrogen dioxide across both males and females from this model

is similar to our earlier models without an interaction. If we assume 50% males and 50% females, we

just need to add half of the interaction term to the estimate for males.

. lincom no2_class + .5*c.no2_class#1.sex
( 1) no2_class + .5*1.sex#c.no2_class = 0

react Coefficient Std. err. z P>|z| [95% conf. interval]

(1) 2.258632 .4800889 4.70 0.000 1.317675 3.199589

The estimate is extremely close to the point estimate and standard errors that we obtained in 2.2 Fitting

via cross-fit partialing out (xpo) using plugin—both round to 2.3 with standard errors that round to 0.48.

While we have pretended to be performing analysis, the important thing to know is that the standard

inference tools can be applied to the variables of interest.

2.9 Fitting models with a nonlinear relationship of interest

Let’s continue with our reaction-time example and put a nonlinearity in no2 class into the covari-

ates of interest. What we really mean by “nonlinear” in this context is nonlinear-but-linearizeable—

polynomials, logs, ratios, and the like.

We just want to demonstrate how to think about nonlinearities with these models, so let’s not dwell on

where the nonlinear relationship comes from. In your work, you may have some theory or precedence

for your choice of nonlinearities. For now, we know that fractional polynomials (fp) produce whole

classes of reasonable curves, so we will arbitrarily pick one of those forms that allows for two inflection

points—including one over the square root and the cube of the variable.

. generate no2fp1 = no2_class^(-2)

. generate no2fp2 = no2_class^3

With those as our two covariates of interest, we fit a cross-fit model. Our controls are from the model

we fit in 2.2 Fitting via cross-fit partialing out (xpo) using plugin.

. xporegress react no2fp1 no2fp2, controls($cc i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 11
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 24.55
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -2915.067 2227.731 -1.31 0.191 -7281.339 1451.205
no2fp2 .0005923 .0001394 4.25 0.000 .0003191 .0008655

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
https://www.stata.com/manuals/rfp.pdf#rfp
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
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We see that it is unclear if we really need two terms to model this relationship. Only one of the terms

is significant. But our nonlinearity is just a construct for demonstration and we want to see how this

works, so we are undeterred.

We could do a bit of algebra and decidewhat those terms imply about the relationship between nitrogen

dioxide and reaction time. Or we could just graph the relationship. Predictions in inferential models are

typically not much use, but they are perfect for our purpose.

We say predictions are not much use because the selected controls should not be used in a prediction.

They are used by xporegress solely to obtain consistent estimates of the model of interest, but they are

not themselves interpretable. So they should not be used to form predictions. We should not even use

the intercept. For xporegress and all the other inferential models, only our covariates of interest affect

the prediction. That is fine with us; that is all we want to see. We would like to get confidence intervals

too, so let’s use predictnl to get our predictions:

. predictnl reacthat = predict(), ci(lb ub)
note: confidence intervals calculated using Z critical values.

We can then graph the prediction and its confidence interval:

. twoway rarea lb ub no2_class, sort || line reacthat no2_class,
> sort legend(off) title(”Reaction time (ms)”)
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There might be some upward curvature as nitrogen dioxide reaches its highest observed levels, but the

confidence interval is too wide to be sure. The downward bend at the lowest levels of nitrogen dioxide

is also suspect because the confidence interval is also wide in that region of the graph. We have scant

evidence that this curve is any better than a linear relationship.

If you are unfamiliar with twoway syntax, we asked for two overlaid plots: a range area for the

confidence interval from the variables lb and ub plotted against no2 class, rarea lb ub no2 class,
and a line of predicted reaction time from the variable reacthat against no2 class.

Unfortunately, we cannot use any information-criterion tools to compare our nonlinear fit with our ear-

lier linear fit. The inferential models cannot estimate the log likelihood or any form of residual required

to form any information-criterion measures.

https://www.stata.com/manuals/rpredictnl.pdf#rpredictnl
https://www.stata.com/manuals/g-2graphtwoway.pdf#g-2graphtwoway
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2.10 Controls are controls

The literature on the inferential models fit by double-selection, partialing-out, and cross-fit partialing-

out estimators refers to the “variables of interest”, but a more accurate term might be “submodel of

interest”. We say that because a maintained assumption is that the control variables are just controls and

they do not interact with the variable or variables of interest. That is to say, they can shift the expected

value of the outcome, but they cannot change the effect of the variables of interest.

If you think control variable x3 actually interacts with one of your variables of interest, say, d1, then
you will need to include that interaction in your submodel of interest. So if x3 and d1 are continuous, you

need to add c.x3#c.d1 to your submodel of interest; if x3 is an indicator or multi-value factor variable,

you need to add i.x3#c.d1; if both are factor variables, you need to add i.x3#i.d1. In these cases, x3
is not a control variable—it is part of your submodel of interest.

3 Fitting logit inferential models to binary outcomes. What is different?
Even if your current interest is logit models, we suggest you also read 2 Fitting and interpreting

inferential models. That section has many more examples and goes into more detail. If you are starting

here, we also suggest you read 1.4 The primary dataset to become familiar with the dataset and how we

are manipulating it. Section 1.4 is not essential reading, but if things become confusing, do read it. Here

we focus primarily on what is different about logit models.

Without exception, every command and example from section 2 can be run using a logit lasso infer-

ence command. Just change regress to logit in the estimation commands, and change the dependent

variable from react to the dependent variable we create below.

We will replicate a few of the analyses from section 2 using logit models and explain how the results

are interpreted with binary outcomes. Feel free to run others. Their results are interpreted in the same

way as those shown here.

Let’s continue with the dataset we have been using to measure the effect of nitrogen dioxide in the

classroom on the reaction time of school children.

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

We need to create the global macros that will hold our lists of continuous and factor-variable control

variables:

. do https://www.stata-press.com/data/r19/no2
(output omitted )

To see how these lists were created, see 1.4 The primary dataset.

This dataset does not have a binary (dichotomous) dependent variable, but it is easy enough to create

one. The variable omissions contains a count of the number of times a child failed to respond to a

stimuli. We can pretend that we only saw whether or not there were any omissions. Let’s create a

variable that is 1 when there were any omissions and is 0 otherwise:

. generate miss1 = omissions >= 1 if !missing(omissions)
(5 missing values generated)

https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamples1.4Theprimarydataset
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Then take a quick look at our new variable:

. tabulate miss1
miss1 Freq. Percent Cum.

0 508 46.86 46.86
1 576 53.14 100.00

Total 1,084 100.00

We have 508 children who never missed a stimulus from the test and 576 who missed at least one

stimulus.

3.1 Interpreting standard odds ratios

If you are new to inferential lasso models and have not at least read 2.2 Fitting via cross-fit partialing

out (xpo) using plugin, do that now. We will only explain how to interpret the odds ratios below. Section

2.2 explains more.

We can now fit a model of how classroom nitrogen dioxide levels (no2 class) affect whether chil-
dren miss any stimuli on a reaction-time test (miss1). Our continuous controls are in the global macro

$cc and our factor-variable controls are in the global macro $fc, as they were in our very first example

in section 2.2. We use xpologit to fit the model:

. xpologit miss1 no2_class, controls($cc i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 32

Number of selected controls = 5
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 11.18
Prob > chi2 = 0.0008

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

no2_class 1.027338 .0082854 3.34 0.001 1.011227 1.043706

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The odds ratio for no2 class is 1.03. We interpret that ratio just as we would if this were a logistic
regression. For every unit increase in the level of nitrogen dioxide, the odds of a student missing at least

one stimulus increase by a factor of 1.03, with a confidence interval of 1.01 to 1.04. As always with these

models, we cannot estimate a constant, so we do not know the baseline odds.

At face value, that is a small odds ratio, but the range of no2 class is 7.8 to 52.6:

. summarize no2_class
Variable Obs Mean Std. dev. Min Max

no2_class 1,089 30.16779 9.895886 7.794096 52.56397

The difference is over 44 micrograms per cubic meter. What odds ratio do we obtain if we increase

nitrogen dioxide levels by 44?

https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
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. lincom _b[no2_class]*44, or
( 1) 44*no2_class = 0

miss1 Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) 3.276333 1.162629 3.34 0.001 1.634306 6.568144

The odds go up by 3.3 with a confidence interval from 1.6 to 6.6.

Be careful if you do this by hand. The or option did quite a bit of work. There are several ways to

write what lincom did behind the scenes. One way is

OR44 = 1.02733844

This follows directly from what we said about the original odds ratio being the factor by which odds

increase.

Equivalently, and what really happens behind the scenes, is

OR44 = 𝑒𝛽∗44

where 𝛽 is the coefficient on no2 class, which is the log of the odds ratio shown on the xpologit
results. These expressions produce identical results.

We said earlier that xpologit cannot estimate a baseline odds. It cannot estimate any odds, only odds

ratios. Even so, we might consider the degree of these effects by looking at children experiencing truly

low nitrogen dioxide levels, say, below 10:

. table miss1 if no2_class < 10

Frequency

miss1
0 24
1 10
Total 34

That gives an odds of 10/24 = 0.42, or roughly one child missing a stimulus for every two who

respond to every stimulus. If we assume that is the starting odds for a child and then increase the nitrogen

dioxide levels by 44, the odds move all the way to 3.2 × 0.42 = 1.3. At that level of nitrogen dioxide,

almost three children miss at least one stimulus for every two who respond to every stimulus.

3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

Let’s run through most of the examples that we first demonstrated with linear regression. We are

going to set the models up quickly. Read sections 2.6 through 2.9 for more about the models. We will

use the same tools; we will just ask them to report odds ratios.

In 2.6 Fitting models with several variables of interest, we added age to our covariates of interest.

That means we must pull age from our list of continuous controls.

. vl create cc31 = cc - (age)
note: $cc31 initialized with 9 variables.



Inference examples — Examples and workflow for inference 31

We will use different global macro names throughout this section to avoid collisions with the original

examples. These globals hold the same variable lists—they just have a different name.

We fit the model:

. xpologit miss1 no2_class age, controls($cc31 i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 31

Number of selected controls = 7
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 13.58
Prob > chi2 = 0.0011

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

no2_class 1.048213 .0760006 0.65 0.516 .9093542 1.208275
age .7922585 .0647357 -2.85 0.004 .6750174 .9298628

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

There is not much to say about the results. Interpret the odds ratios as you would any logistic model

with two covariates. The odds ratio for age is 0.79 and is significant at the 5% level with a 95% confidence

interval from 0.68 to 0.93. So, older children are less likely to miss a stimulus. We also note that

no2 class is now insignificant. We are asking a lot of a binary outcome signal.

In 2.7 Fitting models with factor variables of interest, we decided that we were interested in the effect

of the grade the child was in at school and no longer interested in nitrogen dioxide.

We will set our controls to reflect this:

. vl create fc32 = fc - (grade)
note: $fc32 initialized with 7 variables.
. vl create cc32 = cc + (no2_class)
note: $cc32 initialized with 11 variables.
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And we fit the xpologit model:

. xpologit miss1 i.grade, controls($cc32 i.($fc32)) baselevels rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 30

Number of selected controls = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 5.51
Prob > chi2 = 0.0637

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

grade
2nd 1 (base)
3rd .6371055 .1232829 -2.33 0.020 .4360134 .9309425
4th .6156729 .1974266 -1.51 0.130 .3283953 1.154259

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The odds ratio of going from second grade, the base level, to third grade is 0.64 and is significant.

The odds ratio of going from second grade to fourth grade is 0.62 and is not statistically significant at

the 5% level.

These results are weaker than those for the linear model for reaction time. Even so, we forge on and

use contrast to look at the grade-to-grade odds ratios. contrast knows how to exponentiate results to

get odds ratios, but it is not quite as smart as lincom. We will need to tell contrast to use exponential

form (eform()) and to label the results as “Odds ratio”:

. contrast ar.grade, eform(Odds ratio)
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 5.43 0.0198
(4th vs 3rd) 1 0.02 0.8777

Joint 2 5.51 0.0637

Odds ratio Std. err. [95% conf. interval]

grade
(3rd vs 2nd) .6371055 .1232829 .4360134 .9309425
(4th vs 3rd) .9663594 .2149063 .6249454 1.494291

The first comparison is still between second and third grade. We already discussed that comparison

when considering the output from xpologit. contrast reports the same odds ratio and the same 𝑝-
value. The second comparison is now between third and fourth grade. The point estimate is an odds ratio

of 0.97, almost 1, and it is not a significant ratio at the 5% level.
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We will skip section 2.8 Fitting models with interactions of interest because it does not offer any new

tools for analyzing odds ratios. You can run that model as an inferential lasso logit model on miss1. Just
remember to add option eform(Odds ratio) to any of the contrast commands.

In 2.9 Fitting models with a nonlinear relationship of interest, we analyzed a nonlinear relationship

between reaction time and nitrogen dioxide levels. Recall from section 2.9 that we arbitrarily chose a

nonlinear representation for no2 class that allows for two inflection points—one over the square root

of no2 class and one over the cube of the no2 class. If you have already worked through section 2.9
with your current dataset, you already have the two variables for the nonlinearity in your dataset. If not,

we will need to create them.

. generate no2fp1 = no2_class^(-2)

. generate no2fp2 = no2_class^3

With these variables in place, we can fit our nonlinear relationship between miss1 and no2 class.

. xpologit miss1 no2fp1 no2fp2, controls($cc i.($fc)) rseed(12345)
(output omitted )

convergence not achieved
gmm step failed to converge

r(498);

That did not end well. Generalized method of moments (GMM) is how pologit and xpologit com-

bine the scores from the partialing-out process to obtain the parameter estimates for the coefficients of

interest. With these data and model, GMM simply could not converge. This happens. In the other exam-

ples in this section, we have mentioned that the estimates are not as significant as they were for the linear

models on reaction time from section 2. Our binary outcome variable, miss1, has much less information

than the continuous reaction time variable.

Do we think all is lost? This is the first example of instability, so let’s try a little harder. We will warn

you that you can try pologit, but it fails with the same error.

Let’s take the advice from [LASSO] Inference requirements and try cross-validation as our selection

technique. We return to the cross-fit estimator:

. xpologit miss1 no2fp1 no2fp2, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted )

convergence not achieved
gmm step failed to converge

r(498);

This is tough. We cannot even try the alternate suggestion from [LASSO] Inference requirements

because we already said that pologit with plugin selection failed. We will tell you now that pologit
with cross-validation selection also fails.

https://www.stata.com/manuals/lassoinferencerequirements.pdf#lassoInferencerequirements
https://www.stata.com/manuals/lassoinferencerequirements.pdf#lassoInferencerequirements
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We did say earlier that double selection is more stable. Let’s try dslogit, first with cross-validation,
and store the results:

. dslogit miss1 no2fp1 no2fp2, controls($cc i.($fc)) selection(cv) coef
> rseed(12345)
Estimating lasso for miss1 using cv
Estimating lasso for no2fp1 using cv
Estimating lasso for no2fp2 using cv
Double-selection logit model Number of obs = 1,036

Number of controls = 32
Number of selected controls = 23
Wald chi2(2) = 16.19
Prob > chi2 = 0.0003

Robust
miss1 Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -79.45294 41.32577 -1.92 0.055 -160.45 1.544089
no2fp2 7.18e-06 2.52e-06 2.85 0.004 2.24e-06 .0000121

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store ds_cv

We have estimates. There is nothing to suggest instability in these results. The coefficient on no2fp2
is tiny, but that is the cube of no2 class. It needs to be a small coefficient.

What does the plugin selection method have to say?

. dslogit miss1 no2fp1 no2fp2, controls($cc i.($fc)) coef rseed(12345)
Estimating lasso for miss1 using plugin
Estimating lasso for no2fp1 using plugin
Estimating lasso for no2fp2 using plugin
Double-selection logit model Number of obs = 1,036

Number of controls = 32
Number of selected controls = 5
Wald chi2(2) = 14.63
Prob > chi2 = 0.0007

Robust
miss1 Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -80.76289 39.2933 -2.06 0.040 -157.7763 -3.749442
no2fp2 6.01e-06 2.35e-06 2.56 0.010 1.41e-06 .0000106

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store ds_plugin
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Those coefficients look similar to the ones from cross-validation selection. What is more, plugin

selected only 5 controls whereas cross-validation selected 23. The double-selection results are similar

over a wide range of selected controls. We stored the results from the estimators, so let’s peek at the

controls from the two methods by using [LASSO] lassoinfo:

. lassoinfo ds_cv ds_plugin
Estimate: ds_cv
Command: dslogit

No. of
Selection Selection selected

Variable Model method criterion lambda variables

miss1 logit cv CV min. .0229644 6
no2fp1 linear cv CV min. .0000249 17
no2fp2 linear cv CV min. 636.8366 13

Estimate: ds_plugin
Command: dslogit

No. of
Selection selected

Variable Model method lambda variables

miss1 logit plugin .07161 0
no2fp1 linear plugin .1199154 4
no2fp2 linear plugin .1199154 4

Cross-validation is selecting many more controls for each variable’s lasso: for miss1, 6 versus 0; for
no2fp1, 17 versus 4; and for no2fp2, 13 versus 4.

https://www.stata.com/manuals/lassolassoinfo.pdf#lassolassoinfo
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Let’s look more closely with lassocoef:

. lassocoef (ds_plugin, for(miss1))
> (ds_cv , for(miss1))
> (ds_plugin, for(no2fp1))
> (ds_cv , for(no2fp1))
> (ds_plugin, for(no2fp2))
> (ds_cv , for(no2fp2))

ds_plugin ds_cv ds_plugin ds_cv ds_plugin ds_cv
miss1 miss1 no2fp1 no2fp1 no2fp2 no2fp2

age x x

grade
2nd x
4th x
3rd x

0.overweight x x

feducation
University x x

<Primary x x
Primary x

no2fp1 x
no2fp2 x

no2_home x x x
green_home x x x x

noise_school x x x x
precip x x x x

age0 x
sev_home x x

sev_school x x x
siblings_old x

0.sex x

breastfeed
<6 months x
>6 months x x

meducation
1 x
2 x

msmoke
No smoking x

Smoking x

_cons x x x x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

A careful perusal of the x’s shows that cross-validation selected each control that plugin selected for

all lassos. It also selected many more controls. We have seen this behavior before. At least we are not

worried that the selection method produces different results.

https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamples2.5Fittingviatheother22methods
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We graphed the nonlinear effect of nitrogen dioxide on reaction time by using a linear model in sec-

tion 2.9. The path of coefficients from a logit model do not have any interpretation. Wait! The results

that we saw at the beginning of this section were interpretable. All we had to do was exponentiate the

total difference from some baseline and we obtained an odds ratio. We can do that here too.

The predict commandwill give us the linear predictions for just the two fractional polynomial terms.

We want a confidence interval (CI), so let’s use predictnl:

. predictnl xbhat = predict(), ci(xblb xbub)
note: confidence intervals calculated using Z critical values.

We have no intercept, so we need to pick a level of xbhat whose exponential will be our baseline

odds. Do we think the minimum value of nitrogen dioxide is reasonable? Or do we think that is an

outlier?

. summarize no2_class, detail
Classroom NO2 levels (ug/m3)

Percentiles Smallest
1% 9.474087 7.794096
5% 16.86244 7.794096

10% 18.5384 7.794096 Obs 1,089
25% 22.81843 7.794096 Sum of wgt. 1,089
50% 29.91033 Mean 30.16779

Largest Std. dev. 9.895886
75% 36.59826 52.56397
90% 42.04398 52.56397 Variance 97.92857
95% 45.97548 52.56397 Skewness .2082405
99% 52.52346 52.56397 Kurtosis 2.63782

We have five identical values of 7.8 for at least the smallest five, and they are not far from the first

percentile. If we can find the linear prediction for the minimum value of no2 class, that would be a

serviceable baseline.

. summarize xbhat if no2_class <= r(min)
Variable Obs Mean Std. dev. Min Max

xbhat 8 -1.326629 0 -1.326629 -1.326629

The r(min) in that expression was just a saved result from the previous summarize command.

It contained the minimum of no2 class. Our linear prediction that corresponds to the minimum of

no2 class is −1.3. That is our linear baseline. We could subtract −1.3 from our linear prediction

and its bounds, but the value is stored in higher precision in r(mean). Let’s subtract our baseline and
exponentiate the results to obtain odds ratios:

. generate orhat = exp(xbhat - r(mean))

. generate orlb = exp(xblb - r(mean))

. generate orub = exp(xbub - r(mean))

Let’s label the variable holding our point estimate of the odds ratios.

. label variable orhat ”Odds ratio vs. lowest levels of NO2”

It is always good to label your variables. And we would like a little labeling on our graph. If you have

lost track of what we are computing, that label should be a hint.

https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamples2.9Fittingmodelswithanonlinearrelationshipofinterest
https://www.stata.com/manuals/rpredictnl.pdf#rpredictnl
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That was a bit of work. And, admittedly, it was only loosely tied to the algebra at the top of this

section. Was it worth it? What do we have?

. twoway rarea orlb orub no2_class, sort || line orhat no2_class,
> yline(1) legend(off) sort
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Classroom NO2 levels (ug/m3)

Well, it is pretty, in a statistical way. The lowest value of the red line is exactly 1.0. It is the baseline

odds that we assigned to the lowest levels of no2 class. We did that when we subtracted the prediction

for the lowest levels of no2 class from all of our predictions. That made the lowest prediction exactly 0

and its exponential 1.0—meaning no effect. That was done by construction.

Let’s look at the other end of the graph, the rightmost portion where no2 class levels are just above

50. The red line now looks to be between 8 and 9—we will just say 8. The odds of a child missing a

stimuli when nitrogen dioxide levels are above 50 are 8 times higher than the odds when nitrogen dioxide

levels are at the minimum in the dataset. For nitrogen dioxide levels of 30, the red odds-ratio line looks

to be about 4, meaning that children facing levels of 30 have 4 times higher odds of missing a stimuli

than do children facing the lowest levels of nitrogen dioxide. And so on. The line traces out the odds

ratio for each level of nitrogen dioxide against the odds for the lowest level of nitrogen dioxide.

The blue area is the 95% confidence boundary for the odds ratio. The boundary is pretty narrow for

the majority of the curve, but it expands as nitrogen dioxide levels exceed 35 or 40. At the highest levels,

the band ranges from about 4 all the way to about 17.

We drew a black reference line at 1.0 because an odds ratio of 1.0 means no effect. At the lowest levels

of nitrogen dioxide, the lower bound of the CI is below 1.0. So at those levels, we cannot tell whether

nitrogen dioxide has an effect.

The point estimates and their CIs are in the variables orhat, orlb, and orub. You can summarize
them or look at them for specific levels of no2 class.

Making the lowest level of no2 class the reference odds was arbitrary. Rather than subtract the

mean of the linear prediction for that level of no2 class, we could have used the value at the mean of

no2 class, or the median, or any value we choose. We need not have considered no2 class at all in

setting the baseline. Any of these changes would just shift the curves up or down. Their relative positions

do not change. If you have a specific comparison in mind, change the baseline.
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All that said, the CIs are wide and we might be curious whether a straight line fits just as well. As we

mentioned in section 2.9, the standard AIC and BIC methods for choosing among specifications are not

possible after inferential lasso estimation. We are pretty much stuck with eyeing it. If you want to do

that, do not try with this graph. The exponential has put its own curve onto the odds ratios. Look instead

at a graph of the original predictions:

twoway rarea xblb xbub no2_class, sort || line xbhat no2_class, sort

We leave you to draw that yourself.

4 Fitting inferential models to count outcomes. What is different?
Even if your current interest is Poisson models, we suggest you also read 2 Fitting and interpreting

inferential models. That section has many more examples and goes into more detail. If you are starting

here, we also suggest you read 1.4 The primary dataset to become familiar with the dataset and how we

are manipulating it. Section 1.4 is not essential reading, but it does explain more about how we manage

the variable lists in this entry. Here we focus primarily on what is different about Poisson models.

Every command and example from section 2 can be run using a Poisson lasso inference command.

Just change regress to poisson in the estimation commands, and change the dependent variable from

react to omissions.

We will replicate a few of the analyses from section 2 using Poisson models and explain how the

results are interpreted with count outcomes. Feel free to run others. Their results are interpreted in the

same way as those shown here.

Let’s continue with the dataset we have been using to measure the effect of nitrogen dioxide in the

classroom on the reaction time of school children.

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

We need to create the global macros that will hold our lists of continuous and factor-variable control

variables:

. do https://www.stata-press.com/data/r19/no2
(output omitted )

To see how these lists were created, see 1.4 The primary dataset.

4.1 Interpreting standard incidence-rate ratios

If you are new to inferential lasso models and have not read 2.2 Fitting via cross-fit partialing out

(xpo) using plugin, do that now. We will only explain how to interpret the incident-rate ratios below.

Section 2.2 explains more.

Our count outcome is omissions, the number of times a student failed to respond to a stimulus while

taking a test to measure reaction times. We are interested in how classroom nitrogen dioxide levels

(no2 class) affect the number of omissions.

https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamples2.9Fittingmodelswithanonlinearrelationshipofinterest
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamples1.4Theprimarydataset
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
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Our continuous controls are in the global macro $cc, and our factor-variable controls are in the global
macro $fc, as they were in our very first example in section 2.2. We use xpopoisson to fit the model,

. xpopoisson omissions no2_class, controls($cc i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 32

Number of selected controls = 16
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 5.42
Prob > chi2 = 0.0199

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

no2_class 1.022025 .0095654 2.33 0.020 1.003448 1.040946

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

We see that xpopoisson reports an IRR (incidence-rate ratio) by default, rather than a coefficient. That

is more useful for interpretation. The term “rate”, however, is less intuitive for the count of omissions.

Often, counts are taken over a time and thus are considered rates. Our count is for a fixed-length test,

so it is better to think of this as a ratio of means. Our point estimate of 1.02 means that we expect the

number of omissions to go up by a factor of 1.02 for every unit increase in the level of nitrogen dioxide

in the classroom. Our 95% confidence interval is 1.003 to 1.041, and the ratio is significantly different

from 1 at the 5% level.

That rate might seem small, but the level of no2 class ranges from 7.8 to 52.6:

. summarize no2_class
Variable Obs Mean Std. dev. Min Max

no2_class 1,089 30.16779 9.895886 7.794096 52.56397

The difference is over 44 micrograms per cubic meter. A reasonable question would be how much a

student is affected in going from a classroomwith, say, 8 micrograms to a classroomwith 52micrograms.

lincom can answer that question if we tell it that we want IRRs reported:

. lincom _b[no2_class]*44, irr
( 1) 44*no2_class = 0

omissions IRR Std. err. z P>|z| [95% conf. interval]

(1) 2.608014 1.073998 2.33 0.020 1.163535 5.845752

The ratio is 2.6 and is significant, having exactly the same z-statistic as the original estimate. That

is by construction because for the purpose of the test, we merely multiplied the underlying coefficient

by a constant. A child is expected to make 2.6 times as many errors when exposed to 52 micrograms of

nitrogen dioxide as compared with the number of errors when exposed to only 8 micrograms.

https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamplesxpo_plugin
https://www.stata.com/manuals/rlincom.pdf#rlincom
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That result does not rely on the starting number of 8. It depends only on the difference. We could ask

about the effect of adding 10 micrograms of nitrogen dioxide to whatever is the ambient level:

. lincom _b[no2_class]*10, irr
( 1) 10*no2_class = 0

omissions IRR Std. err. z P>|z| [95% conf. interval]

(1) 1.243414 .1163742 2.33 0.020 1.035023 1.493764

So adding 10 micrograms increases the expected number of omissions by 1.24. If the number of

omissions was 4 before the increase, we expect just under 5 after. If it was 10, we expect 12.4 after.

Be careful if you want to take two steps of the 10-microgram increase. These are ratios, so a 20-

microgram increase leads to a 1.242 = 1.54 ratio.

We cannot estimate counts after any of the Poisson inferential lasso estimators. The theory for these

estimators does not provide for estimating an intercept.

4.2 Interpreting models with factor variables

As we did with logit models for binary outcomes, let’s run through a few of the examples that we first

demonstrated with linear regression. We are going to set the models up quickly. Read sections 2.6 and

2.7 for more about the models. We will use the same tools; we will just ask them to provide IRRs.

Continuing with the same dataset, in 2.6 Fitting models with several variables of interest we added

age to our covariates of interest. That means we must pull age from our list of continuous controls:

. vl create cc41 = cc - (age)
note: $cc41 initialized with 9 variables.

As we did with logit models, we will use different global macro names throughout this section to

avoid collisions with the original examples. Again, these globals hold the same variable lists—they just

have a different name.

We fit the model.

. xpopoisson omissions no2_class age, controls($cc41 i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 31

Number of selected controls = 15
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 29.20
Prob > chi2 = 0.0000

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

no2_class 1.023175 .005028 4.66 0.000 1.013368 1.033078
age .8075872 .0406566 -4.24 0.000 .7317068 .8913366

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.
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Wenowhave an IRR for age aswell as for no2 class. They are both interpreted aswe did no2 class
above, which is to say, as you would any IRR.

In 2.7 Fitting models with factor variables of interest, we decided that we were interested in the effect

of the child’s grade in school and were no longer interested in nitrogen dioxide. Really, we just want to

demonstrate a factor-variable covariate of interest.

We will set our controls to reflect this:

. vl create fc32 = fc - (grade)
note: $fc32 initialized with 7 variables.
. vl create cc32 = cc + (no2_class)
note: $cc32 initialized with 11 variables.

And we fit the xpopoisson model:

. xpopoisson omissions i.grade, controls($cc32 i.($fc32)) baselevels
> rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 30

Number of selected controls = 11
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 4.74
Prob > chi2 = 0.0933

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

grade
2nd 1 (base)
3rd .6008938 .1451159 -2.11 0.035 .3743109 .9646349
4th .443883 .1832475 -1.97 0.049 .197637 .9969392

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The expected number of omissions of third graders is 60% of that of second graders with a 95% CI

of 0.37 to 0.96. Fourth graders have even fewer omissions. The point estimate is 44% of the number for

second graders.
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contrast works with IRRs just as it did with ORs in section 3.2. Again, we just need to add the option

eform(IRR).

. contrast ar.grade, eform(IRR)
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 4.45 0.0349
(4th vs 3rd) 1 1.21 0.2708

Joint 2 4.74 0.0933

IRR Std. err. [95% conf. interval]

grade
(3rd vs 2nd) .6008938 .1451159 .3743109 .9646349
(4th vs 3rd) .7387046 .2031553 .4309005 1.266382

We specified reverse-adjacent (ar) contrasts, so comparisons will now be grade to grade rather than

against a base grade. The first comparison is still between second and third grades and, of course, gives

the same results as xpopoisson itself.

The second comparison is between third and fourth grades. We fail to find a significant difference,

though the point estimate is that fourth graders make only 74% of the omissions made by third graders.

As with the logit models, we will skip section 2.8 Fitting models with interactions of interest because

it does not offer any new tools for analyzing odds ratios. You can run that model as an inferential lasso

probit model on omissions. If you run any contrasts, be sure to add option eform(IRR).

5 Exploring inferential model lassos
Aside from the two commands we have used in the examples in this entry, [LASSO] lassoinfo and

[LASSO] lassocoef, you are unlikely to need many of the postestimation commands commonly used after

lasso. Regardless, most of them are available. You can create knot tables of coefficient selection, plot

cross-validation functions, plot coefficient paths, display lasso coefficients, and even change the penalty

parameter 𝜆 that is used to select controls.

See [LASSO] lasso inference postestimation for an overview and a list of postestimation commands

that are available after the inferential lasso estimators. The entries for each command have examples that

demonstrate their use after inferential lasso estimators.

6 Fitting an inferential model with endogenous covariates
We will replicate a well-known model that was used to illustrate a two-stage least squares estimator

for handling an endogenous covariate; see Wooldridge (2010, ex. 5.3). Because the inferential lasso

estimators provide variable selection that is robust to selection mistakes, we will introduce a flexible

series expansion of the variables.

Wooldridge models the log of married women’s wages (lwage) as a function of their experience

(exper), the square of their experience, and their years of education (educ). Collectively, these are

called exogenous covariates.

https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamplesRemarksandexamples3.2Interpretingmodelswithfactorvariables,nonlinearrelationships,andinteractions
https://www.stata.com/manuals/lassolassoinfo.pdf#lassolassoinfo
https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassoinferencepostestimation.pdf#lassolassoinferencepostestimation
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As is customary, education is treated as an endogenous variable. The reasoning is that we cannot

measure innate ability, and ability is likely to influence both education level and income. Some disci-

plines refer to this as unobserved confounding rather than endogeneity. Either way, you cannot just run

a regression of wages on education and experience and learn anything about the true effect of education

on wages.

You need more information from variables that you presume are not affected by the woman’s un-

measured ability—let’s call them instruments. And, they also cannot belong in the model for wages.

Wooldridge used their mothers’ education (motheduc), their fathers’ education (fatheduc), and their

husbands’ education (huseduc) as instruments for the woman’s education. The instruments are also

required to be exogenous, but we will just call them instruments.

The data are from Mroz (1987).

xpoivregress and poivregress use lassos to select the exogenous covariates from a list of potential

exogenous covariates. They use lassos to select the instruments from a set of potential instruments.

This means we do not have to worry about introducing noise or weak instruments by possibly including

irrelevant exogenous covariates or instruments. Lasso will ensure that sufficient amounts of irrelevant

covariates are ignored. We are free to include the kitchen sink.

Let’s add some variables that Wooldridge kept out. He was required to be thoughtful of introducing

irrelevant covariates. We are not. To the list of potential exogenous covariates, we add the number of

children younger than 6 (kidslt6), the number of children aged 6 or older (kidsge6), the women’s

ages (age), their husbands’ ages (husage), and an indicator for living in an urban area (citt). We have

nothing to add to the instruments. Good instruments are hard to find.

To make sure the sink is full, let’s take all the exogenous variables and, instead of entering them only

linearly, enter them as linear terms, as quadratic terms, and as all possible interactions. Let’s do the same

for our list of three instruments. This is often called a series expansion, or a Taylor-series expansion.

It allows for nonlinearity in the way our exogenous covariates affect the outcome and in the way our

instruments control endogeneity. We just did second-order expansion; you can go further.

We will continue using the variable-management tool vl to manage our lists of variables. First, we

use theMroz dataset and then create our base list of exogenous covariates and our base list of instruments.

. use https://www.stata-press.com/data/r19/mroz, clear

. vl create exogbase = (exper age husage kidslt6 kidsge6 city)
note: $exogbase initialized with 6 variables.
. vl create instbase = (motheduc fatheduc huseduc)
note: $instbase initialized with 3 variables.

The list of exogenous covariates is now in the global macro $exogbase, and the list of instruments is

now in $instbase.

https://www.stata.com/manuals/dvl.pdf#dvl
https://www.stata.com/manuals/pmacro.pdf#pmacro
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With these base lists in hand, we can perform our expansions to create flexible nonlinear forms:

. vl substitute exog = c.exogbase c.exogbase#c.exogbase

. vl substitute inst = c.instbase c.instbase#c.instbase

The # is the factor-variable operator for interaction. It can interact categorical variables, continuous

variables, or both. We could have used it directly on our estimation command line, but those lines are

already long enough. We also would have to handle macro expansion by typing $exogbase and such.

vl already knows about exogbase and instbase and knows to handle them as lists. The c. prefix

tells the # operator to treat the lists as continuous variables. # assumes categorical variables unless told

otherwise.

Putting it all together, c.exogbasemeans to enter all the potential exogenous covariates as themselves

(linearly). c.exogbase#c.exogbase means to enter all possible interactions of the variables. Because

an interaction of a variable with itself is a quadratic, the quadratic (squared) terms get created as part of

the expansion.

Let’s look at the smaller of these two lists so that we can see what we have created:

. macro list inst
inst: motheduc fatheduc huseduc c.motheduc#c.motheduc

c.motheduc#c.fatheduc c.motheduc#c.huseduc
c.fatheduc#c.fatheduc c.fatheduc#c.huseduc c.huseduc#c.huseduc

That is not too bad. We count nine terms—three linear terms and six interactions (including quadratic

terms).

Macro exog has 27 terms.

Imagine what a third-order expansion would look like. You can run into the thousands of terms

quickly.
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Now we can use xpoivregress to estimate the coefficient on the endogenous variable educ. We

start with the plugin method to select the covariates. We do not have to specify plugin because it is the

default. Specifying the rest of the model is easy because of the macro we created:

. xpoivregress lwage (educ = $inst), controls($exog) rseed(12345)
Cross-fit fold 1 of 10 ...
Estimating lasso for lwage using plugin
Estimating lasso for educ using plugin
Cross-fit fold 2 of 10 ...
Estimating lasso for lwage using plugin
Estimating lasso for educ using plugin
(output omitted )

Cross-fit partialing-out Number of obs = 428
IV linear model Number of controls = 27

Number of instruments = 9
Number of selected controls = 4
Number of selected instruments = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 10.84
Prob > chi2 = 0.0010

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0727853 .0221045 3.29 0.001 .0294612 .1161094

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

In the header, we see that 4 of 27 controls were selected, and 3 of 9 possible instruments were selected.

This is a sparse representation of the model.

We estimate that every year of education increases the log of wages by 0.073. Because wages are

logged, we interpret that as a rate of change, so each year of education increases wages by 7.3%. That is

close to Wooldridge’s estimate of 8%, and his estimate is well within our 95% CI of 2.8% to 11.6%.
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Let’s see how the results compare if we select using cross-validation:

. xpoivregress lwage (educ = $inst), controls($exog) selection(cv) rseed(12345)
Cross-fit fold 1 of 10 ...
Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Cross-fit fold 2 of 10 ...
Estimating lasso for lwage using cv
(output omitted )

Cross-fit partialing-out Number of obs = 428
IV linear model Number of controls = 27

Number of instruments = 9
Number of selected controls = 20
Number of selected instruments = 7
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 7.68
Prob > chi2 = 0.0056

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0645424 .0232832 2.77 0.006 .0189082 .1101765

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Cross-validation selected 20 controls compared with the 4 selected by plugin. It selected 7 instruments

compared with the 3 selected by plugin. Our point estimate of the change in wages for each additional

year of education is 6.5%with a CI of 1.9% to 11.0%. The coefficient estimate from both cross-validation

and plugin are significant at the 5% level. Despite having slightly different coefficient estimates, plugin

and cross-validation lead to the same inferences.
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