cvplot — Plot cross-validation function after lasso

Description

cvplot graphs the cross-validation (CV) function after a lasso fit using `selection(cv)`, `selection(adaptive)`, or `selection(none)`.

cvplot can be used after `lasso`, `elasticnet`, `sqrtlasso`, or any of the lasso inference commands.

Quick start

Graph the CV function after `lasso`, `sqrtlasso`, or `elasticnet`
```
cvplot
```

As above, and draw a reference line identifying the value selected by the one-standard-error rule
```
cvplot, seline
```

Graph the CV function after `elasticnet` for the $\alpha = 0.5$ lasso
```
cvplot, alpha(.5)
```

After any of the `ds` or `po` commands, graph the CV function for the dependent variable y
```
cvplot, for(y)
```

As above, and show standard-error bands for the CV function
```
cvplot, for(y) se
```

After an `xpo` command without `resample`, graph the CV function for x in cross-fit fold 2
```
cvplot, for(x) xfold(2)
```

After an `xpo` command with `resample`, graph the CV function for x in cross-fit fold 2 for the first resample
```
cvplot, for(x) xfold(2) resample(1)
```

As above, but graph the CV function as a function of the ℓ_1-norm of the standardized coefficient vector
```
cvplot, for(x) xfold(2) resample(1) xunits(l1norm)
```

Menu

Statistics > Postestimation
Syntax

After lasso, sqrtlasso, and elasticnet

\texttt{cvplot} [, \textit{options}]

After \texttt{ds} and \texttt{po} commands

\texttt{cvplot}, \texttt{for}(extit{varspec}) [\textit{options}]

After \texttt{xpo} commands without resample

\texttt{cvplot}, \texttt{for}(extit{varspec}) \texttt{xfold(\#)} [\textit{options}]

After \texttt{xpo} commands with resample

\texttt{cvplot}, \texttt{for}(extit{varspec}) \texttt{xfold(\#)} \texttt{resample(\#)} [\textit{options}]

\textit{varspec} is a \textit{varname}, except after \texttt{poivregress} and \texttt{xpoivregress}, when it is either a \textit{varname} or \texttt{pred(varname)}.
cvplot — Plot cross-validation function after lasso

Main

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xunits(x_unit_spec)</code></td>
<td>x-axis units (scale); default is <code>xunits(rlnlambda)</code>, where <code>rlnlambda</code> denotes λ on a reverse logarithmic scale</td>
</tr>
<tr>
<td><code>minmax</code></td>
<td>add labels for the minimum and maximum x-axis units</td>
</tr>
<tr>
<td><code>*for(varspec)</code></td>
<td>lasso for <code>varspec</code>; <code>ds</code>, <code>po</code>, and <code>xpo</code> commands only</td>
</tr>
<tr>
<td><code>*xfold(#)</code></td>
<td>lasso for the #th cross-fit fold; <code>xpo</code> commands only</td>
</tr>
<tr>
<td><code>*resample(#)</code></td>
<td>lasso for the #th resample; <code>xpo</code> commands with <code>resample</code> only</td>
</tr>
<tr>
<td><code>alpha(#)</code></td>
<td>graph CV function for $\alpha = #$; default is the selected value α; allowed after <code>elasticnet</code> only</td>
</tr>
<tr>
<td><code>lineopts(cline_options)</code></td>
<td>affect rendition of the plotted lines</td>
</tr>
</tbody>
</table>

S.E. plot

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>se</code></td>
<td>show standard-error bands for the CV function</td>
</tr>
<tr>
<td><code>seopts(rcap_options)</code></td>
<td>affect rendition of the standard-error bands</td>
</tr>
</tbody>
</table>

Reference lines

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cvlineopts(cline_options)</code></td>
<td>affect rendition of reference line identifying the minimum of the CV function or other stopping rule</td>
</tr>
<tr>
<td><code>nocvline</code></td>
<td>suppress reference line identifying the minimum of the CV function or other stopping rule</td>
</tr>
<tr>
<td><code>lslineopts(cline_options)</code></td>
<td>affect rendition of reference line identifying the value selected using <code>lassoselect</code></td>
</tr>
<tr>
<td><code>nolsline</code></td>
<td>suppress reference line identifying the value selected using <code>lassoselect</code></td>
</tr>
<tr>
<td><code>selineopts(cline_options)</code></td>
<td>affect rendition of reference line identifying the value selected by the one-standard-error rule</td>
</tr>
<tr>
<td><code>[no]seline</code></td>
<td>draw or suppress reference line identifying the value selected by the one-standard-error rule; shown by default for <code>selection(cv, serule)</code></td>
</tr>
<tr>
<td><code>hrefline</code></td>
<td>add horizontal reference lines that intersect the vertical reference lines</td>
</tr>
<tr>
<td><code>rlabelopts(r_label_opts)</code></td>
<td>change look of labels for reference line</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data(filename [, replace])</code></td>
<td>save plot data to <code>filename</code></td>
</tr>
</tbody>
</table>

Y axis, X axis, Titles, Legend, Overall

| `twoway_options` | any options other than by() documented in [G-3] `twoway_options` |

*for(`varspec`) is required for all `ds`, `po`, and `xpo` commands. `xfold(#)` is required for all `xpo` commands. `resample(#)` is required for `xpo` when the option `resample(#)` was specified.

`x_unit_spec`

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rlnlambda</code></td>
<td>λ on a reverse logarithmic scale; the default</td>
</tr>
<tr>
<td><code>lnlambda</code></td>
<td>λ on a logarithmic scale</td>
</tr>
<tr>
<td><code>l1norm</code></td>
<td>ℓ_1-norm of standardized coefficient vector</td>
</tr>
<tr>
<td><code>l1normraw</code></td>
<td>ℓ_1-norm of unstandardized coefficient vector</td>
</tr>
</tbody>
</table>
r_label_opts

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>labgap(size)</td>
</tr>
<tr>
<td>labstyle(textstyle)</td>
</tr>
<tr>
<td>labsize(textsizestyle)</td>
</tr>
<tr>
<td>labcolor(colorstyle)</td>
</tr>
</tbody>
</table>

Options

- **Main**
 - **xunits(x_unit_spec)** specifies the x-axis units used for graphing the CV function. The following x-unit specs are available:
 - rlnlambda specifies x-axis units λ on a reverse logarithmic scale. This is the default.
 - lnlambda specifies x-axis units λ on a logarithmic scale.
 - l1norm specifies x-axis units ℓ_1-norm of the standardized coefficient vector.
 - l1normraw specifies x-axis units ℓ_1-norm of the unstandardized coefficient vector.
 - **minmax** adds labels for the minimum and maximum x-axis units to the graph of the CV function.

- **for(varspec)** specifies a particular lasso after a ds, a po, or an xpo estimation command fit using the option selection(cv) or selection(adaptive). For all commands except poivregress and xpoivregress, varspec is always a varname; it is either depvar, the dependent variable, or one of varsofinterest for which inference is done.
 - For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso for depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by varname and pred(varname). The exogenous variables of interest each have only one lasso, and it is specified by pred(varname).
 - This option is required after ds, po, and xpo commands.

- **xfold(#)** specifies a particular lasso after an xpo estimation command. For each variable to be fit with a lasso, K lassos are done, one for each cross-fit fold, where K is the number of folds. This option specifies which fold, where $# = 1, 2, \ldots, K$. It is required after an xpo command.

- **resample(#)** specifies a particular lasso after an xpo estimation command fit using the option resample(#). For each variable to be fit with a lasso, $R \times K$ lassos are done, where R is the number of resamples and K is the number of cross-fitting folds. This option specifies which resample, where $# = 1, 2, \ldots, R$. This option, along with xfold(#), is required after an xpo command with resampling.

- **alpha(#)** graphs the CV function for $\alpha = #$. The default is $\alpha(\alpha^*)$, where α^* is the selected α. alpha(#) may only be specified after elasticnet.

- **lineopts(cline_options)** affects the rendition of the plotted line. See \[G-3\] cline_options.
se shows standard-error bands for the CV function.

`seopts(rcap_options)` affects the rendition of the standard-error bands. See [G-3] `rcap_options`.

Reference lines

`cvlineopts(cline_options)` affects the rendition of the reference line identifying the minimum CV value, the value selected when the stopping tolerance is reached, or the grid-minimum value. See [G-3] `cline_options`.

`nocvline` suppresses the reference line identifying the minimum CV value, the value selected when the stopping tolerance is reached, or the grid-minimum value.

`lslineopts(cline_options)` affects the rendition of the reference line identifying the value selected using `lassoselect`. See [G-3] `cline_options`.

`nolsline` suppresses the reference line identifying the value selected using `lassoselect`.

`selineopts(cline_options)` affects the rendition of the reference line identifying the value selected by the one-standard-error rule. See [G-3] `cline_options`.

`[no]seline` draws or suppresses a reference line identifying the value selected by the one-standard-error rule. By default, the line is shown when `selection(cv, serule)` was the selection method for the lasso. For other selection methods, the line is not shown by default.

`hrefline` adds horizontal reference lines that intersect the vertical reference lines.

Data

`data(filename [, replace])` saves the plot data to a Stata data file.

`twoway_options` are any of the options documented in [G-3] `twoway_options`, excluding by(). These include options for titling the graph (see [G-3] `title_options`) and options for saving the graph to disk (see [G-3] `saving_option`).

Remarks and examples

CV plots graph the CV function over the search grid for the lasso penalty parameter \(\lambda \). For linear models, the CV function is the mean squared error of the predictions in the CV samples. For logit and Poisson models, the CV function is the mean deviance in the CV samples.

The search grid can be shown as either the log of the lasso penalty parameter \(\lambda \), `xunits(lnlambda)`; the reverse of that scale, `xunits(rlnlambda)`; the \(\ell_1 \)-norm of the standardized coefficients, `xunits(l1norm)`; or the \(\ell_1 \)-norm of the unstandardized coefficients, `xunits(l1normraw)`. The reverse log of lambda is the default because it represents the CV search path over \(\lambda \), with the first \(\lambda \) tried on the left and the last \(\lambda \) tried on the right.
CV plots can be drawn after any command that directly searches over a grid of λ’s—that is, after any command that used the option selection(cv), selection(adaptive), or selection(none). They can be drawn after commands lasso, elasticnet, sqrtlasso, or any of the 11 lasso inference commands.

Examples that demonstrate how to use cvplot after the lasso command can be found in The CV function in [LASSO] lasso.

Examples after elasticnet can be found starting in example 2 of [LASSO] elasticnet.

Also see

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models