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Description
elasticnet selects covariates and fits linear, logistic, probit, Poisson, and Cox proportional hazards

models using elastic net. Results from elasticnet can be used for prediction and model selection.

elasticnet saves but does not display estimated coefficients. The postestimation commands listed

in [LASSO] lasso postestimation can be used to generate predictions, report coefficients, and display

measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

elasticnet linear y1 x1-x100

Same as above, but specify the grid 𝛼 = 0.1, 0.2, . . . , 1 using a numlist

elasticnet linear y1 x1-x100, alpha(0.1(0.1)1)

Same as above, but force x1 and x2 to be in the model while elasticnet selects x3 to x100
elasticnet linear y1 (x1 x2) x3-x100, alpha(0.1(0.1)1)

Fit a logistic model for binary outcome y2 with grid 𝛼 = 0.7, 0.8, 0.9, 1
elasticnet logit y2 x1-x100, alpha(0.7 0.8 0.9 1)

Same as above, and set a random-number seed for reproducibility

elasticnet logit y2 x1-x100, alpha(0.7 0.8 0.9 1) rseed(1234)

Fit a Poisson model for count outcome y3 with exposure time
elasticnet poisson y3 x1-x100, alpha(0.1(0.1)1) exposure(time)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.

elasticnet linear y1 x1-x100, alpha(0.1(0.1)1) selection(cv, alllambdas)

Turn off the early stopping rule, and iterate over 𝜆’s until a minimum is found or until the end of the 𝜆
grid is reached

elasticnet linear y1 x1-x100, alpha(0.1(0.1)1) stop(0)

Fit a Cox proportional hazards model for t with failure indicator fail, and select covariates from x1 to

x100 using CV

stset t, failure(fail)
elasticnet cox x1-x100

Same as above, but select covariates by minimizing the BIC

elasticnet cox x1-x100, selection(bic)
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https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
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Menu
Statistics > Lasso > Elastic net

Syntax
For linear, logit, probit, and Poisson models

elasticnet model depvar [ (alwaysvars) ] othervars [ if ] [ in ] [weight ] [ , options ]

For Cox models

elasticnet cox [ (alwaysvars) ] othervars [ if ] [ in ] [ , options ]

model is one of linear, logit, probit, or poisson.

alwaysvars are variables that are always included in the model.

othervars are variables that elasticnet will choose to include in or exclude from the model.

options Description

Model
∗ noconstant suppress constant term

selection(cv [ , cv opts ]) select mixing parameter 𝛼∗ and lasso penalty
parameter 𝜆∗ using CV

selection(bic [ , bic opts ]) select mixing parameter 𝛼∗ and lasso penalty
parameter 𝜆∗ using BIC

selection(none) do not select 𝛼∗ or 𝜆∗

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained
to 1 (poisson model only)

∗ cluster(clustvar) specify cluster variable clustvar

Optimization

[ no ]log display or suppress an iteration log

rseed(#) set random-number seed

alphas(numlist |matname) specify the 𝛼 grid with numlist or a matrix

grid(#𝑔 [ , ratio(#) min(#) ]) specify the set of possible 𝜆’s using a logarithmic grid with
#𝑔 grid points

crossgrid(augmented) augment the 𝜆 grids for each 𝛼 as necessary to produce a
single 𝜆 grid; the default

crossgrid(union) use the union of the 𝜆 grids for each 𝛼 to produce a single
𝜆 grid

crossgrid(different) use different 𝜆 grids for each 𝛼
stop(#) tolerance for stopping the iteration over the 𝜆 grid early

cvtolerance(#) tolerance for identification of the CV function minimum

bictolerance(#) tolerance for identification of the BIC function minimum

tolerance(#) convergence tolerance for coefficients based on their values

dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnetSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnetSyntaxcv
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnetSyntaxbic
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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cv opts Description

folds(#) use # folds for CV

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the CV function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select 𝜆∗

stopok when, for a value of 𝛼, the CV function does not have an identified minimum
and the stop(#) stopping criterion for 𝜆 was reached at 𝜆stop, allow
𝜆stop to be included in an (𝛼, 𝜆) pair that can potentially be selected
as (𝛼∗, 𝜆∗); the default

strict requires the CV function to have an identified minimum for every value of 𝛼;
this is a stricter alternative to the default stopok

gridminok when, for a value of 𝛼, the CV function does not have an identified minimum
and the stop(#) stopping criterion for 𝜆 was not reached, allow the
minimum of the 𝜆 grid, 𝜆gmin, to be included in an (𝛼, 𝜆) pair that can
potentially be selected as (𝛼∗, 𝜆∗); this is a looser alternative to the default
stopok and is rarely used

bic opts Description

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

stopok when, for a value of 𝛼, the BIC function does not have an identified minimum
and the stop(#) stopping criterion for 𝜆 was reached at 𝜆stop, allow
𝜆stop to be included in an (𝛼, 𝜆) pair that can potentially be selected
as (𝛼∗, 𝜆∗); the default

strict requires the BIC function to have an identified minimum for every value of 𝛼;
this is a stricter alternative to the default stopok

gridminok when, for a value of 𝛼, the BIC function does not have an identified minimum
and the stop(#) stopping criterion for 𝜆 was not reached, allow the
minimum of the 𝜆 grid, 𝜆gmin, to be included in an (𝛼, 𝜆) pair that can
potentially be selected as (𝛼∗, 𝜆∗); this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

∗noconstant and cluster() are not allowed with elasticnet cox.
You must stset your data before using elasticnet cox; see [ST] stset.
alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed with all sel method options. fweights are allowed when
selection(plugin), selection(bic), or selection(none) is specified. See [U] 11.1.6 weight. For elasticnet
cox, weights must be specified when you stset your data.

penaltywt(matname) does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
See [LASSO] lasso fitting for an overview of the lasso estimation procedure and a detailed description of

how to set options to control it.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
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� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the other-

vars, elasticnet can potentially create the equivalent of the constant term by including all levels of

a factor variable. This option is likely best used only when all the othervars are continuous variables

and there is a conceptual reason why there should be no constant term. This option is not allowed

with cox.

selection(cv), selection(bic), and selection(none) specify the selection method used to select

𝜆∗.

selection(cv [ , cv opts ]) is the default. It selects the (𝛼∗, 𝜆∗) that give the minimum of the CV

function.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that, for each 𝛼, models be fit for all 𝜆’s in the grid or until the stop(#)
tolerance is reached. By default, models are calculated sequentially from largest to smallest 𝜆,
and the CV function is calculated after each model is fit. If a minimum of the CV function is

found, the computation ends at that point without evaluating additional smaller 𝜆’s.
alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the CV function is wanted for

assurance that a trueminimum has been found. Regardless of whether alllambdas is specified,
the selected (𝛼∗, 𝜆∗) will be the same.

serule selects 𝜆∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani, and

Wainwright (2015, 13–14) instead of the 𝜆 that minimizes the CV function. The one-standard-

error rule selects, for each 𝛼, the largest 𝜆 for which the CV function is within a standard error

of the minimum of the CV function. Then, from among these (𝛼, 𝜆) pairs, the one with the

smallest value of the CV function is selected.

stopok, strict, and gridminok specify what to do when, for a value of 𝛼, the CV function

does not have an identified minimum at any value of 𝜆 in the grid. A minimum is identified at

𝜆cvmin when the CV function at both larger and smaller adjacent 𝜆’s is greater than it is at 𝜆cvmin.

When the CV function for a value of 𝛼 has an identified minimum, these options all do the same

thing: (𝛼, 𝜆cvmin) becomes one of the (𝛼, 𝜆) pairs that potentially can be selected as the smallest

value of the CV function. In some cases, however, the CV function declines monotonically as

𝜆 gets smaller and never rises to identify a minimum. When the CV function does not have an

identified minimum, stopok and gridminok make alternative picks for 𝜆 in the (𝛼, 𝜆) pairs
that will be assessed for the smallest value of the CV function. The option strict makes no

alternative pick for 𝜆. You may specify only one of stopok, strict, or gridminok; stopok is

the default if you do not specify one. With each of these options, estimation results are always

left in place, and alternative (𝛼, 𝜆) pairs can be selected and evaluated.
stopok specifies that, for a value of 𝛼, when the CV function does not have an identified min-

imum and the stop(#) stopping tolerance for 𝜆 was reached at 𝜆stop, the pair (𝛼, 𝜆stop) is
picked as one of the pairs that potentially can be selected as the smallest value of the CV func-

tion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is assumed that 𝜆stop

has a CV function value close to the true minimum for that value of 𝛼. When no minimum

is identified for a value of 𝛼 and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum for each value of 𝛼, and if not,
an error is issued.
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gridminok is a rarely used option that specifies that, for a value of 𝛼, when the CV function has

no identified minimum and the stop(#) stopping criterion was not met, 𝜆gmin, the minimum

of the 𝜆 grid, is picked as part of a pair (𝛼, 𝜆gmin) that potentially can be selected as the

smallest value of the CV function.

The gridminok criterion is looser than the default stopok, which is looser than strict. With

strict, the selected (𝛼∗, 𝜆∗) pair is theminimumof the CV function chosen from the (𝛼, 𝜆cvmin)
pairs, where all𝜆’s under consideration are identifiedminimums. With stopok, the set of (𝛼, 𝜆)
pairs under consideration for the minimum of the CV function include identified minimums,

𝜆cvmin, or values, 𝜆stop, that met the stopping criterion. With gridminok, the set of (𝛼, 𝜆) pairs
under consideration for the minimum of the CV function potentially include 𝜆cvmin, 𝜆stop, or

𝜆gmin.

selection(bic [ , bic opts ]) selects (𝛼∗, 𝜆∗) by using the Bayesian information criterion (BIC)

function. It selects the (𝛼∗, 𝜆∗) with the minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that, for each 𝛼, models be fit for all 𝜆’s in the grid or until the stop(#)
tolerance is reached. By default, models are calculated sequentially from largest to smallest 𝜆,
and the BIC function is calculated after each model is fit. If a minimum of the BIC function is

found, the computation ends at that point without evaluating additional smaller 𝜆’s.
alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the BIC function is wanted

for assurance that a true minimum has been found. Regardless of whether alllambdas is

specified, the selected (𝛼∗, 𝜆∗) will be the same.

stopok, strict, and gridminok specify what to do when, for a value of 𝛼, the BIC function

does not have an identified minimum at any value of 𝜆 in the grid. A minimum is identified at

𝜆bicmin when the BIC function at both larger and smaller adjacent 𝜆’s is greater than it is at 𝜆bicmin.

When the BIC function for a value of 𝛼 has an identified minimum, these options all do the same

thing: (𝛼, 𝜆bicmin) becomes one of the (𝛼, 𝜆) pairs that potentially can be selected as the smallest

value of the BIC function. In some cases, however, the BIC function declines monotonically as

𝜆 gets smaller and never rises to identify a minimum. When the BIC function does not have an

identified minimum, stopok and gridminok make alternative picks for 𝜆 in the (𝛼, 𝜆) pairs
that will be assessed for the smallest value of the BIC function. The option strict makes no

alternative pick for 𝜆. You may specify only one of stopok, strict, or gridminok; stopok is

the default if you do not specify one. With each of these options, estimation results are always

left in place, and alternative (𝛼, 𝜆) pairs can be selected and evaluated.
stopok specifies that, for a value of 𝛼, when the BIC function does not have an identified

minimum and the stop(#) stopping tolerance for 𝜆 was reached at 𝜆stop, the pair (𝛼, 𝜆stop)
is picked as one of the pairs that potentially can be selected as the smallest value of the

BIC function. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is assumed

that 𝜆stop has a BIC function value close to the true minimum for that value of 𝛼. When

no minimum is identified for a value of 𝛼 and the stop(#) criterion is not met, an error is

issued.

strict requires the BIC function to have an identified minimum for each value of 𝛼, and if not,
an error is issued.
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gridminok is a rarely used option that specifies that, for a value of𝛼, when the BIC function has
no identified minimum and the stop(#) stopping criterion was not met, 𝜆gmin, the minimum

of the 𝜆 grid, is picked as part of a pair (𝛼, 𝜆gmin) that potentially can be selected as the

smallest value of the BIC function.

The gridminok criterion is looser than the default stopok, which is looser than strict.
With strict, the selected (𝛼∗, 𝜆∗) pair is the minimum of the BIC function chosen from the

(𝛼, 𝜆bicmin) pairs, where all 𝜆’s under consideration are identified minimums. With stopok, the
set of (𝛼, 𝜆) pairs under consideration for the minimum of the BIC function include identified

minimums, 𝜆bicmin, or values, 𝜆stop, that met the stopping criterion. With gridminok, the set of
(𝛼, 𝜆) pairs under consideration for the minimum of the BIC function potentially include 𝜆bicmin,

𝜆stop, or 𝜆gmin.

postselection specifies to use the postselection coefficients to compute the BIC function. By

default, the penalized coefficients are used.

selection(none) does not select an (𝛼∗, 𝜆∗) pair. In this case, the elastic net is estimated for a grid

of values for 𝜆 for each 𝛼, but no attempt is made to determine which (𝛼, 𝜆) pair is best. The

postestimation command lassoknots can be run to view a table of 𝜆’s that define the knots (that
is, the distinct sets of nonzero coefficients) for each 𝛼. The lassoselect command can then be

used to select an (𝛼∗, 𝜆∗) pair, and lassogof can be run to evaluate the prediction performance

of the selected pair.

When selection(none) is specified, neither the CV function nor the BIC function is computed.

If you want to view the knot table with values of the CV function shown and then select (𝛼∗, 𝜆∗),
you must specify selection(cv). Similarly, if you want to view the knot table with values

of the BIC function shown, you must specify selection(bic). There are no suboptions for

selection(none).

offset(varname𝑜) specifies that varname𝑜 be included in the model with its coefficient constrained to

be 1.

exposure(varname𝑒) can be specified only for the poisson model. It specifies that ln(varname𝑒) be

included in the model with its coefficient constrained to be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how

the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood

function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the sub-

sample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are kept

together in the same subsample. This option is not allowed with elasticnet cox.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv). (selection(bic) and selection(none) do not use random numbers.)

rseed(#) is equivalent to typing set seed # prior to running elasticnet. See [R] set seed.

alphas(numlist |matname) specifies either a numlist or a matrix containing the grid of values for 𝛼.
The default is alphas(0.5 0.75 1). Specifying a small, nonzero value of 𝛼 for one of the values of

alphas() will result in lengthy computation time because the optimization algorithm for a penalty

that is mostly ridge regression with a little lasso mixed in is inherently inefficient. Pure ridge regres-

sion (𝛼 = 0), however, is computationally efficient.

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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grid(#𝑔 [ , ratio(#) min(#) ]) specifies the set of possible 𝜆’s using a logarithmic grid with #𝑔 grid

points.

#𝑔 is the number of grid points for 𝜆. The default is #𝑔 = 100. The grid is logarithmic with the 𝑖th grid
point (𝑖 = 1, . . . , 𝑛 = #𝑔) given by ln𝜆𝑖 = [(𝑖 − 1)/(𝑛 − 1)] ln 𝑟 + ln𝜆gmax, where 𝜆gmax = 𝜆1
is the maximum, 𝜆gmin = 𝜆𝑛 = min(#) is the minimum, and 𝑟 = 𝜆gmin/𝜆gmax = ratio(#) is the

ratio of the minimum to the maximum.

ratio(#) specifies 𝜆gmin/𝜆gmax. The maximum of the grid, 𝜆gmax, is set to the smallest 𝜆 for which

all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).

𝜆gmin is then set based on ratio(#). When 𝑝 < 𝑁, where 𝑝 is the total number of othervars

and alwaysvars (not including the constant term) and 𝑁 is the number of observations, the default

value of ratio(#) is 1e−4. When 𝑝 ≥ 𝑁, the default is 1e−2.

min(#) sets 𝜆gmin. By default, 𝜆gmin is based on ratio(#) and 𝜆gmax, which is computed from the

data.

crossgrid(augmented), crossgrid(union), and crossgrid(different) specify the type of two-

dimensional grid used for (𝛼, 𝜆). crossgrid(augmented) and crossgrid(union) produce a grid

that is the product of two one-dimensional grids. That is, the 𝜆 grid is the same for every value of 𝛼.
crossgrid(different) uses different 𝜆 grids for different values of 𝛼
crossgrid(augmented), the default grid, is formed by an augmentation algorithm. First, a suitable

𝜆 grid for each 𝛼 is computed. Then, nonoverlapping segments of these grids are formed and

combined into a single 𝜆 grid.

crossgrid(union) specifies that the union of 𝜆 grids across each value of 𝛼 be used. That is, a 𝜆
grid for each 𝛼 is computed, and then they are combined by simply putting all the 𝜆 values into

one grid that is used for each 𝛼. This produces a fine grid that can cause the computation to take

a long time without significant gain in most cases.

crossgrid(different) specifies that different 𝜆 grids be used for each value of 𝛼. This option is
rarely used. Using different 𝜆 grids for different values of 𝛼 complicates the interpretation of the

CV selection method. When the 𝜆 grid is not the same for every value of 𝛼, comparisons are based

on parameter intervals that are not on the same scale.

stop(#) specifies a tolerance that is the stopping criterion for the 𝜆 iterations. The default is 1e−5.

Estimation starts with the maximum grid value, 𝜆gmax, and iterates toward the minimum grid value,

𝜆gmin. When the relative difference in the deviance produced by two adjacent 𝜆 grid values is less than

stop(#), the iteration stops and no smaller 𝜆’s are evaluated. The value of 𝜆 that meets this tolerance

is denoted by 𝜆stop. Typically, this stopping criterion is met before the iteration reaches 𝜆gmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger 𝜆stop. To pro-

duce coefficient estimates for all values of the 𝜆 grid, you can specify stop(0). Note, however,

that computations for small 𝜆’s can be extremely time consuming. In terms of time, when you use

selection(cv) or selection(bic), the optimal value of stop(#) is the largest value that allows

estimates for just enough 𝜆’s to be computed to identify the minimum of the CV or BIC function. When

setting stop(#) to larger values, be aware of the consequences of the default 𝜆∗ selection procedure

given by the default stopok. You may want to override the stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV

function. For linear models, a minimum is identified when the CV function rises above a nominal

minimum for at least three smaller 𝜆’s with a relative difference in the CV function greater than #. For

nonlinear models, at least five smaller 𝜆’s are required. The default is 1e−3. Setting # to a bigger

value makes a stricter criterion for identifying a minimum and brings more assurance that a declared
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minimum is a true minimum, but it also means that models may need to be fit for additional smaller

𝜆, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information

about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum BIC

function. Aminimum is identified when the BIC function rises above a nominal minimum for at least

two smaller 𝜆’s with a relative difference in the BIC function greater than #. The default is 1e−2.

Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more

assurance that a declared minimum is a true minimum, but it also means that models may need to be

fit for additional smaller 𝜆, which can be time consuming. SeeMethods and formulas in [LASSO] lasso

for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-

vergence is achieved when the relative change in each coefficient is less than this tolerance. The

default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients. When

dtolerance(#) is specified, the convergence criterion is based on the change in deviance instead of

the change in the values of coefficient estimates. Convergence is declared when the relative change

in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-

ifying this option and instead using the default tolerance(1e-7) criterion or specifying a smaller

value for tolerance(#).

The following option is available with elasticnet but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients

in the penalty term. The contribution of each coefficient to the lasso penalty term is multiplied by its

corresponding weight. Weights must be nonnegative. By default, each coefficient’s penalty weight

is 1.

Remarks and examples
Elastic net, originally proposed by Zou and Hastie (2005), extends lasso to have a penalty term that is

a mixture of the absolute-value penalty used by lasso and the squared penalty used by ridge regression.

Coefficient estimates from elastic net are more robust to the presence of highly correlated covariates than

are lasso solutions.

For the linear model, the penalized objective function for elastic net is

𝑄 = 1
2𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − x𝑖β
′)2 + 𝜆

𝑝

∑
𝑗=1

(1 − 𝛼
2

𝛽2
𝑗 + 𝛼 |𝛽𝑗|)

where β is the 𝑝-dimensional vector of coefficients on covariates x. The estimated β are those that

minimize 𝑄 for given values of 𝛼 and 𝜆.
As with lasso, 𝑝 can be greater than the sample size 𝑁. When 𝛼 = 1, elastic net reduces to lasso.

When 𝛼 = 0, elastic net reduces to ridge regression.

When 𝛼 > 0, elastic net, like lasso, produces sparse solutions in which many of the coefficient

estimates are exactly zero. When 𝛼 = 0, that is, ridge regression, all coefficients are nonzero, although

typically many are small.

https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
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Ridge regression has long been used as a method to keep highly collinear variables in a regression

model used for prediction. The ordinary least-squares (OLS) estimator becomes increasingly unstable as

the correlation among the covariates grows. OLS produces wild coefficient estimates on highly correlated

covariates that cancel each other out in terms of fit. The ridge regression penalty removes this instability

and produces point estimates that can be used for prediction in this case.

None of the ridge regression estimates are exactly zero because the squared penalty induces a smooth

tradeoff around 0 instead of the kinked-corner tradeoff induced by lasso. By mixing the two penalties,

elastic net retains the sparse-solution property of lasso, but it is less variable than the lasso in the presence

of highly collinear variables. The coefficient paths of elastic-net solutions are also smoother over 𝜆 than

are lasso solutions because of the added ridge-regression component.

To fit a model with elasticnet, you specify a set of candidate 𝛼’s and a grid of 𝜆 values. CV is

performed on the combined set of (𝛼, 𝜆) values, and the (𝛼∗, 𝜆∗) pair that minimizes the value of the CV

function is selected.

This procedure follows the convention of Hastie, Tibshirani, and Wainwright (2015), which is to

specify a few values for 𝛼 and a finer grid for 𝜆. The idea is that only a few points in the space between

ridge regression and lasso are worth reviewing, but a finer grid over 𝜆 is needed to trace out the paths of

which coefficients are not zero.

The default candidate values of 𝛼 are 0.5, 0.75, and 1. Typically, you would use the default first and

then set 𝛼 using the alpha(numlist) option to get lower and upper bounds on 𝛼∗. Models for small,

nonzero values of 𝛼 take more time to estimate than 𝛼 = 0 and larger values of 𝛼. This is because

the algorithm for fitting a model that is mostly ridge regression with a little lasso mixed in is inherently

inefficient. Pure ridge or mostly lasso models are faster.

The 𝜆 grid is set automatically, and the default settings are typically sufficient to determine 𝜆∗. The

default grid can be changed using the grid() option. See [LASSO] lasso fitting for a detailed description

of the CV selection process and how to set options to control it.

Example 1: Elastic net and data that are not highly correlated
Wewill fit an elastic-net model using the example dataset from [LASSO] lasso examples. It has stored

variable lists created by vl. See [D] vl for a complete description of the vl system and how to use it to

manage large variable lists.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/dvl.pdf#dvl
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After we load the dataset, we type vl rebuild to make the saved variable lists active again.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We have four user-defined variable lists, demographics, factors, idemographics, and ifactors.
The variable lists idemographics and ifactors contain factor-variable versions of the categori-

cal variables in demographics and factors. That is, a variable q3 in demographics is i.q3 in

idemographics. See [LASSO] lasso examples to see how we created these variable lists.

We are going to use idemographics and ifactors along with the system-defined variable list

vlcontinuous as arguments to elasticnet. Together they contain the potential variables we want

to specify. Variable lists are actually global macros, and when we use them as arguments in commands,

we put a $ in front of them.

We also set the random-number seed using the rseed() option so we can reproduce our results.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)
alpha 1 of 3: alpha = 1
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.34476
(output omitted )

Grid value 37: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found
alpha 2 of 3: alpha = 0.75
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.34476
(output omitted )

Grid value 34: lambda = .0974746 no. of nonzero coef. = 126
Folds: 1...5....10 CVF = 11.95437
... cross-validation complete ... minimum found

https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
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alpha 3 of 3: alpha = 0.5
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33643
(output omitted )

Grid value 31: lambda = .1288556 no. of nonzero coef. = 139
Folds: 1...5....10 CVF = 12.0549
... cross-validation complete ... minimum found
Elastic net linear model No. of obs = 914

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 1.818102 0 -0.0016 18.34476

32 lambda before .1174085 58 0.3543 11.82553
* 33 selected lambda .1069782 64 0.3547 11.81814

34 lambda after .0974746 66 0.3545 11.8222
37 last lambda .0737359 80 0.3487 11.92887

0.750
38 first lambda 1.818102 0 -0.0016 18.34476
71 last lambda .0974746 126 0.3473 11.95437

0.500
72 first lambda 1.818102 0 -0.0012 18.33643

102 last lambda .1288556 139 0.3418 12.0549

* alpha and lambda selected by cross-validation.

CV selected 𝛼∗ = 1, that is, the results from an ordinary lasso.

All models we fit using elastic net on these data selected 𝛼∗ = 1. The data are not correlated enough

to need elastic net.

Example 2: Elastic net and data that are highly correlated
The dataset in example 1, fakesurvey vl, contained data we created in a simulation. We did our

simulation again setting the correlation parameters to much higher values, up to 𝜌 = 0.95, and we created

two groups of highly correlated variables, with correlations between variables from different groupsmuch

lower. We saved these data in a new dataset named fakesurvey2 vl. Elastic net was proposed not just
for highly correlated variables but especially for groups of highly correlated variables.

We load the new dataset and run vl rebuild.

. use https://www.stata-press.com/data/r19/fakesurvey2_vl, clear
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )

https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnetRemarksandexamplesex1
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In anticipation of elastic net showing interesting results this time, we randomly split our data into two

samples of equal sizes. One we will fit models on, and the other we will use to test their predictions. We

use splitsample to generate a variable indicating the samples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 ”Training” 2 ”Testing”

. label values sample svalues

We fit an elastic-net model using the default 𝛼’s.
. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
alpha 1 of 3: alpha = 1
(output omitted )

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted )

Grid value 42: lambda = .161071 no. of nonzero coef. = 29
Folds: 1...5....10 CVF = 15.12964
... cross-validation complete ... minimum found
alpha 2 of 3: alpha = 0.75
(output omitted )

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted )

Grid value 40: lambda = .1940106 no. of nonzero coef. = 52
Folds: 1...5....10 CVF = 15.07523
... cross-validation complete ... minimum found
alpha 3 of 3: alpha = 0.5
(output omitted )

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.78722
(output omitted )

Grid value 46: lambda = .11102 no. of nonzero coef. = 115
Folds: 1...5....10 CVF = 14.90808
... cross-validation complete ... minimum found

https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample
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Elastic net linear model No. of obs = 449
No. of covariates = 275

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 6.323778 0 -0.0036 26.82324

42 last lambda .161071 29 0.4339 15.12964

0.750
43 first lambda 6.323778 0 -0.0036 26.82324
82 last lambda .1940106 52 0.4360 15.07523

0.500
83 first lambda 6.323778 0 -0.0022 26.78722

124 lambda before .161071 87 0.4473 14.77189
* 125 selected lambda .1467619 92 0.4476 14.76569

126 lambda after .133724 96 0.4468 14.78648
128 last lambda .11102 115 0.4422 14.90808

* alpha and lambda selected by cross-validation.
. estimates store elasticnet

Wonderful! It selected 𝛼∗ = 0.5. We should not stop here, however. There may be smaller values

of 𝛼 that give lower minimums of the CV function. If the number of observations and number of po-

tential variables are not too large, you could specify the option alpha(0(0.1)1) the first time you run

elasticnet. However, if we did this, the command would take much longer to run than the default. It

will be especially slow for 𝛼 = 0.1 as we mentioned earlier.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234) alpha(0.1 0.2 0.3)
alpha 1 of 3: alpha = .3
(output omitted )

10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted )

Grid value 59: lambda = .160193 no. of nonzero coef. = 122
Folds: 1...5....10 CVF = 14.84229
... cross-validation complete ... minimum found
alpha 2 of 3: alpha = .2
(output omitted )

10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted )
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Grid value 56: lambda = .2117657 no. of nonzero coef. = 137
Folds: 1...5....10 CVF = 14.81594
... cross-validation complete ... minimum found
alpha 3 of 3: alpha = .1
(output omitted )

10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.81813
(output omitted )

Grid value 51: lambda = .3371909 no. of nonzero coef. = 162
Folds: 1...5....10 CVF = 14.81783
... cross-validation complete ... minimum found
Elastic net linear model No. of obs = 449

No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

0.300
1 first lambda 31.61889 0 -0.0036 26.82324

59 last lambda .160193 122 0.4447 14.84229

0.200
60 first lambda 31.61889 0 -0.0036 26.82324

110 lambda before .3371909 108 0.4512 14.66875
* 111 selected lambda .3072358 118 0.4514 14.66358

112 lambda after .2799418 125 0.4509 14.67566
115 last lambda .2117657 137 0.4457 14.81594

0.100
116 first lambda 31.61889 0 -0.0034 26.81813
166 last lambda .3371909 162 0.4456 14.81783

* alpha and lambda selected by cross-validation.
. estimates store elasticnet

The selected 𝛼∗ is 0.2. This value is better, according to CV, than 𝛼 = 0.1 or 𝛼 = 0.3.
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We can plot the CV function for the selected 𝛼∗ = 0.2.

. cvplot
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αCV = .2 is the cross-validation minimum α.
λCV = .31 is the cross-validation minimum λ; # coefficients = 118.

Cross-validation plot

The CV function looks quite flat around the selected 𝜆∗. We could assess alternative 𝜆 (and alternative

𝛼) using lassoknots. We run lassoknots with options requesting the number of nonzero coefficients

be shown (nonzero), along with the CV function (cvmpe) and estimates of the out-of-sample 𝑅2 (osr2).

. lassoknots, display(nonzero cvmpe osr2)

No. of CV mean Out-of-
nonzero pred. sample

alpha ID lambda coef. error R-squared

0.300
15 9.603319 4 26.42296 0.0114

(output omitted )

54 .2550726 92 14.67746 0.4509
55 .2324126 98 14.66803 0.4512
56 .2117657 105 14.67652 0.4509

(output omitted )

59 .160193 122 14.84229 0.4447

0.200
69 14.40498 4 26.54791 0.0067

(output omitted )

110 .3371909 108 14.66875 0.4512
* 111 .3072358 118 14.66358 0.4514

112 .2799418 125 14.67566 0.4509
(output omitted )

115 .2117657 137 14.81594 0.4457

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
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0.100
117 28.80996 4 26.67947 0.0018

(output omitted )

161 .5369033 143 14.76586 0.4476
162 .4892063 148 14.75827 0.4478
162 .4892063 148 14.75827 0.4478
163 .4457466 152 14.76197 0.4477

(output omitted )

166 .3371909 162 14.81783 0.4456

* alpha and lambda selected by cross-validation.

When we examine the output from lassoknots, we see that the CV function appears rather flat along 𝜆
from the minimum and also across 𝛼.

Example 3: Ridge regression
Let’s continue with the previous example and fit a ridge regression. We do this by specifying

alpha(0).

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234) alpha(0)
(output omitted )

Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 3.16e+08 no. of nonzero coef. = 275
Grid value 2: lambda = 2880.996 no. of nonzero coef. = 275
(output omitted )

Grid value 99: lambda = .3470169 no. of nonzero coef. = 275
Grid value 100: lambda = .3161889 no. of nonzero coef. = 275
10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100
(output omitted )

Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
... cross-validation complete
Elastic net linear model No. of obs = 449

No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

0.000
1 first lambda 3161.889 275 -0.0036 26.82323

88 lambda before .9655953 275 0.4387 15.00168
* 89 selected lambda .8798144 275 0.4388 14.99956

90 lambda after .8016542 275 0.4386 15.00425
100 last lambda .3161889 275 0.4198 15.50644

* alpha and lambda selected by cross-validation.
. estimates store ridge

https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnetRemarksandexamplesex2
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In this implementation, ridge regression selects 𝜆∗ using CV. We can plot the CV function.

. cvplot

15

20

25

30

C
ro

ss
-v

al
id

at
io

n 
fu

nc
tio

n
λCV

1101001000
λ

αCV = 0 is the cross-validation minimum α.
λCV = .88 is the cross-validation minimum λ; # coefficients = 275.

Cross-validation plot

Example 4: Comparing elastic net, ridge regression, and lasso
We fit elastic net and ridge on half of the sample in the previous examples so we could evaluate the

prediction on the other half of the sample.

Let’s continue with the data from example 2 and example 3 and fit a lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
note: 1.q14 omitted because of collinearity with another variable.
note: 1.q136 omitted because of collinearity with another variable.
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 3.161889 no. of nonzero coef. = 0
(output omitted )

Grid value 33: lambda = .161071 no. of nonzero coef. = 29
Folds: 1...5....10 CVF = 15.12964
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 449

No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 3.161889 0 0.0020 26.67513
28 lambda before .2564706 18 0.4348 15.10566

* 29 selected lambda .2336864 21 0.4358 15.07917
30 lambda after .2129264 21 0.4355 15.08812
33 last lambda .161071 29 0.4339 15.12964

* lambda selected by cross-validation.
. estimates store lasso

We stored the results of the earlier elastic net and ridge in memory using estimates store. We did

the same for the lasso results. Now we can compare out-of-sample prediction using lassogof.

https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnetRemarksandexamplesex2
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnetRemarksandexamplesex3
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
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. lassogof elasticnet ridge lasso, over(sample)
Penalized coefficients

Name sample MSE R-squared Obs

elasticnet
Training 11.70471 0.5520 480
Testing 14.60949 0.4967 501

ridge
Training 11.82482 0.5576 449
Testing 14.88123 0.4809 476

lasso
Training 13.41709 0.4823 506
Testing 14.91674 0.4867 513

Elastic net did better out of sample based on the mean squared error and 𝑅2 than ridge and lasso.

Note that the numbers of observations for both the training and testing samples were slightly different

for each of the models. splitsample split the sample exactly in half with 529 observations in each half

sample. The sample sizes across the models differ because the different models contain different sets of

selected variables; hence, the pattern of missing values is different. If you want to make the half samples

exactly equal after missing values are dropped, an optional varlist containing the dependent variable and

all the potential variables can be used with splitsample to omit any missing values in these variables.

See [D] splitsample.

Before we conclude that elastic net won out over ridge and lasso, we must point out that we were

not fair to lasso. Theory states that for the lasso linear model, postselection coefficients provide slightly

better predictions. See predict in [LASSO] lasso postestimation.

We run lassogof again for the lasso results, this time specifying that postselection coefficients be

used.

. lassogof lasso, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

lasso
Training 13.14487 0.4928 506
Testing 14.62903 0.4966 513

We declare a tie with elastic net!

Postselection coefficients should not be used with elasticnet and, in particular, with ridge regres-

sion. Ridge works by shrinking the coefficient estimates, and these are the estimates that should be

used for prediction. Because postselection coefficients are OLS regression coefficients for the selected

coefficients and because ridge always selects all variables, postselection coefficients after ridge are OLS

regression coefficients for all potential variables, which clearly we do not want to use for prediction.

https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimationpredict
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
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Stored results
elasticnet stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k allvars) number of potential variables

e(k nonzero sel) number of nonzero coefficients for selected model

e(k nonzero cv) number of nonzero coefficients at CV mean function minimum

e(k nonzero serule) number of nonzero coefficients for one-standard-error rule

e(k nonzero min) minimum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero max) maximum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum

e(alpha sel) value of selected 𝛼∗

e(alpha cv) value of 𝛼 at CV mean function minimum

e(lambda sel) value of selected 𝜆∗

e(lambda gmin) value of 𝜆 at grid minimum

e(lambda gmax) value of 𝜆 at grid maximum

e(lambda last) value of last 𝜆 computed

e(lambda cv) value of 𝜆 at CV mean function minimum

e(lambda serule) value of 𝜆 for one-standard-error rule

e(lambda bic) value of 𝜆 at BIC function minimum

e(ID sel) ID of selected 𝜆∗

e(ID cv) ID of 𝜆 at CV mean function minimum

e(ID serule) ID of 𝜆 for one-standard-error rule

e(ID bic) ID of 𝜆 at BIC function minimum

e(cvm min) minimum CV mean function value

e(cvm serule) CV mean function value at one-standard-error rule

e(devratio min) minimum deviance ratio

e(devratio max) maximum deviance ratio

e(L1 min) minimum value of ℓ1-norm of penalized unstandardized coefficients

e(L1 max) maximum value of ℓ1-norm of penalized unstandardized coefficients

e(L2 min) minimum value of ℓ2-norm of penalized unstandardized coefficients

e(L2 max) maximum value of ℓ2-norm of penalized unstandardized coefficients

e(ll sel) log-likelihood value of selected model

e(n lambda) number of 𝜆’s
e(n fold) number of CV folds

e(stop) stopping rule tolerance

Macros

e(cmd) elasticnet
e(cmdline) command as typed

e(depvar) name of dependent variable

e(allvars) names of all potential variables

e(allvars sel) names of all selected variables

e(alwaysvars) names of always-included variables

e(othervars sel) names of other selected variables

e(post sel vars) all variables needed for postelastic net

e(clustvar) name of cluster variable

e(lasso selection) selection method

e(sel criterion) criterion used to select 𝜆∗

e(crossgrid) type of two-dimensional grid

e(model) linear, logit, probit, poisson, or cox
e(title) title in estimation output

e(rngstate) random-number state used

e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
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Matrices

e(b) penalized unstandardized coefficient vector

e(b standardized) penalized standardized coefficient vector

e(b postselection) postselection coefficient vector

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas for elastic net are given in Methods and formulas in [LASSO] lasso. Here

we provide the methods and formulas for ridge regression, which is a special case of elastic net.

Unlike lasso and elastic net, ridge regression has a differentiable objective function, and there is

a closed-form solution to the problem of minimizing the objective function. The solutions for ridge

regression with nonlinear models are obtained by iteratively reweighted least squares.

The estimates of a generalized linear model (GLM) ridge regression model are obtained by minimizing

𝑄𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) + 𝜆

2

𝑝

∑
𝑗=1

𝜅𝑗𝛽2
𝑗

where 𝑁 is the number of observations; 𝑤𝑖 is the normalized observation-level weight; 𝑓(⋅) is the like-
lihood contribution for the regress, logit, probit, or poisson model; 𝛽0 is the intercept; x𝑖 is the

1 × 𝑝 vector of covariates; β is the 1 × 𝑝 vector of coefficients; 𝜆 is the ridge penalty parameter, which

must be greater than or equal to 0; and 𝜅𝑗 are coefficient-level weights (which by default are all 1).

The normalized weights 𝑤𝑖 sum to 1. That is,

𝑤𝑖 = 𝑤𝑖

∑𝑁
𝑖=1 𝑤𝑖

where 𝑤𝑖 is the original observation-level weight. If weights are not specified with elasticnet, 𝑤𝑖 = 1

and 𝑤𝑖 = 1/𝑁.

The penalized objective function of the ridge regression for the cox model is

𝑄𝐿 = −
𝑁𝑓

∑
𝑗=1

∑
𝑖∈𝐷𝑗

𝑤𝑖 [x𝑖β
′ − log{ ∑

ℓ∈𝑅𝑗

𝑤ℓ exp(xℓβ
′)}] + 𝜆

2

𝑝

∑
𝑗=1

𝜅𝑗𝛽2
𝑗

where 𝑗 indexes the ordered failure times 𝑡(𝑗), 𝑗 = 1, . . . , 𝑁𝑓; 𝐷𝑗 is the set of observations that fail at

𝑡(𝑗); and 𝑅𝑗 is the set of observations 𝑘 that are at risk at time 𝑡(𝑗) (that is, all 𝑘 such that 𝑡0𝑘 < 𝑡(𝑗) ≤ 𝑡𝑘,

and 𝑡0𝑘 is the entry time for the 𝑘th observation).
When the model is linear,

𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) = 1

2
(𝑦𝑖 − 𝛽0 − x𝑖β

′)2
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When the model is logit,

𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) = −𝑦𝑖(𝛽0 + x𝑖β

′) + ln{1 + exp(𝛽0 + x𝑖β
′)}

When the model is probit,

𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) = −𝑦𝑖 ln {Φ(𝛽0 + x𝑖β

′)} − (1 − 𝑦𝑖) ln {1 − Φ(𝛽0 + x𝑖β
′)}

When the model is poisson,

𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) = −𝑦𝑖(𝛽0 + x𝑖β

′) + exp(𝛽0 + x𝑖β
′)

For the linear model, the point estimates are given by

( ̂𝛽0, β̂)′ = (
𝑁

∑
𝑖=1

𝑤𝑖x̃
′
𝑖x̃𝑖 + 𝜆Ĩ)

−1 𝑁
∑
𝑖=1

𝑤𝑖𝑦𝑖x̃
′
𝑖

where x̃𝑖 = (1, x𝑖) and Ĩ is a diagonal matrix with the coefficient-level weights 0, 𝜅1, . . . , 𝜅𝑝 on the

diagonal.

For the nonlinear models, the optimization problem is solved using iteratively reweighted least

squares. See Segerstedt (1992) and Nyquist (1991) for details of the iteratively reweighted least-squares

algorithm for the GLM ridge-regression estimator.
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