dslogit — Double-selection lasso logistic regression

Description	Quick start	Menu	Syntax	Options
Remarks and examples	Stored results	Methods and formulas	Reference	Also see

Description

dslogit fits a lasso logistic regression model and reports odds ratios along with standard errors, test statistics, and confidence intervals for specified covariates of interest. The double-selection method is used to estimate effects for these variables and to select from potential control variables to be included in the model.

Quick start

Report an odds ratio from a logistic regression of y on d1, and include x1 to x100 as potential control variables to be selected by lassos

```
dslogit y d1, controls(x1-x100)
```

Same as above, and estimate odds ratios for the levels of categorical d2

```
dslogit y d1 i.d2, controls(x1-x100)
```

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal λ^* in each lasso dslogit y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

```
dslogit y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)
```

Specify CV for the lasso for y only, with the stopping rule criterion turned off

```
dslogit y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))
```

Same as above, but apply the option to the lassos for y, d1, and i.d2

```
dslogit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))
```

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

```
dslogit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv, alllambdas))
```

Menu

 $Statistics > Lasso > Lasso \ inferential \ models > Binary \ outcomes > Double-selection \ logit \ model$

Syntax

```
dslogit depvar varsofinterest [if] [in],
  controls([(alwaysvars)] othervars) [options]
```

varsofinterest are variables for which coefficients and their standard errors are estimated.

options	Description	
Model		
* <pre>controls([(alwaysvars)] othervars)</pre>	alwaysvars and othervars make up the set of control variables; alwaysvars are always included; lassos choose whether to include or exclude othervars	
<pre>selection(plugin)</pre>	use a plugin iterative formula to select an optimal value of the lasso penalty parameter λ^* for each lasso; the default	
<pre>selection(cv)</pre>	use CV to select an optimal value of the lasso penalty parameter λ^* for each lasso	
<u>sel</u> ection(adaptive)	use adaptive lasso to select an optimal value of the lasso penalty parameter λ^* for each lasso	
<pre>selection(bic)</pre>	use BIC to select an optimal value of the lasso penalty parameter λ^* for each lasso	
sqrtlasso	use square-root lassos for varsofinterest	
<u>miss</u> ingok	after fitting lassos, ignore missing values in any <i>othervars</i> not selected, and include these observations in the final model	
<pre>offset(varname)</pre>	include <i>varname</i> in the lasso and model for <i>depvar</i> with its coefficient constrained to be 1	
SE/Robust		
vce(vcetype)	<pre>vcetype may be robust (the default), cluster clustvar, or oim</pre>	
Reporting		
<u>l</u> evel(#)	set confidence level; default is level (95)	
or	report odds ratios; the default	
coef	report estimated coefficients	
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling	
Optimization	· ·	
[no]log	display or suppress an iteration log	
verbose	display a verbose iteration log	
rseed(#)	set random-number seed	
Advanced		
lasso(varlist, lasso_options)	specify options for the lassos for variables in <i>varlist</i> ; may be repeated	
<pre>sqrtlasso(varlist, lasso_options)</pre>	specify options for square-root lassos for variables in <i>varlist</i> ; may be repeated	

reestimate	refit the model after using lassoselect to select a different λ^*
<u>nohead</u> er	do not display the header on the coefficient table
coeflegend	display legend instead of statistics

^{*}controls() is required.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted variables. Control variables are also known as confounding variables. dslogit fits lassos for depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars may differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value of the lasso penalty parameter λ^* for each lasso or square-root lasso estimation. Separate lassos are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the selection method for all of these lassos. You can specify different selection methods for different lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify a different selection method for the lassos of some variables, they override the global setting made using selection() for the specified variables.

selection(plugin) is the default. It selects λ^* based on a "plugin" iterative formula dependent on the data. See [LASSO] lasso options.

selection (cv) selects the λ^* that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects λ^* using the adaptive lasso selection method. It cannot be specified when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the λ^* that gives the minimum of the BIC function. See [LASSO] lasso options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest. This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar is always a logit lasso. The option lasso() can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See [LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the nonmissing observations of variables in the final model. In all cases, any observation with missing values for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and their standard errors.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for alwaysvars and othervars. See [U] 11.4.3 Factor variables.

When missingok is specified, the initial estimation sample is the same as the default, but the sample used for the calculation of the coefficients of the *varsofinterest* can be larger. Now observations with missing values for any *othervars* not selected will be added to the estimation sample (provided there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It does, however, have the consequence that estimation samples can change when selected variables differ in models fit using different selection methods. That is, when *othervars* contain missing values, the estimation sample for a model fit using the default selection(plugin) will likely differ from the estimation sample for a model fit using, for example, selection(cv).

offset (varname) specifies that varname be included in the lasso and model for depvar with its coefficient constrained to be 1.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (vce(cluster clustvar)), and that are derived from asymptotic theory (vce(oim)). See [R] vce_option.

When vce(cluster *clustvar*) is specified, all lassos also account for clustering. For each lasso, this affects how the log-likelihood function is computed and how the sample is split in cross-validation; see *Methods and formulas* in [LASSO] lasso. Specifying vce(cluster *clustvar*) may lead to different selected controls and therefore to different point estimates for your variable of interest when compared to the estimation that ignores clustering.

Reporting

level(#); see [R] Estimation options.

- or reports the estimated coefficients transformed to odds ratios, that is, e^{α} . Standard errors and confidence intervals are similarly transformed. or is the default.
- coef reports the estimated coefficients α rather than the odds ratios (e^{α}). This option affects how results are displayed, not how they are estimated. coef may be specified at estimation or when replaying previously estimated results.
- display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

Optimization

- [no]log displays or suppresses a log showing the progress of the estimation. By default, one-line messages indicating when each lasso estimation begins are shown. Specify verbose to see a more detailed log.
- verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of the lasso estimations for these selection methods, which can be time consuming when there are many *othervars* specified in controls().
- rseed(#) sets the random-number seed. This option can be used to reproduce results for selection(cv) and selection(adaptive). The default selection method selection(plugin) does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running dslogit. See [R] set seed.

Advanced

lasso(varlist, lasso_options) lets you set different options for different lassos, or advanced options for all lassos. You specify a varlist followed by the options you want to apply to the lassos for these variables. varlist consists of one or more variables from depvar or varsofinterest. _all or * may be used to specify depvar and all varsofinterest. This option is repeatable as long as different variables are given in each specification. lasso_options are selection(...), grid(...), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(...)) is specified, it overrides any global selection() option for the variables in varlist. It also overrides the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso_options) works like the option lasso(), except square-root lassos for the variables in varlist are done rather than regular lassos. varlist consists of one or more variables from varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This option is repeatable as long as different variables are given in each specification. lasso_options are selection(...), grid(...), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(...)) is specified, it overrides any global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with dslogit but are not shown in the dialog box:

reestimate is an advanced option that refits the dslogit model based on changes made to the underlying lassos using lassoselect. After running dslogit, you can select a different λ^* for one or more of the lassos estimated by dslogit. After selecting λ^* , you type dslogit, reestimate to refit the dslogit model based on the newly selected λ 's.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples

dslogit performs double-selection lasso logistic regression. This command estimates odds ratios, standard errors, and confidence intervals and performs tests for variables of interest while using lassos to select from among potential control variables.

The logistic regression model is

$$\Pr(y = 1 | \mathbf{d}, \mathbf{x}) = \frac{\exp(\mathbf{d}\alpha' + \mathbf{x}\beta')}{1 + \exp(\mathbf{d}\alpha' + \mathbf{x}\beta')}$$

where **d** are the variables for which we wish to make inferences and **x** are the potential control variables from which the lassos select. dslogit estimates the α coefficients and reports the corresponding odds ratios, e^{α} . However, double selection does not provide estimates of the coefficients on the control variables (β) or their standard errors. No estimation results can be reported for β .

For an introduction to the double-selection lasso method for inference, as well as the partialing-out and cross-fit partialing-out methods, see [LASSO] **Lasso inference intro**.

Examples that demonstrate how to use dslogit and the other lasso inference commands are presented in [LASSO] **Inference examples**. In particular, we recommend reading 1 Overview for an introduction to the examples and to the vl command, which provides tools for working with the large lists of variables that are often included when using lassos methods. See 2 Fitting and interpreting inferential models for

comparisons of the different methods of fitting inferential models that are available in Stata. Everything we say there about methods of selection is applicable to both linear and nonlinear models. See 3 Fitting logit inferential models to binary outcomes. What is different? for examples and discussion specific to logistic regression models. The primary difference from linear models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring inferential model lassos in [LASSO] Inference examples.

Stored results

dslogit stores the following in e():

```
Scalars
                               number of observations
    e(N)
                               number of clusters
    e(N_clust)
    e(k_varsofinterest)
                               number of variables of interest
    e(k_controls)
                               number of potential control variables
                               number of selected control variables
    e(k_controls_sel)
                               degrees of freedom for test of variables of interest
    e(df)
    e(chi2)
                               p-value for test of variables of interest
    e(p)
                               rank of e(V)
    e(rank)
Macros
    e(cmd)
                               dslogit
    e(cmdline)
                               command as typed
    e(depvar)
                               name of dependent variable
                               names of dependent variables for all lassos
    e(lasso_depvars)
    e(varsofinterest)
                               variables of interest
                               potential control variables
    e(controls)
    e(controls_sel)
                               selected control variables
    e(model)
                               logit
                               title in estimation output
    e(title)
    e(offset)
                               linear offset variable
                               name of cluster variable
    e(clustvar)
                               Wald; type of \chi^2 test
    e(chi2type)
                               vcetype specified in vce()
    e(vce)
                               title used to label Std. err.
    e(vcetype)
    e(rngstate)
                               random-number state used
    e(properties)
    e(predict)
                               program used to implement predict
    e(select_cmd)
                               program used to implement lassoselect
                               predictions disallowed by margins
    e(marginsnotok)
    e(asbalanced)
                               factor variables fyset as asbalanced
                               factor variables fiveet as asobserved
    e(asobserved)
Matrices
                               coefficient vector
    e(b)
    e(V)
                               variance-covariance matrix of the estimators
Functions
    e(sample)
                               marks estimation sample
```

In addition to the above, the following is stored in r():

```
Matrices
```

matrix containing the coefficients with their standard errors, test statistics, p-values, and r(table) confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

Methods and formulas

dslogit implements double-selection lasso logit regression (DSLLR) as described in Belloni, Chernozhukov, and Wei (2016, table 2 and sec. 2.1). The regression model is

$$\mathbf{E}[y|\mathbf{d}, \mathbf{x}] = G(\mathbf{d}\alpha' + \beta_0 + \mathbf{x}\beta')$$

where $G(a) = \exp(a)/\{1 + \exp(a)\}$, d contains the J covariates of interest, and x contains the p controls. The number of covariates in \mathbf{d} must be small and fixed. The number of controls in \mathbf{x} can be large and, in theory, can grow with the sample size; however, the number of nonzero elements in β must not be too large, which is to say that the model must be sparse.

DSLLR algorithm

- 1. Perform a logit lasso of y on **d** and **x**, and denote the selected controls by $\tilde{\mathbf{x}}$.
 - This logit lasso can choose the lasso penalty parameter (λ^*) using the plugin estimator, adaptive lasso, or CV. The plugin value is the default.
- 2. Fit a logit regression of y on d and $\tilde{\mathbf{x}}$, denoting the estimated coefficient vectors by $\tilde{\alpha}$ and $\hat{\beta}$, respectively.
- 3. Let $w_i = G'(\mathbf{d}_i \widetilde{\alpha}' + \widetilde{\mathbf{x}}_i \widetilde{\beta}')$ be the *i*th observation of the predicted value of the derivative of $G(\cdot)$.
- 4. For $j=1,\ldots,J$, perform a linear lasso of d_j on ${\bf x}$ using observation-level weights w_i , and denote the selected controls by $\check{\mathbf{x}}_i$.
 - Each of these lassos can choose the lasso penalty parameter (λ_i^*) using one of the plugin estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.
- 5. Let $\hat{\mathbf{x}}$ be the distinct variables from the union of the variables in $\check{\mathbf{x}}_1, \dots, \check{\mathbf{x}}_J$, and $\tilde{\mathbf{x}}$.
- 6. Fit a logit regression of y on d and $\hat{\mathbf{x}}$, denoting the estimated coefficient vectors by $\hat{\alpha}$ and $\hat{\beta}$, respectively.
- 7. Store the point estimates $\widehat{\alpha}$ in e(b) and their variance estimates (VCE) in e(V).

Option vce(robust), the robust estimator of the VCE for a logistic regression, is the default. Specify option vce (oim) to get the OIM estimator of the VCE.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose their penalty parameter (λ^*).

Reference

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Also see

- [LASSO] lasso inference postestimation Postestimation tools for lasso inferential models
- [LASSO] pologit Partialing-out lasso logistic regression
- [LASSO] xpologit Cross-fit partialing-out lasso logistic regression
- [R] **logit** Logistic regression, reporting coefficients
- [R] logistic Logistic regression, reporting odds ratios
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985-2025 StataCorp LLC, College Station, TX, USA. All rights

For suggested citations, see the FAQ on citing Stata documentation.