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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,

[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example

is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second

is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the

reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide
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Lasso intro — Introduction to lasso

Description Remarks and examples Acknowledgments References Also see

Description
Lasso was originally an acronym for “least absolute shrinkage and selection operator”. Today, lasso

is considered a word and not an acronym.

Lasso is used for prediction, for model selection, and as a component of estimators to perform infer-

ence.

Lasso, elastic net, and square-root lasso are designed for model selection and prediction. Stata’s

lasso, elasticnet, and sqrtlasso commands implement these methods. lasso and elasticnet fit

continuous, binary, count, and failure-time outcomes, while sqrtlasso fits continuous outcomes.

Stata also provides lasso commands for inference. They use lassos to select control variables that

appear in themodel, and they estimate coefficients and standard errors for a specified subset of covariates.

Stata’s lasso inference commands implement methods known as double selection, partialing out, and

cross-fit partialing out. With each of these methods, linear, logistic, or Poisson regression can be used to

model a continuous, binary, or count outcome. Partialing out and cross-fit partialing out also allow for

endogenous covariates in linear models.

Stata also provides a specialized lasso inference command for estimating treatment effects while us-

ing lassos to select control variables. telasso estimates the average treatment effect (ATE), average

treatment effect on the treated (ATET), or potential-outcome means (POMs); see [CAUSAL] telasso.

This entry provides an overview of lasso for prediction, model selection, and inference and an intro-

duction to Stata’s suite of lasso commands.

Remarks and examples
Remarks are presented under the following headings:

Summary of Stata’s lasso and elastic-net features
What is lasso?
Lasso for prediction

How lasso for prediction works
Stata commands for prediction

Lasso for model selection
Lasso for inference

Why do we need special lasso methods for inference?
Methods of lasso for inference
Stata commands for inference

Where to learn more

1
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Summary of Stata’s lasso and elastic-net features
For those of you who are already experts on lasso, here is an overview full of buzz words without

explanations.

Stata provides three estimation commands for prediction and model selection.

lasso fits linear, logit, probit, Poisson, and Cox proportional hazards models.

The final model is selected using cross-validation (CV), adaptive lasso,

plugin estimators, or the Bayesian information criterion (BIC) function.

elasticnet also fits linear, logit, probit, Poisson, and Cox proportional hazards models.

elasticnet uses CV or the BIC function to select models.

sqrtlasso fits square-root lassos for linear models. The final model is selected using

CV, plugin estimators, or the BIC function.

After fitting a model, you obtain out-of-sample predictions by loading another dataset and typing

. predict newvarname

Stata provides another 11 lasso commands for use in inference. These 11 commands are arranged in

three groups.

ds commands perform double-selection lasso:

dsregress for linear models,

dslogit for logit models, and

dspoisson for Poisson models.

po commands perform partialing-out lasso:

poregress for linear models,

pologit for logit models,

popoisson for Poisson models, and

poivregress for linear models with endogenous covariates.

xpo commands perform cross-fit partialing-out lasso, also known as double

machine learning:

xporegress for linear models,

xpologit for logit models,

xpopoisson for Poisson models, and

xpoivregress for linear models with endogenous covariates.

Stata provides one additional lasso command for use in inference when your objective is to estimate

treatment effects.

telasso fits linear, logit, probit, and Poisson models and estimates the ATE, ATET,

or POMs.
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Stata provides two preestimation commands that help you prepare your data and specify covariates.

splitsample divides your sample into 𝑘 random subsamples. Use it for producing

subsamples for training, validation, and prediction.

vl creates named lists of variables to be included in lasso. Sometimes,

you will want to specify many potential covariates without typing every

variable name. vl creates named variable lists that can be used as

command arguments. Lists can contain hundreds or thousands of

variable names.

Stata provides eight postestimation commands that help you evaluate the selected model:

bicplot graphs the BIC function.

cvplot graphs the CV function.

coefpath graphs coefficient paths.

lassoknots displays a knot table for covariates as they enter or leave the model and

measures of fit.

lassogof reports fit statistics that help you evaluate the predictive ability of a model.

It does this for one model or for multiple models in the same table.

lassocoef lists the selected variables in the model. It does this for one model

or for multiple models in the same table.

lassoselect selects a different model from the one chosen by the estimation command.

lassoinfo reports lasso information such as the dependent variable, selection method,

and number of nonzero coefficients for one or more models.

What is lasso?
Lasso is a method for selecting and fitting covariates that appear in a model. The lasso command

can fit linear, logit, probit, Poisson, and Cox proportional hazards models. Let’s consider a linear model,

a model of y on x1, x2, . . . , xp. You would ordinarily fit this model by typing

. regress y x1 x2 ... xp

Now assume that you are uncertain which variables (covariates) belong in the model, although you

are certain that some of them do and the number of them is small relative to the number of observations

in your dataset, 𝑁. In that case, you can type

. lasso linear y x1 x2 ... xp

You can specify hundreds or even thousands of covariates. You can even specify more covariates than

there are observations in your data! The covariates you specify are the potential covariates from which

lasso selects.
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Lasso is used in three ways:

1. Lasso is used for prediction.

2. Lasso is used for model selection.

3. Lasso is used for inference.

By prediction, we mean predicting the value of an outcome conditional on a large set of potential

regressors. And we mean predicting the outcome both in and out of sample.

By model selection, we mean selecting a set of variables that predicts the outcome well. We do

not mean selecting variables in the true model or placing a scientific interpretation on the coefficients.

Instead, we mean selecting variables that correlate well with the outcome in one dataset and testing

whether those same variables predict the outcome well in other datasets.

By inference, we mean inference for interpreting and giving meaning to the coefficients of the fitted

model. Inference is concerned with estimating effects of variables in the true model and estimating

standard errors, confidence intervals, 𝑝-values, and the like.

Lasso for prediction
Lasso was invented by Tibshirani (1996) and has been commonly used in building models for predic-

tion. Hastie, Tibshirani, andWainwright (2015) provide an excellent introduction to the mechanics of the

lasso and to the lasso as a tool for prediction. See Bühlmann and van de Geer (2011) for more technical

discussion and clear discussion of the properties of lasso under different assumptions. See Cameron and

Trivedi (2022, chap. 28) for an introduction to lasso for prediction and for inference with examples using

Stata.

Lasso does not necessarily select the covariates that appear in the true model, but it does select a

set of variables that are correlated with them. If lasso selects potential covariate x47, that means x47
belongs in the model or is correlated with variables that belong in the model. If lasso omits potential

covariate x52, that means x52 does not belong in the model or belongs but is correlated with covariates

that were already selected. Because we are interested only in prediction, we are not concerned with the

exact variables selected, only that they are useful for prediction.

The model lasso selects is suitable for making predictions in samples outside the one you used for

estimation. Everyone knows about the danger of overfitting. Fit a model on one set of data and include

too many variables, and the result will exploit features randomly unique to those data that will not be

replicated in other data.

“Oh,” you may be thinking, “you mean that I can split my data into an estimation sample and a hold-

out sample, and after fitting, I can evaluate the model in the hold-out sample.” That is not what we mean,

although you can do this, and it is sometimes a good idea to do so. We mean that lasso works to avoid

the problem of overfitting by minimizing an estimate of the out-of-sample prediction error.

How lasso for prediction works

Lasso finds a solution for

y = 𝛽1 x1 + 𝛽2 x2 + · · · + 𝛽𝑝 x𝑝 + ε
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by minimizing the prediction error subject to the constraint that the model is not too complex—that is, it

is sparse. Lasso measures complexity by the sum of the absolute values of 𝛽1, 𝛽2, . . . , 𝛽𝑝. The solution

is obtained by minimizing

1
2𝑁

(y − Xβ′)′(y − Xβ′) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗| (1)

The first term, (y − Xβ′)′(y − Xβ′), is the in-sample prediction error. It is the same value that least

squares minimizes.

The second term, 𝜆 ∑𝑗 |𝛽𝑗|, is a penalty that increases in value the more complex the model. It is this

term that causes lasso to omit variables. They are omitted because of the nondifferentiable kinks in the

∑𝑗 |𝛽𝑗| absolute value terms. Had the kinks not been present—think of squared complexity terms rather

than absolute value—none of the coefficients would be exactly zero. The kinks cause some coefficients

to be zero.

If you minimized (1) with respect to the 𝛽𝑗’s and 𝜆, the solution would be 𝜆 = 0. That would set the

penalty to zero. 𝜆 = 0 corresponds to a model with maximum complexity.

Lasso proceeds differently. It minimizes (1) for given values of 𝜆. Lasso then chooses one of those

solutions as best based on another criterion, such as an estimate of the out-of-sample prediction error.

When we use lasso for prediction, we must assume the unknown true model contains few variables

relative to the number of observations, 𝑁. This is known as the sparsity assumption. How many true

variables are allowed for a given 𝑁? We can tell you that the number cannot be greater than something

proportional to
√

𝑁/ ln 𝑞, where 𝑞 = max{𝑁, 𝑝} and 𝑝 is the number of potential variables. We cannot,

however, say what the constant of proportionality is. That this upper bound decreases with 𝑞 can be

viewed as the cost of performing covariate selection.

Lasso provides various ways of selecting 𝜆: through CV, adaptive lasso, a plugin estimator, or min-

imizing the Bayesian information criterion (BIC) function. CV selects the 𝜆 that minimizes an estimate

of the out-of-sample prediction error. Adaptive lasso performs multiple lassos, each with CV. After each

lasso, variables with zero coefficients are removed, and remaining variables are given penalty weights

designed to drive small coefficients to zero. Thus, adaptive lasso typically selects fewer covariates than

CV.

The plugin method was designed to achieve an optimal sparsity rate. It tends to select a larger 𝜆 than

CV and, therefore, fewer covariates in the final model. The number of covariates selected by minimizing

BIC typically lies between the number selected by CV and the number selected by the plugin method;

however, BIC tends to be more similar to the number selected by the plugin method. Furthermore, BIC

does not require a complex derivation as does the plugin, so like CV, it can be applied in a more general

context. See [LASSO] lasso and [LASSO] lasso fitting for more information on the methods of selecting

𝜆, their differences, and how you can control the selection process.

Stata commands for prediction

We described the linear lasso model in the last section, but the concepts we have discussed apply to

models for binary and count outcomes as well.

To fit a linear lasso model, we might type

. lasso linear y x1-x500

and lasso will select a subset of variables from x1 to x500 that can be used in prediction.
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If we have a binary outcome, we could instead fit a logit model by typing

. lasso logit y x1-x500

or a probit model by typing

. lasso probit y x1-x500

For a count outcome, we could fit a Poisson model by typing

. lasso poisson y x1-x500

For failure-time data that has been stset, we could fit a Cox proportional hazards model by typing

. lasso cox x1-x500

After any of these lasso commands, we can use predict to obtain predictions of y.

For examples demonstrating how to use the lasso command to fit models suitable for prediction, see

Remarks and examples in [LASSO] lasso and also see [LASSO] lasso examples.

Stata also has commands for fitting elastic nets and square-root lassos for prediction. See

[LASSO] elasticnet and [LASSO] sqrtlasso for more information and examples.

Lasso for model selection
Model selection is an overloaded term that implies different things in different disciplines. To some,

it implies finding a true model or data-generating process. To some, it implies less. Here model selec-

tion means finding a model that fits the data, not finding a model that allows for interpreting estimated

coefficients as effects. If this is your interest, see Lasso for inference below.

Lasso for model selection builds on lasso for prediction. In fact, the same lasso methods are used in

both cases. However, the goal of the analysis is different.

Model selection uses lasso to select variables in one dataset and then fits models using the selected

variables in other datasets. For example, consider finding genes correlated with an outcome inmicroarray

data. One approach starts with lasso. Researchers use it as a sieve to select the important predictors.

They go on to test whether those predictors (genetic markers) work in other datasets. Note that these

researchers are not giving scientific meaning to the estimated coefficients. They are looking only for

markers that correlate well with an outcome.

We can perform these types of tests because our interest lies in the selected model rather than the

true coefficients of the data-generating process (DGP), sometimes called the data-generating mechanism

(DGM). Interpretation is conditional on the selected model and cannot be interpreted as causal. See, for

instance, Lee et al. (2016). As Berk et al. (2013) put it, the goal is “. . . to merely describe association

between predictor and response variables; no data generating or causal claims are implied.”

Lasso for inference
When we use lasso for inference, we are interested in interpreting the estimated coefficients. We are

also interested in standard errors, hypothesis tests, confidence intervals, comparisons across levels, and

the like. We want to interpret the results in the same way we interpret results from standard regression

models.
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Why do we need special lasso methods for inference?

It may be tempting to use lasso to select covariates and then use regress (or logit, probit, or
poisson) to fit a model with the selected covariates. The results from the regression provide estimated

coefficients and standard errors, confidence intervals, and 𝑝-values.
This approach does not work. Why?

Consider fitting a classic regression model. The standard error for a coefficient tells us about the

distribution of the coefficient in repeated sampling. The 95% confidence interval includes the true value

of the coefficient in 95% of repeated samples. Although we do not actually have repeated samples from

the population, the standard errors allow us to account for sample-to-sample variability when making

inferences.

If we use lasso to select covariates and then use regress to fit a model with only the selected covari-

ates, the results will be problematic for use in inference for a few reasons.

First, when we use lasso, or any variable-selection method, we introduce a new source of variability.

If we actually drew repeated samples from a population and used lasso to select covariates on each

one, different covariates would be selected in each dataset. However, we have selected covariates using

only a single sample. The standard errors reported by regress do not account for the sample-to-sample

variability in the variable selection.

Second, lasso tends to omit covariates with small coefficients. This problem arises because lasso

minimizes prediction error subject to the constraint that the model is not too complex, and lasso measures

complexity by the sum of the absolute values of the coefficients. Covariates with small coefficients tend

to be entrapped by the constraint. Small coefficients of covariates that belong in the model look just

like small coefficients of variables that do not. Mistakenly omitted covariates, even those with small

coefficients, can bias other coefficients. That bias is not solely a function of the size of the coefficient.

See, for instance, Leeb and Pötscher (2005, 2006, 2008) and Belloni, Chernozhukov, and Hansen (2014).

And then there are more mundane reasons the selected variables can differ from the true variables.

Imagine that you have fit a lasso model. You look at the results and observe that region-of-country

covariates are included. You are surprised because you can think of no reason why they should be and

wonder whether you are about to make an interesting discovery. You look at the lasso results in hopes

of finding an explanation. You discover that income was excluded despite your expectations to the

contrary. You find that age and education were included, but that does not surprise you. But region,

age, and education are predictors of income. That could be the entire reason why region covariates were

included. They were included only because income was excluded. Or it could be something deeper.

In general, the variables selected by lasso do not even converge to the ones in the true model as the

number of observations goes to infinity. Lasso tends to omit covariates that have small coefficients in

favor of irrelevant ones (variables not in the true model) that are correlated with the error term.

For these reasons, we must use lasso-based methods that are designed specifically for inference when

we want to interpret coefficients.

Methods of lasso for inference

With lasso inferential methods, researchers wish to interpret the covariates selected by lasso in the

context of the DGP. They apply causal interpretations to the results. This approach accounts for the fact

that lasso does not select the true model with probability one, and it accounts for the errors that arise in

model selection. To achieve this DGP causal interpretation, you must perform the selection process with
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resampling. Thus, more than split sampling is needed to obtain consistent standard errors. See Belloni,

Chernozhukov, and Hansen (2014) for an excellent introduction to using lasso to perform inference and

make causal interpretations.

When your interest is in the underlying DGP, there are various ways of using lasso to estimate the

effects of a few covariates that you have chosen a priori. These methods may be used when you know

there are more covariates in the model and that they are sparse (relative to 𝑁). These methods apply, for

instance, to performing inference about the effect of smoking on a health outcome when you know that

lots of other variables potentially affect the outcome but do not know which ones.

The double-selection, partialing-out, and cross-fit partialing-out lassos provided by Stata can handle

such problems.

Other methods for inference have been discussed in the literature. For instance, see van de Geer et al.

(2014), Javanmard and Montanari (2014), and Zhang and Zhang (2014). The methods developed there

are not implemented in Stata. While they have some appealing theoretical properties, they have not yet

been much used in applied work.

Stata commands for inference

For inference, multistage extensions of lasso provide standard errors for a subset of variables that you

specify. Imagine that you wish to estimate the coefficients for d1 and d2 in the model that includes other

covariates:

. regress y d1 d2 x1-x500

Covariates x1 through x500 are control variables, some of which you need to include to obtain valid

results for d1 and d2. Suppose your data contain 1,000 observations.

If all 500 covariates belong in the model, there is no way to proceed. Get more data. If only a small

subset of them is required and you simply do not know which they are, there is a lasso-based solution.

Type

. dsregress y d1 d2, controls(x1-x500)

Coefficients and standard errors for d1 and d2 will be reported. dsregress will use lasso to select

from the 500 covariates and do that in a way that is robust to the model-selection mistakes that lasso

makes because of sampling variability. There is no a priori limit on the number of d variables you can

specify. But more variables mean more computation time. Time is roughly proportional to the number

of d variables.

Stata provides three methods to fit these types of inferential models. They are

1. the ds double-selection commands: dsregress, dslogit, and dspoisson.

2. the po partialing-out commands: poregress, pologit, popoisson, and poivregress.

3. the xpo cross-fit partialing-out commands, also known as double machine learning:

xporegress, xpologit, xpopoisson, and xpoivregress.

All three methods require a sparsity assumption. As with lasso for prediction, these methods of lasso

for inference rely on the assumption that the number of nonzero coefficients in the true model is small

relative to the number of observations and that the coefficients are large enough relative to error variance

to be selected by the lasso.
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ds and po are asymptotically equivalent. poivregress can handle d1 and d2 being endogenous in

linear models. It does this using instrumental variables. You specify a set of potential instruments, and

lasso will select from among them. You can have many potential control variables and many potential

instruments; the number of each can be greater than 𝑁.

xpo is the most computationally intensive of the three methods. It is also generally viewed as superior

to ds and po because it allows a weaker definition of sparsity. The sparsity bound for the ds and po
methods grows in proportion to

√
𝑁, while the sparsity bound for the xpo method grows in proportion

to 𝑁.

For information on the assumptions and how the ds, po, and xpo commands work, see [LASSO] Lasso

inference intro and [LASSO] Inference requirements.

For examples of fitting lasso inferential models, see [LASSO] Inference examples.

Where to learn more
After reading this intro, you may want to learn more about lasso for prediction and model selection,

lasso for inference, and syntax for lasso commands, or you may just want to see some examples. Here

we provide a guide to the entries in this manual that you may want to read next.

If you are interested in lasso for prediction or model selection, you may want to go directly to the

syntax and examples demonstrating lasso, square-root lasso, and elastic net in

[LASSO] lasso Lasso for prediction and model selection

[LASSO] sqrtlasso Square-root lasso for prediction and model selection

[LASSO] elasticnet Elastic net for prediction and model selection

[LASSO] lasso examples Examples of lasso for prediction

If you are interested in lasso for inference, you can read more about the concepts, methods, and

corresponding Stata commands in

[LASSO] Lasso inference intro Introduction to inferential lasso models

If you want to see syntax for one of the lassos for inference commands, see

[LASSO] dsregress Double-selection lasso linear regression

[LASSO] dslogit Double-selection lasso logistic regression

[LASSO] dspoisson Double-selection lasso Poisson regression

[LASSO] poregress Partialing-out lasso linear regression

[LASSO] pologit Partialing-out lasso logistic regression

[LASSO] popoisson Partialing-out lasso Poisson regression

[LASSO] poivregress Partialing-out lasso instrumental-variables regression

[LASSO] xporegress Cross-fit partialing-out lasso linear regression

[LASSO] xpologit Cross-fit partialing-out lasso logistic regression

[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression

[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression

[LASSO] lasso options Lasso options for inferential models

Youmight insteadwant to start with worked examples that demonstrate the lasso inference commands.

[LASSO] Inference examples Examples and workflow for inference
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If your inference involves estimating treatment effects, you can read about the lasso inference com-

mand that estimates the ATE, ATET, or POMs at

[CAUSAL] telasso Treatment-effects estimation using lasso

Whether you are using lasso for prediction or for inference, you may want to learn more about the

process of fitting lasso models and how you can make modifications to this process.

[LASSO] lasso fitting The process (in a nutshell) of fitting lasso models
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Description Remarks and examples References Also see

Description
Lasso selects covariates and estimates coefficients but does not provide the standard errors required

for performing statistical inference. Stata provides three additional lasso-based methods for estimating

the coefficients and standard errors for a subset of the covariates, and the results have the added advantage

of being estimates of values from the true model that generated the data being analyzed.

The methods are double selection, partialing out, and cross-fit partialing out, which is also known

as double machine learning. They can be applied to linear, logistic, and Poisson regression models.

Partialing out and cross-fit partialing out can also be used with endogenous covariates and instrumental

variables in linear models.

Remarks and examples
Remarks are presented under the following headings:

The problem
Possible solutions
Solutions that focus on the true model

The double-selection solution
The partialing-out solution
The cross-fit partialing-out (double machine learning) solution

Where to learn more

The problem
Youwant to know the true effects of z1 and z2 on y, by whichwemean the effect in the true underlying

model that generated the data being analyzed. We specify two variables, but you could specify one or a

handful.

You do not know whether z1 and z2 belong in the model, although you have your suspicions. Your

problem is to estimate the effects (coefficients) of z1 and z2 and obtain their standard errors.

At the same time, you do not know the other variables that appear in the model, but you do know that

they are among variables from x1 to 500. You also know that only a small number of them appear. We

will be more precise about the meaning of “small” later.

Possible solutions
If you had a sufficient number of observations in your data, you could fit a linear regression of y on

z1, z2, and x1 to x500:

. regress y z1 z2 x1-x500

The above is a solution because including extra explanatory variables does not cause bias, at least

as long as the number of covariates is not too large. Including extra variables merely causes a loss of

efficiency. Except there may be nomerely about it. Youmay not have a sufficient number of observations

to fit this regression and answer questions about z1 and z2 with any degree of certainty.

12
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In that case, you could use your scientific judgment to select the covariates that need to appear in the

model:

. regress y z1 z2 x3 x9 x203 x333 x478

The problem here is that you must be correct about the variables you included and excluded. And the

insight that led you to choose them cannot come from the data. And the choice you made is not testable.

And theory seldom provides sufficient guidance about variables or their functional form. In the age of

big data, modern research is increasingly looking for data-dependent guidance and rules.

Here is yet another solution. Select and fit the model using lasso, and force the inclusion of z1 and

z2 with parentheses:

. lasso linear y (z1 z2) x1-x500

Now lasso will select a model and obtain its coefficients. Problem is, the lasso procedure does

not provide standard errors. You cannot perform statistical tests of significance of z1 and z2 or obtain

confidence intervals for them. And there is a reason for that. lasso does not account for mistakes in

selecting from the potential covariates x1 to x500. Any mistakes it makes in selecting covariates that are

also correlated with z1 or z2 would lead to bias in estimating the coefficients and standard errors of z1
and z2.

Here is a solution. Refit the model that lasso selected using regress. We would not recommend

this. Everyone agrees that it would be better to split your data into two samples, use the first to select the

model, and use the second to refit it. You will now have the standard errors you need. But even this will

not provide good estimates and standard errors if your interest is in the true model that generated the data.

The problem is twofold. First, this process still does not account sufficiently for the sampling variability

of the selection process for variables from x1 to x500. Second, it does not account for the possibility of
small coefficients in the true model. This second problem is more common and more detrimental than

you might guess. See, for instance, Leeb and Pötscher (2005, 2006, 2008) and Belloni, Chernozhukov,

and Hansen (2014a).

Solutions that focus on the true model
If your interest is inference about z1 and z2 in the true model that generated the data, the solution is

to type

. dsregress y z1 z2, controls(x1-x500)

or

. poregress y z1 z2, controls(x1-x500)

or

. xporegress y z1 z2, controls(x1-x500)

These commands produce the double selection, partialing-out, and cross-fit partialing-out solutions, re-

spectively, for the linear model, but commands also exist for logistic, Poisson, and instrumental-variables

regression. These solutions all use multiple lassos and moment conditions that are robust to the model-

selection mistakes that lasso makes; namely, that it does not select the covariates of the true model with

probability 1. Of the three, the cross-fit partialing-out solution is best, but it can take a long time to run.

The other two solutions are most certainly respectable. The cross-fit solution allows the true model to

have more coefficients, and it allows the number of potential covariates, x1-x500 in our examples, to be

much larger. Technically, cross-fit has a less restrictive sparsity requirement.
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All three of the methods have a sparsity requirement, and we have advice for you.

1. Let the commands fit the lassos using the default method, which is plugin.

2. If meeting the sparsity requirement concerns you, use cross-fit partialing out.

You may think of sparsity requirements as being unique to lasso, but they are not. Think about fitting

an ordinary logistic regression model or any other estimator with only asymptotic properties. How many

variables can be reliably included in the model if you have 100 observations? 500 observations? 1,000?

10,000? There is no answer to those questions except to say more with 1,000 than 500, more with 10,000

than 1,000, and so on.

The story is the same with the three inference methods. We can tell you more observations are better,

and we can tell you more. Their requirements are stricter than those for logistic regression. The sparsity

requirement for double selection and partialing out is that

𝑠√
𝑁/ ln 𝑝

is small

where 𝑠 is the number of covariates in the true model, 𝑁 is the number of observations in the data, and

𝑝 is the number of potential covariates. The sparsity requirement for cross-fit partialing out is the same,

except that
√

𝑁 is replaced by 𝑁. It is that

𝑠
𝑁/ ln 𝑝

is small

𝑁 is much larger than
√

𝑁. That is why we said that, if meeting the sparsity requirement concerns you,

use cross-fit partialing out. It allows more covariates for all values of 𝑁.

We recommended that the lassos be fit using plugins because plugins were developed with these three

methods in mind. Plugins tend to produce models with fewer “extra” covariates. Fitting the lassos using

cross-validation for selection, on the other hand, tends to include lots of extra covariates. Using the

Bayesian information criterion function for selection tends to include a number of covariates that falls

between the numbers selected by the other two methods.

All three methods report the estimated coefficients for z1 and z2, their standard errors, test statis-

tics, and confidence intervals. Understanding how they work will be easier if we reduce the number of

variables from two to one. Let’s consider obtaining estimates for 𝛼 in the model

𝑦 = 𝑑𝛼 + xβ+ 𝜖

where 𝑑 is the covariate of interest.

The double-selection solution

Double selection is the easiest of the three to explain. Its algorithm is the following:

1. Run a lasso of 𝑑 on x.

2. Run a lasso of 𝑦 on x.

3. Let ̃x be the union of the selected covariates from steps 1 and 2.

4. Regress 𝑦 on 𝑑 and x̃.

The estimate of 𝛼 and its test statistics are then the coefficient on 𝑑 and its test statistics.
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Step 1 is the extra selection step from which double selection gets its name. It is this step that causes

the method to be robust to the mistakes in model selection that lasso makes.

Stata provides three double-selection commands—dsregress, dslogit, and dspoisson.

The partialing-out solution

The algorithm is the following:

1. Run a lasso of 𝑑 on x. Let x̃𝑑 be the covariates selected.

2. Regress 𝑑 on x̃𝑑. Let
̃𝑑 be the residuals from this regression.

3. Run a lasso of 𝑦 on x. Let x̃𝑦 be the covariates selected.

4. Regress 𝑦 on x̃𝑦. Let ̃𝑦 be the residuals from this regression.

5. Regress ̃𝑦 on ̃𝑑.

The estimate of 𝛼 and its test statistics are then the coefficient on ̃𝑑 and its test statistics.

This algorithm is a high-dimensional version of the classic partialing-out estimator, which you can

learn about in Wooldridge (2020, chap. 3-2). In the classic estimator, the moment conditions used to

estimate the coefficient on 𝑑 are orthogonal to the variables in x. In the high-dimensional variant, the

moment conditions in step 5 are orthogonal to the relevant variables in x; thus, small changes in the

variables included do not have a significant effect on the estimator for 𝛼.
Stata provides four partialing-out commands—poregress, pologit, popoisson, and

poivregress.

poivregress provides a variation on the algorithm shown above that handles endogenous variables

with instrumental variables in linear models.

The cross-fit partialing-out (double machine learning) solution

Cross-fit partialing out is a split-sample version of partialing out. Cross-fit partialing out is also known

as double machine learning (DML).

1. Divide the data in roughly equal-sized subsamples 1 and 2.

2. In sample 1:

a. Run a lasso of 𝑑 on x. Let x̃𝑑1 be the covariates.

b. Regress 𝑑 on x̃𝑑1. Let β̂1 be the estimated coefficients.

c. Run a lasso of 𝑦 on x. Let x̃𝑦1 be the covariates selected.

d. Regress 𝑦 on x̃𝑦1. Let 𝛄̂1 be the estimated coefficients.

3. In sample 2:

a. Fill in ̃𝑑 = 𝑑 − x̃𝑑1β̂1.

b. Fill in ̃𝑦 = 𝑦 − x̃𝑦1 ̂𝛾1.
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4. Still in sample 2:

a. Run a lasso of 𝑑 on x. Let x̃𝑑2 be the covariates.

b. Regress 𝑑 on x̃𝑑2. Let β̂2 be the estimated coefficients.

c. Run a lasso of 𝑦 on x. Let x̃𝑦2 be the covariates selected.

d. Regress 𝑦 on x̃𝑦2. Let 𝛄̂2 be the estimated coefficients.

5. In sample 1:

a. Fill in ̃𝑑 = 𝑑 − x̃𝑑2β̂2.

b. Fill in ̃𝑦 = 𝑦 − x̃𝑦2𝛄̂2.

6. In the full sample: Regress ̃𝑦 on ̃𝑑.

The estimate of 𝛼 and its test statistics are then the coefficient on ̃𝑑 and its test statistics.

Cross-fit partialing out has a more relaxed sparsity requirement than partialing out and double selec-

tion, as we mentioned earlier. This is because the sample is split and coefficients are obtained from one

sample and used in another, which is independent, and that adds robustness.

There are two variants of cross-fit partialing out (recall it is also known as DML): DML1 and DML2.

Shown above is the algorithm for DML2, which is Stata’s default method. DML1, available as an option,

predates DML2 and solves the moment conditions within each fold (group) that is cross-fit and then

averages. DML2, by comparison, solves the moment conditions jointly. See Methods and formulas.

DML2 produced better results in simulations in Chernozhukov et al. (2018).

In the algorithm shown, the sample is split in two. The software splits it into 𝐾 parts, where 𝐾 = 10

by default. You could specify 𝐾 = 2, but you would not want to do that. Larger 𝐾 works better and

𝐾 = 10 is viewed as sufficient. This is known as the 10-fold method.

Stata provides four cross-fit partialing-out commands—xporegress, xpologit, xpopoisson, and
xpoivregress. xpoivregress provides a variation on the algorithms that handles endogenous vari-

ables with instrumental variables in linear models.

Where to learn more
See

[LASSO] dsregress Double-selection lasso linear regression

[LASSO] dslogit Double-selection lasso logistic regression

[LASSO] dspoisson Double-selection lasso Poisson regression

[LASSO] poregress Partialing-out lasso linear regression

[LASSO] pologit Partialing-out lasso logistic regression

[LASSO] popoisson Partialing-out lasso Poisson regression

[LASSO] poivregress Partialing-out lasso instrumental-variables regression

[LASSO] xporegress Cross-fit partialing-out lasso linear regression

[LASSO] xpologit Cross-fit partialing-out lasso logistic regression

[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression

[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression

And then there is the literature.
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For a strikingly readable introduction, see Belloni, Chernozhukov, and Hansen (2014a). For a more

technical discussion, see Belloni and Chernozhukov (2011).

Double selection was developed by Belloni, Chernozhukov, and Hansen (2014b). Their article also

provides first-rate intuition on why the process works.

Partialing out was developed by Belloni et al. (2012). The 2012 date makes it appear that partialing out

predates double selection, but the ordering was due to different publication lags. Their article also devel-

ops the plugin estimator for lasso and then develops the partialing-out instrumental-variables estimator.

Partialing out was extended from linear to nonlinear models by Belloni, Chernozhukov, andWei (2016).

For a three-page introduction to the partialing-out instrumental-variables estimator, see Chernozhukov,

Hansen, and Spindler (2015).

Cross-fit partialing out was developed by Chernozhukov et al. (2018). The researchers of this article

had worked on these issues for years. They later came together to assemble this important article, which

is an odd but appealing mix of intuition and technical derivations, especially concerning sample splitting.

Bickel, Ritov, and Tsybakov (2009) predates all the above and provided the theoretical foundations

for what would become the plugin estimator. It also provided rates of convergence for the lasso which

was used by subsequent authors. The article is both seminal and technical.
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Also see
[LASSO] Lasso intro — Introduction to lasso



bicplot — Plot Bayesian information criterion function after lasso

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
bicplot graphs the Bayesian information criterion (BIC) function after a lasso fit.

bicplot can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso inference
commands.

Quick start
Graph the BIC function after lasso, sqrtlasso, or elasticnet

bicplot

Graph the BIC function after elasticnet for 𝛼 = 0.5

bicplot, alpha(.5)

After any of the ds or po commands, graph the BIC function for the dependent variable y
bicplot, for(y)

After an xpo command without option resample, graph the BIC function for x in cross-fit fold 2

bicplot, for(x) xfold(2)

After an xpo command with resample, graph the BIC function for x in cross-fit fold 2 for the first

resample

bicplot, for(x) xfold(2) resample(1)

Same as above, but graph the BIC function as a function of the ℓ1-norm of the standardized coefficient

vector

bicplot, for(x) xfold(2) resample(1) xunits(l1norm)

After telasso, graph the BIC function for the outcome variable y at treatment level 1

bicplot, for(y) tlevel(1)

Menu
Statistics > Postestimation
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Syntax

After lasso, sqrtlasso, and elasticnet

bicplot [ , options ]

After ds and po commands

bicplot, for(varspec) [ options ]

After xpo commands without resample

bicplot, for(varspec) xfold(#) [ options ]

After xpo commands with resample

bicplot, for(varspec) xfold(#) resample(#) [ options ]

After telasso for the outcome variable

bicplot, for(varspec) tlevel(#) [ options ]

After telasso for the treatment variable

bicplot, for(varspec) [ options ]

After telasso for the outcome variable with cross-fitting but without resample

bicplot, for(varspec) tlevel(#) xfold(#) [ options ]

After telasso for the treatment variable with cross-fitting but without resample

bicplot, for(varspec) xfold(#) [ options ]

After telasso for the outcome variable with cross-fitting and resample

bicplot, for(varspec) tlevel(#) xfold(#) resample(#) [ options ]

After telasso for the treatment variable with cross-fitting and resample

bicplot, for(varspec) xfold(#) resample(#) [ options ]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or

pred(varname).



bicplot — Plot Bayesian information criterion function after lasso 21

options Description

Main

xunits(x unit spec) 𝑥-axis units (scale); default is xunits(rlnlambda), where
rlnlambda denotes 𝜆 on a reverse logarithmic scale

minmax add labels for the minimum and maximum 𝑥-axis units
∗ for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗ xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗ resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗ tlevel(#) lasso for the outcome model with the treatment level #;

telasso only

alpha(#) graph BIC function for 𝛼 = # ; default is the selected value 𝛼∗;
allowed after elasticnet only

lineopts(cline options) affect rendition of the plotted lines

Reference lines

biclineopts(xline options) affect rendition of reference line identifying the minimum
of the BIC function or other stopping rule

nobicline suppress reference line identifying the minimum of the BIC

function or other stopping rule

lslineopts(xline options) affect rendition of reference line identifying the value selected
using lassoselect

nolsline suppress reference line identifying the value selected using
lassoselect

rlabelopts(r label opts) change look of labels for reference line

Data

data( filename [ , replace ]) save plot data to filename

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.

resample(#) is required for xpo and for telasso when the option resample(#) was specified.

tlevel(#) is required for the outcome model in telasso.

x unit spec Description

rlnlambda 𝜆 on a reverse logarithmic scale; the default

lnlambda 𝜆 on a logarithmic scale

l1norm ℓ1-norm of standardized coefficient vector

l1normraw ℓ1-norm of unstandardized coefficient vector
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xline options Description

style(addedlinestyle) overall style of added line

[no]extend [do not] extend line through plot region’s margins

lstyle(linestyle) overall style of line

lpattern(linepatternstyle) line pattern (solid, dashed, etc.)

lwidth(linewidthstyle) thickness of line

lcolor(colorstyle) color and opacity of line

r label opts Description

labgap(size) margin between tick and label

labstyle(textstyle) overall style of label

labsize(textsizestyle) size of label

labcolor(colorstyle) color and opacity of label

Options

� � �
Main �

xunits(x unit spec) specifies the 𝑥-axis units used for graphing the BIC function. The following

x unit specs are available:

rlnlambda specifies 𝑥-axis units 𝜆 on a reverse logarithmic scale. This is the default.

lnlambda specifies 𝑥-axis units 𝜆 on a logarithmic scale.

l1norm specifies 𝑥-axis units ℓ1-norm of the standardized coefficient vector.

l1normraw specifies 𝑥-axis units ℓ1-norm of the unstandardized coefficient vector.

minmax adds labels for the minimum and maximum 𝑥-axis units to the graph of the BIC function.

for(varspec) specifies a particular lasso after telasso or a ds, po, or xpo estimation command fit

using the option selection(bic). For all commands except poivregress and xpoivregress,
varspec is always varname; it is either depvar, the dependent variable, or one of varsofinterest for

which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso for
depvar is specified with its varname. For the endogenous variable varname, there are two lassos,

which can be identified by varname and pred(varname). The exogenous variables of interest each
have only one lasso, and it is specified by pred(varname).

This option is required after ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command. For each variable to be fit with

a lasso, 𝐾 lassos are done, one for each cross-fit fold, where 𝐾 is the number of folds. This option

specifies which fold, where # = 1, 2, . . . , 𝐾. xfold(#) is required after an xpo command.

resample(#) specifies a particular lasso after an xpo estimation command fit using the option

resample(#). For each variable to be fit with a lasso, 𝑅 × 𝐾 lassos are done, where 𝑅 is the num-

ber of resamples and 𝐾 is the number of cross-fitting folds. This option specifies which resample,

where # = 1, 2, . . . , 𝑅. resample(#), along with xfold(#), is required after an xpo command with

resampling.
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tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs the BIC function for 𝛼 = #. The default is alpha(𝛼∗), where 𝛼∗ is the selected 𝛼.
alpha(#) may only be specified after elasticnet.

lineopts(cline options) affects the rendition of the plotted line. See [G-3] cline options.

� � �
Reference lines �

biclineopts(xline options) affects the rendition of the reference line identifying the minimum BIC

value, the value selected when the stopping tolerance is reached, or the grid-minimum value.

xline options are the following: style(addedlinestyle), noextend, lstyle(linestyle),
lpattern(linepatternstyle), lwidth(linewidthstyle), and lcolor(colorstyle). They specify

how the reference line identifying the minimum BIC value is presented. See [G-4] addedlinestyle,

[G-4] linestyle, [G-4] linepatternstyle, [G-4] linewidthstyle, and [G-4] colorstyle.

nobicline suppresses the reference line identifying the minimum BIC value, the value selected when

either the stopping tolerance or the grid-minimum value is reached.

lslineopts(xline options) affects the rendition of the reference line identifying the value selected

using lassoselect.

xline options are the following: style(addedlinestyle), noextend, lstyle(linestyle),
lpattern(linepatternstyle), lwidth(linewidthstyle), and lcolor(colorstyle). They specify

how the reference line identifying the value selected using lassoselect is presented. See

[G-4] addedlinestyle, [G-4] linestyle, [G-4] linepatternstyle, [G-4] linewidthstyle, and [G-4] colorstyle.

nolsline suppresses the reference line identifying the value selected using lassoselect.

rlabelopts(r label opts) changes the look of labels for the reference line. The label options

labgap(relativesize), labstyle(textstyle), labsize(textsizestyle), and labcolor(colorstyle)
specify details about how the labels are presented. See [G-4] size, [G-4] textstyle, [G-4] textsizestyle,

and [G-4] colorstyle.

� � �
Data �

data(filename [ , replace ]) saves the plot data to a Stata data file.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

Remarks and examples
BIC plots graph the BIC function over the search grid for the lasso penalty parameter 𝜆.
The search grid can be shown as the log of the lasso penalty parameter 𝜆, xunits(lnlambda);

the reverse of that scale, xunits(rlnlambda); the ℓ1-norm of the standardized coefficients,

xunits(l1norm); or the ℓ1-norm of the unstandardized coefficients, xunits(l1normraw). The re-

verse log of lambda is the default because it represents the BIC search path over 𝜆, with the first 𝜆 tried

on the left and the last 𝜆 tried on the right.
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BIC plots can be drawn after any command that directly searches over a grid of 𝜆’s. They can be

drawn after the commands lasso, elasticnet, sqrtlasso, telasso, or any of the 11 lasso inference
commands.

Examples that demonstrate how to use bicplot after the lasso command can be found in BIC in

[LASSO] lasso examples.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[CAUSAL] telasso postestimation — Postestimation tools for telasso
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Description Quick start Menu Syntax Options
Remarks and examples Also see

Description
coefpath graphs the coefficient paths after any lasso fit using selection(cv),

selection(adaptive), selection(bic), or selection(none). A line is drawn for each co-

efficient that traces its value over the searched values of the lasso penalty parameter 𝜆 or over the

ℓ1-norm of the fitted coefficients that result from lasso selection using those values of 𝜆.
coefpath can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso inference

commands.

Quick start
Graph the coefficient paths after lasso, sqrtlasso, or elasticnet

coefpath

Graph the unstandardized coefficient paths

coefpath, rawcoefs

Graph the coefficient paths after elasticnet for the 𝛼 = 0.5 lasso

coefpath, alpha(.5)

Same as above, but graph the paths using a single linestyle, rather than line-specific linestyles

coefpath, alpha(.5) mono

After any of the ds or po commands, graph the paths for the dependent variable y
coefpath, for(y)

Same as above, but graph the paths as a function of ln𝜆
coefpath, for(y) xunits(lnlambda)

After an xpo command without resample, graph the paths for x in cross-fit fold 2

coefpath, for(x) xfold(2)

After an xpo command with resample, graph the paths for x in cross-fit fold 2 for the first resample

coefpath, for(x) xfold(2) resample(1)

After telasso, graph the paths for the outcome variable y at treatment level 1

coefpath, for(y) tlevel(1)

Menu
Statistics > Postestimation
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Syntax

After lasso, sqrtlasso, and elasticnet

coefpath [ , options ]

After ds and po commands

coefpath, for(varspec) [ options ]

After xpo commands without resample

coefpath, for(varspec) xfold(#) [ options ]

After xpo commands with resample

coefpath, for(varspec) xfold(#) resample(#) [ options ]

After telasso for the outcome variable

coefpath, for(varspec) tlevel(#) [ options ]

After telasso for the treatment variable

coefpath, for(varspec) [ options ]

After telasso for the outcome variable with cross-fitting but without resample

coefpath, for(varspec) tlevel(#) xfold(#) [ options ]

After telasso for the treatment variable with cross-fitting but without resample

coefpath, for(varspec) xfold(#) [ options ]

After telasso for the outcome variable with cross-fitting and resample

coefpath, for(varspec) tlevel(#) xfold(#) resample(#) [ options ]

After telasso for the treatment variable with cross-fitting and resample

coefpath, for(varspec) xfold(#) resample(#) [ options ]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or

pred(varname).
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options Description

Main

xunits(x unit spec) 𝑥-axis units (scale); default is xunits(l1norm)
minmax adds minimum and maximum values to the 𝑥 axis

∗ for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗ xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗ resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗ tlevel(#) lasso for the outcome model with the treatment level #;

telasso only

alpha(#) graph coefficient paths for 𝛼 = # ; default is the selected
value 𝛼∗; only allowed after elasticnet

rawcoefs graph unstandardized coefficient paths

Reference line

rlopts(cline options) affect rendition of reference line

norefline suppress plotting reference line

Path

lineopts(cline options) affect rendition of all coefficient paths; not allowed when there
are 100 or more coefficients

line#opts(cline options) affect rendition of coefficient path # ; not allowed when there
are 100 or more coefficients

mono graph coefficient paths using a single line; default is mono
for 100 or more coefficients

monoopts(cline options) affect rendition of line used to graph coefficient paths when
mono is specified

Data

data( filename [ , replace ]) save plot data to filename

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.

resample(#) is required for xpo and for telasso when the option resample(#) was specified.

tlevel(#) is required for the outcome model in telasso.

x unit spec Description

l1norm ℓ1-norm of standardized coefficient vector; the default

l1normraw ℓ1-norm of unstandardized coefficient vector

lnlambda 𝜆 on a logarithmic scale

rlnlambda 𝜆 on a reverse logarithmic scale
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Options

� � �
Main �

xunits(x unit spec) specifies the 𝑥-axis units used for graphing the coefficient paths. The following
x unit specs are available:

l1norm specifies 𝑥-axis units ℓ1-norm of the standardized coefficient vector. This is the default.

l1normraw specifies 𝑥-axis units ℓ1-norm of the unstandardized coefficient vector.

lnlambda specifies 𝑥-axis units 𝜆 on a logarithmic scale.

rlnlambda specifies 𝑥-axis units 𝜆 on a reverse logarithmic scale.

minmax adds minimum and maximum values to the 𝑥 axis.

for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command fit

using the option selection(cv), selection(adaptive), or selection(bic). For all commands

except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either dep-
var, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso for
depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by

varname and pred(varname). The exogenous variables of interest each have only one lasso, and it
is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the

option xfolds(#) was specified. For each variable to be fit with a lasso, 𝐾 lassos are done, one

for each cross-fit fold, where 𝐾 is the number of folds. This option specifies which fold, where

# = 1, 2, . . . , 𝐾. xfold(#) is required after an xpo command and after telasso when the option

xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using the
option resample(#). For each variable to be fit with a lasso, 𝑅 × 𝐾 lassos are done, where 𝑅 is the

number of resamples and𝐾 is the number of cross-fitting folds. This option specifies which resample,

where # = 1, 2, . . . , 𝑅. resample(#), along with xfold(#), is required after an xpo command and

after telasso with resampling.

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs coefficient paths for 𝛼 = #. The default is alpha(𝛼∗), where 𝛼∗ is the selected 𝛼.
alpha(#) may only be specified after elasticnet.

rawcoefs specifies that unstandardized coefficient paths be graphed. By default, coefficients of stan-

dardized variables (mean 0 and standard deviation 1) are graphed.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

norefline suppresses plotting the reference line.
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� � �
Path �

lineopts(cline options) affects the rendition of all coefficient paths. See [G-3] cline options.

lineopts() is not allowed when there are 100 or more coefficients.

line#opts(cline options) affects the rendition of coefficient path #. See [G-3] cline options.

line#opts() is not allowed when there are 100 or more coefficients.

mono graphs the coefficient paths using a single line. mono is the default when there are 100 or more

coefficients in the lasso.

monoopts(cline options) affects the rendition of the line used to graph the coefficient paths when mono
is specified. See [G-3] cline options.

� � �
Data �

data(filename [ , replace ]) saves the plot data to a Stata data file.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Coefficient path plots
An example
Adding a legend
𝜆 scale and reference line
After fitting with sqrtlasso
After fitting with elasticnet
After fitting with inference commands

Coefficient path plots
Coefficient path plots show the path of each coefficient over the search grid for the lasso penalty

parameter 𝜆. The grid can be shown as either the log of lambda, xunits(lnlambda); the reverse of
that scale, xunits(rlnlambda); the ℓ1-norm of the standardized coefficients, xunits(l1norm) (the

default); or the ℓ1-norm of the unstandardized coefficients. The ℓ1-norm of the standardized coefficients

is traditionally the default because it directly represents the lasso constraint in the standardized coefficient

space—the maximum allowed sum of the absolute values of the coefficients subject to a value of lambda.

𝜆 and the ℓ1-norm have an inverse monotonic relationship. 𝜆 is the lasso penalty. The ℓ1-norm is its

impact on the length of the coefficient vector.

Coefficient path plots can be drawn after any command that directly searches over a grid of

𝜆’s—that is, after any command that uses option selection(cv), selection(adaptive), or

selection(none). They can be drawn after commands lasso, elasticnet, sqrtlasso, or any of

the 11 lasso inference commands.
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An example
We used the auto dataset to demonstrate the lasso command in [LASSO] lasso.

. sysuse auto
(1978 automobile data)

While this dataset is an unlikely candidate for fitting with lasso, it is perfectly good for demonstrating

both lasso fitting and coefpath.

In that entry, we discussed how to model mpg on the remaining covariates in the dataset by typing

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio price
> trunk length displacement, selection(cv, alllambdas) stop(0) rseed(12345)
Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
(output omitted )

Grid value 100: lambda = .0004691 no. of nonzero coef. = 13
10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100
(output omitted )

Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
... cross-validation complete
Lasso linear model No. of obs = 69

No. of covariates = 15
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 0.0049 33.74852
40 lambda before .1246008 8 0.6225 12.80314

* 41 selected lambda .1135316 8 0.6226 12.79854
42 lambda after .1034458 8 0.6218 12.82783

100 last lambda .0004691 13 0.5734 14.46932

* lambda selected by cross-validation.

This command is fully explained in [LASSO] lasso. Of special interest here is the suboption

alllambdas and the option stop(0). Together, they ensure that the full 100 default values in the cross-
validation grid are searched. Otherwise, lasso will stop searching once it has found an optimum or once

one of its other stopping rules is met.
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Graphing the coefficient paths for this lasso fit is as easy as typing

. coefpath
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Coefficient paths

The 𝑥 axis shows the sum of the absolute values of the penalized coefficients (the ℓ1-norm) going

from 0 to 15. Each line traces the penalized coefficient for one of the standardized covariates in our

model. These graphs are popular but pose a bit of a conundrum. They can only be interpreted when there

are few covariates, yet lasso is often most applicable when there are many covariates.

Adding a legend
Often, there are too many variables to allow for interest in any single path. These data are small

enough that we can look at each covariate. Let’s turn the legend on and place it beside the graph, using

a single column for the keys,

. coefpath, lineopts(lwidth(thick)) legend(on)
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Looking at the graph, we now know which variable is traced by each line. We see that car weight
is traced by the light green line that starts off downward before its effect declines toward 0. What is

happening here is that weight enters early and absorbs any effect of other variables that are correlated

with it but have yet to enter the model. When 5.rep78 enters the model, the coefficient on weight
flattens. As gear ratio, price, and turn enter, the effect of weight is further attenuated toward 0.

This is simply what happens when correlated variables are added to a model. With lasso, they are added

slowly because the lasso penalty brings in the coefficients in a penalized form rather than all at once.

Lasso is just letting variables into the model based on its penalty and the current value of lambda. We

can see what is happening, but that is about it.

𝜆 scale and reference line
In this example from [LASSO] lasso, we might find it yet more interesting to put our plot on the same

scale as the cvplot from that entry and add a reference line for the 𝜆 selected by cross-validation. We

change the scale by adding xunits(rlnlambda) and place the reference line by adding xline(.1135),
. coefpath, lineopts(lwidth(thick)) legend(on) xunits(rlnlambda) xline(.1135)

-3

-2

-1

0

1

2

S
ta

nd
ar

di
ze

d 
co

ef
fic

ie
nt

s

.001.01.11
λ

0.foreign
1.foreign
1.rep78
2.rep78
3.rep78
4.rep78
5.rep78
headroom
weight
turn
gear_ratio
price
trunk
length
displacement

Coefficient paths

We know from the output of lasso that cross-validation selected eight coefficients. We can now see

where each of them is in its path when cross-validation selected a model.

After fitting with sqrtlasso
There is not much to say about using coefpath after fitting with sqrtlasso. You type the same

thing after sqrtlasso that you would type after lasso.

If you wish to see that, you can simply change lasso to sqrtlasso in the estimation command

above. Make no changes to any other commands.

What’s more, you can add the option sqrtlasso whenever it is allowed to any of the inference

commands below. Nothing changes in the way we specify our coefpath commands.

After fitting with elasticnet
The only thing that changes with coefpath after an elasticnet command is that we can specify the

option alpha() to graph the paths for a value of 𝛼 that is different than the alpha chosen by elasticnet.
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We can fit an elasticnet model using the auto dataset:

. elasticnet linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement,
> selection(cv, alllambdas) stop(0) rseed(12345)
(output omitted )

Elastic net linear model No. of obs = 69
No. of covariates = 15

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 9.382281 0 -0.0064 34.13399

109 last lambda .0004691 13 0.5734 14.46932

0.750
110 first lambda 9.382281 0 -0.0064 34.13399
218 last lambda .0004691 14 0.5736 14.46276

0.500
219 first lambda 9.382281 0 -0.0033 34.02853
264 lambda before .1647149 11 0.6328 12.45289

* 265 selected lambda .1500821 11 0.6331 12.44435
266 lambda after .1367492 11 0.6331 12.44506
327 last lambda .0004691 14 0.5738 14.4564

* alpha and lambda selected by cross-validation.
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We see that cross-validation chose 𝛼 to be 0.5. Had it chosen 1, the elasticnet would have reduced

to lasso. To see the coefficient path graph for 𝛼 = 0.5, we simply type

. coefpath
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αCV = .5 is the cross-validation minimum α.

Coefficient paths

That looks quite a bit different from the first graph we drew in this entry, which is the graph for lasso

and would be the same as the graph we would get if we added the option alpha(1).

If we wanted the graph for 𝛼 = 0.75, we would type

. coefpath, alpha(.75)

After fitting with inference commands
All postestimation tools, including coefpath, can be used after the ds, ps, and xpo inference com-

mands. Of all the postestimation commands, coefpath is the least likely to be useful in this context.

The inference commands use lassos to select control variables from a set of potential controls. Aside

from diagnosing whether something pathological occurred in the lasso, you are not supposed to care

which controls were selected, much less their coefficients, and even less the path of those coefficients.

Regardless, you can draw coefficient path plots for any lasso run by an inference command.

We will use a few of the examples from [LASSO] Inference examples to show you what to type to

create a coefficient path plot.

All these examples use breathe.dta, which attempts to measure the effect of nitrogen dioxide on

the reaction time of school children. All these examples will run, but we dispense with the output here.

If you are curious, run some.

To prepare the dataset, type

. use https://www.stata-press.com/data/r19/breathe

. do no2

All the ds (double-selection) and po (partialing-out) coefpaths are drawn in exactly the same way.

To fit one of the double-selection models from [LASSO] Inference examples, we type

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
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Recall that we are using global macros $cc and $fc to hold our control variables. $cc holds the

continuous controls, and $fc holds the factor-variable controls. Typing $cc simply substitutes the list

of continuous controls into our command, and likewise for $fc. We write i.($fc) so that each of the

variables in $fc is expanded into dummy variables for each distinct level of the variable.

To draw the coefficient path plot for the lasso of the dependent variable react, we type

. coefpath, for(react)

To draw the plot for the lasso of the variable of interest no2 class, we type

. coefpath, for(no2_class)

If we had fit the models via partialing out by typing poregress instead of dsregress, nothing would
change. Typing coefpath, for(react) would still produce the coefficient path plot for the lasso of

react, and typing coefpath, for(no2 class) would still produce the plot for no2 class.

What’s more, what we type to plot coefficient paths does not change if our dependent variable were

dichotomous andwe had fit themodel by using dslogit or pologit. Nor does it change if the dependent
variable is a count and we fit the model by using dspoisson or popoisson.

Things do change if we fit the model by using the xpo (cross-fit partialing-out) estimators. The xpo
estimators perform lots of lassos. Let’s refit our original model using xporegress.

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted )

To see the lassos that xporegress ran, we can use lassoinfo:

. lassoinfo, each
Estimate: active
Command: xporegress

No. of
Dependent Selection xfold Selection selected
variable Model method no. criterion lambda variables

no2_class linear cv 1 CV min. .1801304 14
no2_class linear cv 2 CV min. .2561599 10
no2_class linear cv 3 CV min. .2181624 13
no2_class linear cv 4 CV min. .1963854 13
no2_class linear cv 5 CV min. .2352711 11
no2_class linear cv 6 CV min. .2663564 12
no2_class linear cv 7 CV min. .1293717 16
no2_class linear cv 8 CV min. .1722497 15
no2_class linear cv 9 CV min. .264197 9
no2_class linear cv 10 CV min. .1184878 16

react linear cv 1 CV min. 2.130811 19
react linear cv 2 CV min. 2.443412 16
react linear cv 3 CV min. 2.062956 17
react linear cv 4 CV min. 4.220311 13
react linear cv 5 CV min. 7.434224 8
react linear cv 6 CV min. 3.356193 14
react linear cv 7 CV min. 7.954354 6
react linear cv 8 CV min. 6.422852 8
react linear cv 9 CV min. 2.982171 15
react linear cv 10 CV min. 2.738883 18
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That’s 20 lassos! react has 10 and no2 class has 10. There is one lasso for each variable for each

cross-validation fold. The cross-validation folds are enumerated in the column titled xfold no.. To see
the cross-validation plot for the third cross-validation fold for the variable react, we type

. coefpath, for(react) xfold(3)

Change react to no2 class to see the plot for no2 class.

Feel free to plot all 18 other pairings of each variable with the cross-validation folds.

Again, it would not matter if we had fit xpologit or xpopoisson models. We type the same thing

to see our coefficient path plots.

The cross-fit models can create even more lassos. We are willing to resample the whole process to

reduce the sampling variability. Let’s resample the process 10 times:

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) ///
resample(10) rseed(12345)

If you type that command, be patient; it takes a few minutes to run.

Now, let’s look at our lassos:

. lassoinfo, each
Estimate: active
Command: xporegress

No. of
Dependent Selection Resample xfold Selection sel.
variable Model method number no. criterion lambda var.

no2_class linear cv 1 1 CV min. .1801304 14
no2_class linear cv 1 2 CV min. .2561599 10
(output omitted )
no2_class linear cv 1 10 CV min. .1184878 16
no2_class linear cv 2 1 CV min. .2118238 12
(output omitted )
no2_class linear cv 2 10 CV min. .1773874 13
(output omitted )
no2_class linear cv 3 10 CV min. .1676957 13

react linear cv 1 1 CV min. 2.130811 19
(output omitted )

react linear cv 1 10 CV min. 2.738883 18
react linear cv 2 1 CV min. 4.379673 14

(output omitted )
react linear cv 2 10 CV min. 3.747121 14
react linear cv 3 1 CV min. 5.821677 11

(output omitted )
react linear cv 3 10 CV min. 3.668243 13

We now have 30 of them! There is one for each variable within each cross-validation sample within

each resample sample. Here is howwewould graph the coefficient path plot for the third cross-validation

sample in the second resample sample for the covariate of interest no2 class.

. coefpath, for(no2_class) resample(2) xfold(3)

If we had typed resample(10) instead of resample(3) on our xporegress command, we would

have 200 possible graphs. Have fun looking at those.

Yet again, it would not matter if we had fit xpologit or xpopoisson models. We still type the same

thing to see our coefficient path plots.
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Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[CAUSAL] telasso postestimation — Postestimation tools for telasso
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Description Remarks and examples Also see

Description
Lasso, square-root lasso, and elastic net treat collinear covariates differently from traditional estima-

tors. With these models, you specify variables that might be included in the model, and they choose the

variables to be included. When you specify those variables, it is important that you present them with

all possible alternatives. This means that, when including factor variables, you must include the full

collinear set of indicators.

If you use Stata’s factor-variable notation, it is handled automatically for you. If you create indicator

variables for yourself, you must create and include them all.

Remarks and examples
Remarks are presented under the following headings:

Summary
Explanation
Applies to inferential commands
Does not apply to alwaysvars

Summary
Consider factor variable group that takes on the values 1, 2, and 3. If you type

. lasso linear y i.group ...

lasso will know that separate covariates for group 1, 2, and 3 are to be included among the variables

to be potentially included in the model.

If you create your own indicator variables, you need to create and specify indicators for all the values

of the factor variable:

. generate g1 = (group==1)

. generate g2 = (group==2)

. generate g3 = (group==3)

. lasso linear y g1 g2 g3 ...

It is important that you do not omit one of them, say, g1, and instead type

. lasso linear y g2 g3 ...

Explanation
With no loss of generality, we will focus on lasso for this explanation. Assume lasso has just found the

best model for 𝜆𝑖 with 𝑘 covariates and is now searching for the best model for 𝜆𝑖+1, where 𝜆𝑖+1 < 𝜆𝑖.

The 𝜆𝑖+1 model will not always be the same 𝜆𝑖 model with new covariates added, but this is often the

case. (Sometimes, covariates in the 𝜆𝑖 model are removed.) Assume this is a case of adding only new

covariates. Also assume that g1, g2, and g3 have not been chosen yet and that lasso chooses g1.

38
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But what if we did not specify g1 among the potential covariates? What if rather than typing

. lasso linear y g1 g2 g3 ...

we typed

. lasso linear y g2 g3 ...

In that case, lasso would not choose g1 because it could not. It would choose some other covariate or

covariates, perhaps g2, perhaps g3, perhaps g2 and g3, or perhaps other covariates. And lasso is on an

inferior path because g1 was not among the potential covariates.

Although selecting both g2 and g3 in place of g1 gives an equivalent model for prediction, it may

have wasted an extra penalty on the coefficients for g2 and g3. A model with only g1 may have a

smaller penalty and allow other covariates to be included, which a model with g2 and g3 would not. By

eliminating g1, we have denied lasso the opportunity to find a more parsimonious model.

Applies to inferential commands
Youmust also specify full collinear sets of potential covariates with the inferential commands. Specify

full sets in the controls() option, such as

. dsregress y z1 z2, controls(g1 g2 g3 ...)

Likewise for the high-dimensional instruments in poivregress and xpoivregress:

. poivregress y ... (z1 z2 = g1 g2 g3 ...), controls(...)

Just as with lasso, the issue is handled automatically if you use factor-variable notation:

. dsregress y z1 z2, controls(i.group ...)

Does not apply to alwaysvars
With any lasso, you can specify covariates that will always appear in the model. You specify them in

parentheses. For example, for lasso, type

. lasso linear y (x1 x2) x3 x4 ...

and for the inference commands, type

. dsregress y z1 z2, controls((x1 x2) x3 x4 ...)

We call the covariates that always appear in the model alwaysvars. The alwaysvars do not need to be

full collinear sets. Indeed, collinear variables among the alwaysvars will be omitted.

Factor-variable notation handles the problem automatically in both cases:

. lasso linear (i.region ...) i.group ...

A base level will be set for i.region (or you can set it explicitly). For i.group, all levels will be
included. If you try to set a base level for i.group, it will be ignored.

Also see
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction
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Description Quick start Menu Syntax Options
Remarks and examples Also see

Description
cvplot graphs the cross-validation (CV) function after a lasso fit using selection(cv),

selection(adaptive), selection(bic), or selection(none).

cvplot can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso inference

commands.

Quick start
Graph the CV function after lasso, sqrtlasso, or elasticnet

cvplot

Same as above, and draw a reference line identifying the value selected by the one-standard-error rule

cvplot, seline

Graph the CV function after elasticnet for the 𝛼 = 0.5 lasso

cvplot, alpha(.5)

After any of the ds or po commands, graph the CV function for the dependent variable y
cvplot, for(y)

Same as above, and show standard error bands for the CV function

cvplot, for(y) se

After an xpo command without resample, graph the CV function for x in cross-fit fold 2

cvplot, for(x) xfold(2)

After an xpo commandwith resample, graph the CV function for x in cross-fit fold 2 for the first resample

cvplot, for(x) xfold(2) resample(1)

Same as above, but graph the CV function as a function of the ℓ1-norm of the standardized coefficient

vector

cvplot, for(x) xfold(2) resample(1) xunits(l1norm)

After telasso, graph the CV function for the outcome variable x at treatment level 1

cvplot, for(y) tlevel(1)

Menu
Statistics > Postestimation

40
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Syntax

After lasso, sqrtlasso, and elasticnet

cvplot [ , options ]

After ds and po commands

cvplot, for(varspec) [ options ]

After xpo commands without resample

cvplot, for(varspec) xfold(#) [ options ]

After xpo commands with resample

cvplot, for(varspec) xfold(#) resample(#) [ options ]

After telasso for the outcome variable

cvplot, for(varspec) tlevel(#) [ options ]

After telasso for the treatment variable

cvplot, for(varspec) [ options ]

After telasso for the outcome variable with cross-fitting but without resample

cvplot, for(varspec) tlevel(#) xfold(#) [ options ]

After telasso for the treatment variable with cross-fitting but without resample

cvplot, for(varspec) xfold(#) [ options ]

After telasso for the outcome variable with cross-fitting and resample

cvplot, for(varspec) tlevel(#) xfold(#) resample(#) [ options ]

After telasso for the treatment variable with cross-fitting and resample

cvplot, for(varspec) xfold(#) resample(#) [ options ]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or

pred(varname).
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options Description

Main

xunits(x unit spec) 𝑥-axis units (scale); default is xunits(rlnlambda), where
rlnlambda denotes 𝜆 on a reverse logarithmic scale

minmax add labels for the minimum and maximum 𝑥-axis units
∗ for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗ xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗ resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗ tlevel(#) lasso for the outcome model with the treatment level #;

telasso only

alpha(#) graph CV function for 𝛼 = # ; default is the selected value 𝛼∗;
allowed after elasticnet only

lineopts(cline options) affect rendition of the plotted lines

S.E. plot

se show standard error bands for the CV function

seopts(rcap options) affect rendition of the standard error bands

Reference lines

cvlineopts(cline options) affect rendition of reference line identifying the minimum
of the CV function or other stopping rule

nocvline suppress reference line identifying the minimum of the CV function
or other stopping rule

lslineopts(cline options) affect rendition of reference line identifying the value selected
using lassoselect

nolsline suppress reference line identifying the value selected using
lassoselect

selineopts(cline options) affect rendition of reference line identifying the value selected
by the one-standard-error rule

[ no]seline draw or suppress reference line identifying the value selected by
the one-standard-error rule; shown by default for
selection(cv, serule)

hrefline add horizontal reference lines that intersect the vertical reference
lines

rlabelopts(r label opts) change look of labels for reference line

Data

data( filename [ , replace ]) save plot data to filename

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.

resample(#) is required for xpo and for telasso when the option resample(#) was specified.

tlevel(#) is required for the outcome model in telasso.
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x unit spec Description

rlnlambda 𝜆 on a reverse logarithmic scale; the default

lnlambda 𝜆 on a logarithmic scale

l1norm ℓ1-norm of standardized coefficient vector

l1normraw ℓ1-norm of unstandardized coefficient vector

r label opts Description

labgap(size) margin between tick and label

labstyle(textstyle) overall style of label

labsize(textsizestyle) size of label

labcolor(colorstyle) color and opacity of label

Options

� � �
Main �

xunits(x unit spec) specifies the 𝑥-axis units used for graphing the CV function. The following

x unit specs are available:

rlnlambda specifies 𝑥-axis units 𝜆 on a reverse logarithmic scale. This is the default.

lnlambda specifies 𝑥-axis units 𝜆 on a logarithmic scale.

l1norm specifies 𝑥-axis units ℓ1-norm of the standardized coefficient vector.

l1normraw specifies 𝑥-axis units ℓ1-norm of the unstandardized coefficient vector.

minmax adds labels for the minimum and maximum 𝑥-axis units to the graph of the CV function.

for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command fit

using the option selection(cv), selection(adaptive), or selection(bic). For all commands

except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either dep-
var, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso for
depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by

varname and pred(varname). The exogenous variables of interest each have only one lasso, and it
is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the

option xfolds(#) was specified. For each variable to be fit with a lasso, 𝐾 lassos are done, one

for each cross-fit fold, where 𝐾 is the number of folds. This option specifies which fold, where

# = 1, 2, . . . , 𝐾. xfold(#) is required after an xpo command and after telasso when the option

xfolds(#) was specified.
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resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using the
option resample(#). For each variable to be fit with a lasso, 𝑅 × 𝐾 lassos are done, where 𝑅 is the

number of resamples and𝐾 is the number of cross-fitting folds. This option specifies which resample,

where # = 1, 2, . . . , 𝑅. resample(#), along with xfold(#), is required after an xpo command and

after telasso with resampling.

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs the CV function for 𝛼 = #. The default is alpha(𝛼∗), where 𝛼∗ is the selected 𝛼.
alpha(#) may only be specified after elasticnet.

lineopts(cline options) affects the rendition of the plotted line. See [G-3] cline options.

� � �
S.E. plot �

se shows standard error bands for the CV function.

seopts(rcap options) affects the rendition of the standard error bands. See [G-3] rcap options.

� � �
Reference lines �

cvlineopts(cline options) affects the rendition of the reference line identifying the minimum CV

value, the value selected when the stopping tolerance is reached, or the grid-minimum value. See

[G-3] cline options.

nocvline suppresses the reference line identifying the minimum CV value, the value selected when the

stopping tolerance is reached, or the grid-minimum value.

lslineopts(cline options) affects the rendition of the reference line identifying the value selected

using lassoselect. See [G-3] cline options.

nolsline suppresses the reference line identifying the value selected using lassoselect.

selineopts(cline options) affects the rendition of the reference line identifying the value selected by

the one-standard-error rule. See [G-3] cline options.

[ no]seline draws or suppresses a reference line identifying the value selected by the one-standard-error

rule. By default, the line is shown when selection(cv, serule) was the selection method for the

lasso. For other selection methods, the line is not shown by default.

hrefline adds horizontal reference lines that intersect the vertical reference lines.

rlabelopts(r label opts) changes the look of labels for the reference line. The label options

labgap(relativesize), labstyle(textstyle), labsize(textsizestyle), and labcolor(colorstyle)
specify details about how the labels are presented. See [G-4] size, [G-4] textstyle, [G-4] textsizestyle,

and [G-4] colorstyle.

� � �
Data �

data(filename [ , replace ]) saves the plot data to a Stata data file.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).
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Remarks and examples
CV plots graph the CV function over the search grid for the lasso penalty parameter 𝜆. For linear

models, the CV function is the mean squared error of the predictions in the CV samples. For logit and

Poisson models, the CV function is the mean deviance in the CV samples.

The search grid can be shown as the log of the lasso penalty parameter 𝜆, xunits(lnlambda);
the reverse of that scale, xunits(rlnlambda); the ℓ1-norm of the standardized coefficients,

xunits(l1norm); or the ℓ1-norm of the unstandardized coefficients, xunits(l1normraw). The re-

verse log of lambda is the default because it represents the CV search path over 𝜆, with the first 𝜆 tried

on the left and the last 𝜆 tried on the right.

CV plots can be drawn after any command that directly searches over a grid of 𝜆’s—that is, after

any command that used the option selection(cv), selection(adaptive), or selection(none).
They can be drawn after commands lasso, elasticnet, sqrtlasso, telasso, or any of the 11 lasso
inference commands.

Examples that demonstrate how to use cvplot after the lasso command can be found in The CV

function in [LASSO] lasso.

Examples after elasticnet can be found starting in example 2 of [LASSO] elasticnet.

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[CAUSAL] telasso postestimation — Postestimation tools for telasso
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
dslogit fits a lasso logistic regression model and reports odds ratios along with standard errors, test

statistics, and confidence intervals for specified covariates of interest. The double-selection method is

used to estimate effects for these variables and to select from potential control variables to be included

in the model.

Quick start
Report an odds ratio from a logistic regression of y on d1, and include x1 to x100 as potential control

variables to be selected by lassos

dslogit y d1, controls(x1-x100)

Same as above, and estimate odds ratios for the levels of categorical d2
dslogit y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

dslogit y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

dslogit y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

dslogit y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
dslogit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

dslogit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Binary outcomes > Double-selection logit model

46
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Syntax
dslogit depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

offset(varname) include varname in the lasso and model for depvar with
its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default), cluster clustvar,
or oim

Reporting

level(#) set confidence level; default is level(95)
or report odds ratios; the default

coef report estimated coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated
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reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. dslogit fits lassos for depvar

and each of the varsofinterest. alwaysvars are variables that are always to be included in these lassos.

alwaysvars are optional. othervars are variables that each lasso will choose to include or exclude.

That is, each lasso will select a subset of othervars. The selected subset of othervars may differ

across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.

This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar

is always a logit lasso. The option lasso() can be used with sqrtlasso to specify that regular

lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See

[LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.
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When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

offset(varname) specifies that varname be included in the lasso and model for depvar with its coeffi-

cient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (vce(cluster clustvar)),
and that are derived from asymptotic theory (vce(oim)). See [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, 𝑒𝛼. Standard errors and confi-

dence intervals are similarly transformed. or is the default.

coef reports the estimated coefficients 𝛼 rather than the odds ratios (𝑒𝛼). This option affects how results

are displayed, not how they are estimated. coef may be specified at estimation or when replaying

previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running

dslogit. See [R] set seed.
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� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables from

varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This

option is repeatable as long as different variables are given in each specification. lasso options are

selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any global selection() op-

tion for the variables in varlist. See [LASSO] lasso options.

The following options are available with dslogit but are not shown in the dialog box:

reestimate is an advanced option that refits the dslogit model based on changes made to the underly-

ing lassos using lassoselect. After running dslogit, you can select a different 𝜆∗ for one or more

of the lassos estimated by dslogit. After selecting 𝜆∗, you type dslogit, reestimate to refit the

dslogit model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
dslogit performs double-selection lasso logistic regression. This command estimates odds ratios,

standard errors, and confidence intervals and performs tests for variables of interest while using lassos

to select from among potential control variables.

The logistic regression model is

Pr(𝑦 = 1|d, x) = exp(dα′ + xβ′)
1 + exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control vari-

ables from which the lassos select. dslogit estimates the α coefficients and reports the corresponding

odds ratios, 𝑒𝛼. However, double selection does not provide estimates of the coefficients on the control

variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out

and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use dslogit and the other lasso inference commands are presented

in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an introduction to

the examples and to the vl command, which provides tools for working with the large lists of variables

that are often included when using lassos methods. See 2 Fitting and interpreting inferential models for
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comparisons of the different methods of fitting inferential models that are available in Stata. Everything

we say there about methods of selection is applicable to both linear and nonlinear models. See 3 Fitting

logit inferential models to binary outcomes. What is different? for examples and discussion specific to

logistic regression models. The primary difference from linear models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.

Stored results
dslogit stores the following in e():
Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(rank) rank of e(V)

Macros

e(cmd) dslogit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) logit
e(title) title in estimation output

e(offset) linear offset variable

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
dslogit implements double-selection lasso logit regression (DSLLR) as described in Belloni, Cher-

nozhukov, and Wei (2016, table 2 and sec. 2.1). The regression model is

E[𝑦|d, x] = 𝐺(dα′ + 𝛽0 + xβ′)

where 𝐺(𝑎) = exp(𝑎)/{1 + exp(𝑎)}, d contains the 𝐽 covariates of interest, and x contains the 𝑝
controls. The number of covariates in d must be small and fixed. The number of controls in x can be

large and, in theory, can grow with the sample size; however, the number of nonzero elements in βmust

not be too large, which is to say that the model must be sparse.

DSLLR algorithm

1. Perform a logit lasso of 𝑦 on d and x, and denote the selected controls by x̃.

This logit lasso can choose the lasso penalty parameter (𝜆∗) using the plugin estimator, adaptive

lasso, or CV. The plugin value is the default.

2. Fit a logit regression of 𝑦 on d and x̃, denoting the estimated coefficient vectors by α̃ and β̃,
respectively.

3. Let 𝑤𝑖 = 𝐺′(d𝑖α̃
′ + x̃𝑖β̃

′
) be the 𝑖th observation of the predicted value of the derivative of 𝐺(⋅).

4. For 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x using observation-level weights 𝑤𝑖, and denote

the selected controls by x̌𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin estimators

for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso

is the default.

5. Let x̂ be the distinct variables from the union of the variables in x̌1, . . . , x̌𝐽, and x̃.

6. Fit a logit regression of 𝑦 on d and x̂, denoting the estimated coefficient vectors by α̂ and β̂,
respectively.

7. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

Option vce(robust), the robust estimator of the VCE for a logistic regression, is the default.

Specify option vce(oim) to get the OIM estimator of the VCE.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose their

penalty parameter (𝜆∗).

Reference
Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-

trols. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

https://doi.org/10.1080/07350015.2016.1166116
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Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] pologit — Partialing-out lasso logistic regression

[LASSO] xpologit — Cross-fit partialing-out lasso logistic regression

[R] logit — Logistic regression, reporting coefficients

[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
dspoisson fits a lasso Poisson regression model and reports incidence-rate ratios along with standard

errors, test statistics, and confidence intervals for specified covariates of interest. The double-selection

method is used to estimate effects for these variables and to select from potential control variables to be

included in the model.

Quick start
Report an incidence-rate ratio from a Poisson regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos

dspoisson y d1, controls(x1-x100)

Same as above, and estimate incidence-rate ratios for the levels of categorical d2
dspoisson y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

dspoisson y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

dspoisson y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

dspoisson y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
dspoisson y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

dspoisson y d1 i.d2, controls(x1-x100) ///
lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Count outcomes > Double-selection Poisson model

54
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Syntax
dspoisson depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

offset(varname𝑜) include varname𝑜 in the lasso and model for depvar with
its coefficient constrained to be 1

exposure(varname𝑒) include ln(varname𝑒) in the lasso and model for depvar
with its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default), cluster clustvar,
or oim

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios; the default

coef report estimated coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated
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reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. dspoisson fits lassos for

depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these

lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or

exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars may

differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.

This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar

is always a Poisson lasso. The option lasso() can be used with sqrtlasso to specify that regular

lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See

[LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.
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When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

offset(varname𝑜) specifies that varname𝑜 be included in the lasso and model for depvar with its co-

efficient constrained to be 1.

exposure(varname𝑒) specifies that ln(varname𝑒) be included in the lasso and model for depvar with

its coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (vce(cluster clustvar)),
and that are derived from asymptotic theory (vce(oim)). See [R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛼. Standard errors and

confidence intervals are similarly transformed. irr is the default.

coef reports the estimated coefficients 𝛼 rather than the incidence-rate ratios, 𝑒𝛼. This option affects

how results are displayed, not how they are estimated. coef may be specified at estimation or when

replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().
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rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running

dspoisson. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables from

varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This

option is repeatable as long as different variables are given in each specification. lasso options are

selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any global selection() op-

tion for the variables in varlist. See [LASSO] lasso options.

The following options are available with dspoisson but are not shown in the dialog box:

reestimate is an advanced option that refits the dspoissonmodel based on changes made to the under-

lying lassos using lassoselect. After running dspoisson, you can select a different 𝜆∗ for one or

more of the lassos estimated by dspoisson. After selecting 𝜆∗, you type dspoisson, reestimate
to refit the dspoisson model based on the newly selected 𝜆∗’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
dspoisson performs double-selection lasso Poisson regression. This command estimates incidence-

rate ratios, standard errors, and confidence intervals and performs tests for variables of interest while

using lassos to select from among potential control variables.

The Poisson regression model is

E[𝑦|d, x] = exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables

from which the lassos select. dspoisson estimates the α coefficients and reports the corresponding

incidence-rate ratios, 𝑒𝛼. However, double selection does not provide estimates of the coefficients on

the control variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out

and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.
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Examples that demonstrate how to use dspoisson and the other lasso inference commands are pre-

sented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an intro-

duction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for comparisons of the different methods of fitting inferential models that are available in Stata.

Everything we say there about methods of selection is applicable to both linear and nonlinear models.

See 4 Fitting inferential models to count outcomes. What is different? for examples and discussion spe-

cific to Poisson regression models. The primary difference from linear models involves interpreting the

results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.

Stored results
dspoisson stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(rank) rank of e(V)

Macros

e(cmd) dspoisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) poisson
e(title) title in estimation output

e(offset) linear offset variable

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
dspoisson implements double-selection lasso Poisson regression (DSLPR) as described in Belloni,

Chernozhukov, and Wei (2016, table 2 and sec. 2.1). The regression model is

E[𝑦|d, x] = 𝐺(dα′ + 𝛽0 + xβ′)

where 𝐺(𝑎) = exp(𝑎), d contains the 𝐽 covariates of interest, and x contains the 𝑝 controls. The number

of covariates in d must be small and fixed. The number of controls in x can be large and, in theory, can

grow with the sample size; however, the number of nonzero elements in β must not be too large, which

is to say that the model must be sparse.

DSLPR algorithm

1. Perform a Poisson lasso of 𝑦 on d and x, and denote the selected controls by x̃.

This Poisson lasso can choose the lasso penalty parameter (𝜆∗) using the plugin estimator, adaptive

lasso, or CV. The plugin value is the default.

2. Fit a Poisson regression of 𝑦 on d and x̃, denoting the estimated coefficient vectors by α̃ and β̃,
respectively.

3. Let 𝑤𝑖 = 𝐺′(d𝑖α̃
′ + x̃𝑖β̃

′
) be the 𝑖th observation of the predicted value of the derivative of 𝐺(⋅).

4. For 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x using observation-level weights 𝑤𝑖, and denote

the selected controls by x̌𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin estimators

for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso

is the default.

5. Let x̂ be the distinct variables from the union of the variables in x̌1, . . . , x̌𝐽, and x̃.

6. Fit a Poisson regression of 𝑦 on d and x̂, denoting the estimated coefficient vectors by α̂ and β̂,
respectively.

7. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

Option vce(robust), the robust estimator of the VCE for a Poisson regression, is the default.

Specify option vce(oim) to get the OIM estimator of the VCE.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose their

penalty parameter (𝜆∗).

Reference
Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-

trols. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

https://doi.org/10.1080/07350015.2016.1166116
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Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] popoisson — Partialing-out lasso Poisson regression

[LASSO] xpopoisson — Cross-fit partialing-out lasso Poisson regression

[R] poisson — Poisson regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
dsregress fits a lasso linear regression model and reports coefficients along with standard errors,

test statistics, and confidence intervals for specified covariates of interest. The double-selection method

is used to estimate effects for these variables and to select from potential control variables to be included

in the model.

Quick start
Estimate a coefficient for d1 in a linear regression of y on d1, and include x1 to x100 as potential control

variables to be selected by lassos

dsregress y d1, controls(x1-x100)

Same as above, and estimate coefficients for the levels of categorical d2
dsregress y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

dsregress y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

dsregress y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

dsregress y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
dsregress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

dsregress y d1 i.d2, controls(x1-x100) ///
lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Double-selection model

62
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Syntax
dsregress depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

SE/Robust

vce(vcetype) vcetype may be robust (the default), cluster clustvar,
ols, hc2, or hc3

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics
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∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. dsregress fits lassos for

depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these

lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or

exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars may

differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding the

global sqrtlasso setting for these variables. See [LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).
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missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported. The default is vce(robust), which is ro-

bust to some kinds of misspecification. Also available are vce(cluster clustvar), which allows for
intragroup correlation; vce(ols), which specifies the standard variance estimator for ordinary least-

squares regression; and vce(hc2) and vce(hc3), which specify alternative bias corrections for the

robust variance calculation. See [R] vce option and Options in [R] regress.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running

dsregress. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.
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sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables

from depvar or varsofinterest. This option is repeatable as long as different variables are given

in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified,

it overrides any global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with dsregress but are not shown in the dialog box:

reestimate is an advanced option that refits the dsregressmodel based on changes made to the under-

lying lassos using lassoselect. After running dsregress, you can select a different 𝜆∗ for one or

more of the lassos estimated by dsregress. After selecting 𝜆∗, you type dsregress, reestimate
to refit the dsregress model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
dsregress performs double-selection lasso linear regression. This command estimates coefficients,

standard errors, and confidence intervals and performs tests for variables of interest while using lassos

to select from among potential control variables.

The linear regression model is

E[𝑦|d, x] = dα′ + xβ′

where d are the variables for which we wish to make inferences and x are the potential control vari-

ables from which the lassos select. dsregress reports estimated coefficients for α. However, double-
selection does not provide estimates of the coefficients on the control variables (β) or their standard
errors. No estimation results can be reported for β.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out

and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use dsregress and the other lasso inference commands are pre-

sented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an intro-

duction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for examples of fitting inferential lasso linear models and comparisons of the different methods

available in Stata.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.
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Stored results
dsregress stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(rank) rank of e(V)

Macros

e(cmd) dsregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) linear
e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
dsregress implements double-selection lasso as described in Belloni, Chernozhukov, and Hansen

(2014). The regression model is

E[𝑦|d, x] = dα′ + 𝛽0 + xβ′
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where d contains the 𝐽 covariates of interest and x contains the 𝑝 controls. The number of covariates in

d must be small and fixed. The number of controls in x can be large and, in theory, can grow with the

sample size; however, the number of nonzero elements in β must not be too large, which is to say that

the model must be sparse.

Double-selection lasso algorithm

1. Perform a linear lasso of 𝑦 on x, and denote the selected variables by x̃𝑦.

This lasso can choose the lasso penalty parameter (𝜆∗) using the plugin estimator, adaptive lasso,

or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

2. For 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x, and denote the selected controls by x̃𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using the plugin estimator, adap-

tive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

3. Let x̂ be the distinct variables in the union of the variables in x̃1, . . . , x̃𝐽, and x̃𝑦.

4. Fit a linear regression of 𝑦 on d and x̂, denoting the estimated coefficient vectors by α̂ and β̂,
respectively.

5. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

Option vce(robust), the robust estimator of the VCE for a linear regression, is the default. See

Methods and formulas in [R] regress for details about option vce(robust) and the other VCE

estimators available via options vce(ols), vce(hc2), and vce(hc3).

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 2 choose their

penalty parameter (𝜆∗).

Reference
Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014. Inference on treatment effects after selection among high-

dimensional controls. Review of Economic Studies 81: 608–650. https://doi.org/10.1093/restud/rdt044.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] poregress — Partialing-out lasso linear regression

[LASSO] xporegress — Cross-fit partialing-out lasso linear regression

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1093/restud/rdt044
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
elasticnet selects covariates and fits linear, logistic, probit, Poisson, and Cox proportional hazards

models using elastic net. Results from elasticnet can be used for prediction and model selection.

elasticnet saves but does not display estimated coefficients. The postestimation commands listed

in [LASSO] lasso postestimation can be used to generate predictions, report coefficients, and display

measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

elasticnet linear y1 x1-x100

Same as above, but specify the grid 𝛼 = 0.1, 0.2, . . . , 1 using a numlist

elasticnet linear y1 x1-x100, alpha(0.1(0.1)1)

Same as above, but force x1 and x2 to be in the model while elasticnet selects x3 to x100
elasticnet linear y1 (x1 x2) x3-x100, alpha(0.1(0.1)1)

Fit a logistic model for binary outcome y2 with grid 𝛼 = 0.7, 0.8, 0.9, 1
elasticnet logit y2 x1-x100, alpha(0.7 0.8 0.9 1)

Same as above, and set a random-number seed for reproducibility

elasticnet logit y2 x1-x100, alpha(0.7 0.8 0.9 1) rseed(1234)

Fit a Poisson model for count outcome y3 with exposure time
elasticnet poisson y3 x1-x100, alpha(0.1(0.1)1) exposure(time)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.

elasticnet linear y1 x1-x100, alpha(0.1(0.1)1) selection(cv, alllambdas)

Turn off the early stopping rule, and iterate over 𝜆’s until a minimum is found or until the end of the 𝜆
grid is reached

elasticnet linear y1 x1-x100, alpha(0.1(0.1)1) stop(0)

Fit a Cox proportional hazards model for t with failure indicator fail, and select covariates from x1 to

x100 using CV

stset t, failure(fail)
elasticnet cox x1-x100

Same as above, but select covariates by minimizing the BIC

elasticnet cox x1-x100, selection(bic)

69
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Menu
Statistics > Lasso > Elastic net

Syntax
For linear, logit, probit, and Poisson models

elasticnet model depvar [ (alwaysvars) ] othervars [ if ] [ in ] [weight ] [ , options ]

For Cox models

elasticnet cox [ (alwaysvars) ] othervars [ if ] [ in ] [ , options ]

model is one of linear, logit, probit, or poisson.

alwaysvars are variables that are always included in the model.

othervars are variables that elasticnet will choose to include in or exclude from the model.

options Description

Model
∗ noconstant suppress constant term

selection(cv [ , cv opts ]) select mixing parameter 𝛼∗ and lasso penalty
parameter 𝜆∗ using CV

selection(bic [ , bic opts ]) select mixing parameter 𝛼∗ and lasso penalty
parameter 𝜆∗ using BIC

selection(none) do not select 𝛼∗ or 𝜆∗

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained
to 1 (poisson model only)

∗ cluster(clustvar) specify cluster variable clustvar

Optimization

[ no ]log display or suppress an iteration log

rseed(#) set random-number seed

alphas(numlist |matname) specify the 𝛼 grid with numlist or a matrix

grid(#𝑔 [ , ratio(#) min(#) ]) specify the set of possible 𝜆’s using a logarithmic grid with
#𝑔 grid points

crossgrid(augmented) augment the 𝜆 grids for each 𝛼 as necessary to produce a
single 𝜆 grid; the default

crossgrid(union) use the union of the 𝜆 grids for each 𝛼 to produce a single
𝜆 grid

crossgrid(different) use different 𝜆 grids for each 𝛼
stop(#) tolerance for stopping the iteration over the 𝜆 grid early

cvtolerance(#) tolerance for identification of the CV function minimum

bictolerance(#) tolerance for identification of the BIC function minimum

tolerance(#) convergence tolerance for coefficients based on their values

dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term
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cv opts Description

folds(#) use # folds for CV

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the CV function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select 𝜆∗

stopok when, for a value of 𝛼, the CV function does not have an identified minimum
and the stop(#) stopping criterion for 𝜆 was reached at 𝜆stop, allow
𝜆stop to be included in an (𝛼, 𝜆) pair that can potentially be selected
as (𝛼∗, 𝜆∗); the default

strict requires the CV function to have an identified minimum for every value of 𝛼;
this is a stricter alternative to the default stopok

gridminok when, for a value of 𝛼, the CV function does not have an identified minimum
and the stop(#) stopping criterion for 𝜆 was not reached, allow the
minimum of the 𝜆 grid, 𝜆gmin, to be included in an (𝛼, 𝜆) pair that can
potentially be selected as (𝛼∗, 𝜆∗); this is a looser alternative to the default
stopok and is rarely used

bic opts Description

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

stopok when, for a value of 𝛼, the BIC function does not have an identified minimum
and the stop(#) stopping criterion for 𝜆 was reached at 𝜆stop, allow
𝜆stop to be included in an (𝛼, 𝜆) pair that can potentially be selected
as (𝛼∗, 𝜆∗); the default

strict requires the BIC function to have an identified minimum for every value of 𝛼;
this is a stricter alternative to the default stopok

gridminok when, for a value of 𝛼, the BIC function does not have an identified minimum
and the stop(#) stopping criterion for 𝜆 was not reached, allow the
minimum of the 𝜆 grid, 𝜆gmin, to be included in an (𝛼, 𝜆) pair that can
potentially be selected as (𝛼∗, 𝜆∗); this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

∗noconstant and cluster() are not allowed with elasticnet cox.
You must stset your data before using elasticnet cox; see [ST] stset.
alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed with all sel method options. fweights are allowed when
selection(plugin), selection(bic), or selection(none) is specified. See [U] 11.1.6 weight. For elasticnet
cox, weights must be specified when you stset your data.

penaltywt(matname) does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
See [LASSO] lasso fitting for an overview of the lasso estimation procedure and a detailed description of

how to set options to control it.
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� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the other-

vars, elasticnet can potentially create the equivalent of the constant term by including all levels of

a factor variable. This option is likely best used only when all the othervars are continuous variables

and there is a conceptual reason why there should be no constant term. This option is not allowed

with cox.

selection(cv), selection(bic), and selection(none) specify the selection method used to select

𝜆∗.

selection(cv [ , cv opts ]) is the default. It selects the (𝛼∗, 𝜆∗) that give the minimum of the CV

function.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that, for each 𝛼, models be fit for all 𝜆’s in the grid or until the stop(#)
tolerance is reached. By default, models are calculated sequentially from largest to smallest 𝜆,
and the CV function is calculated after each model is fit. If a minimum of the CV function is

found, the computation ends at that point without evaluating additional smaller 𝜆’s.
alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the CV function is wanted for

assurance that a trueminimum has been found. Regardless of whether alllambdas is specified,
the selected (𝛼∗, 𝜆∗) will be the same.

serule selects 𝜆∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani, and

Wainwright (2015, 13–14) instead of the 𝜆 that minimizes the CV function. The one-standard-

error rule selects, for each 𝛼, the largest 𝜆 for which the CV function is within a standard error

of the minimum of the CV function. Then, from among these (𝛼, 𝜆) pairs, the one with the

smallest value of the CV function is selected.

stopok, strict, and gridminok specify what to do when, for a value of 𝛼, the CV function

does not have an identified minimum at any value of 𝜆 in the grid. A minimum is identified at

𝜆cvmin when the CV function at both larger and smaller adjacent 𝜆’s is greater than it is at 𝜆cvmin.

When the CV function for a value of 𝛼 has an identified minimum, these options all do the same

thing: (𝛼, 𝜆cvmin) becomes one of the (𝛼, 𝜆) pairs that potentially can be selected as the smallest

value of the CV function. In some cases, however, the CV function declines monotonically as

𝜆 gets smaller and never rises to identify a minimum. When the CV function does not have an

identified minimum, stopok and gridminok make alternative picks for 𝜆 in the (𝛼, 𝜆) pairs
that will be assessed for the smallest value of the CV function. The option strict makes no

alternative pick for 𝜆. You may specify only one of stopok, strict, or gridminok; stopok is

the default if you do not specify one. With each of these options, estimation results are always

left in place, and alternative (𝛼, 𝜆) pairs can be selected and evaluated.
stopok specifies that, for a value of 𝛼, when the CV function does not have an identified min-

imum and the stop(#) stopping tolerance for 𝜆 was reached at 𝜆stop, the pair (𝛼, 𝜆stop) is
picked as one of the pairs that potentially can be selected as the smallest value of the CV func-

tion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is assumed that 𝜆stop

has a CV function value close to the true minimum for that value of 𝛼. When no minimum

is identified for a value of 𝛼 and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum for each value of 𝛼, and if not,
an error is issued.
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gridminok is a rarely used option that specifies that, for a value of 𝛼, when the CV function has

no identified minimum and the stop(#) stopping criterion was not met, 𝜆gmin, the minimum

of the 𝜆 grid, is picked as part of a pair (𝛼, 𝜆gmin) that potentially can be selected as the

smallest value of the CV function.

The gridminok criterion is looser than the default stopok, which is looser than strict. With

strict, the selected (𝛼∗, 𝜆∗) pair is theminimumof the CV function chosen from the (𝛼, 𝜆cvmin)
pairs, where all𝜆’s under consideration are identifiedminimums. With stopok, the set of (𝛼, 𝜆)
pairs under consideration for the minimum of the CV function include identified minimums,

𝜆cvmin, or values, 𝜆stop, that met the stopping criterion. With gridminok, the set of (𝛼, 𝜆) pairs
under consideration for the minimum of the CV function potentially include 𝜆cvmin, 𝜆stop, or

𝜆gmin.

selection(bic [ , bic opts ]) selects (𝛼∗, 𝜆∗) by using the Bayesian information criterion (BIC)

function. It selects the (𝛼∗, 𝜆∗) with the minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that, for each 𝛼, models be fit for all 𝜆’s in the grid or until the stop(#)
tolerance is reached. By default, models are calculated sequentially from largest to smallest 𝜆,
and the BIC function is calculated after each model is fit. If a minimum of the BIC function is

found, the computation ends at that point without evaluating additional smaller 𝜆’s.
alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the BIC function is wanted

for assurance that a true minimum has been found. Regardless of whether alllambdas is

specified, the selected (𝛼∗, 𝜆∗) will be the same.

stopok, strict, and gridminok specify what to do when, for a value of 𝛼, the BIC function

does not have an identified minimum at any value of 𝜆 in the grid. A minimum is identified at

𝜆bicmin when the BIC function at both larger and smaller adjacent 𝜆’s is greater than it is at 𝜆bicmin.

When the BIC function for a value of 𝛼 has an identified minimum, these options all do the same

thing: (𝛼, 𝜆bicmin) becomes one of the (𝛼, 𝜆) pairs that potentially can be selected as the smallest

value of the BIC function. In some cases, however, the BIC function declines monotonically as

𝜆 gets smaller and never rises to identify a minimum. When the BIC function does not have an

identified minimum, stopok and gridminok make alternative picks for 𝜆 in the (𝛼, 𝜆) pairs
that will be assessed for the smallest value of the BIC function. The option strict makes no

alternative pick for 𝜆. You may specify only one of stopok, strict, or gridminok; stopok is

the default if you do not specify one. With each of these options, estimation results are always

left in place, and alternative (𝛼, 𝜆) pairs can be selected and evaluated.
stopok specifies that, for a value of 𝛼, when the BIC function does not have an identified

minimum and the stop(#) stopping tolerance for 𝜆 was reached at 𝜆stop, the pair (𝛼, 𝜆stop)
is picked as one of the pairs that potentially can be selected as the smallest value of the

BIC function. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is assumed

that 𝜆stop has a BIC function value close to the true minimum for that value of 𝛼. When

no minimum is identified for a value of 𝛼 and the stop(#) criterion is not met, an error is

issued.

strict requires the BIC function to have an identified minimum for each value of 𝛼, and if not,
an error is issued.
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gridminok is a rarely used option that specifies that, for a value of𝛼, when the BIC function has
no identified minimum and the stop(#) stopping criterion was not met, 𝜆gmin, the minimum

of the 𝜆 grid, is picked as part of a pair (𝛼, 𝜆gmin) that potentially can be selected as the

smallest value of the BIC function.

The gridminok criterion is looser than the default stopok, which is looser than strict.
With strict, the selected (𝛼∗, 𝜆∗) pair is the minimum of the BIC function chosen from the

(𝛼, 𝜆bicmin) pairs, where all 𝜆’s under consideration are identified minimums. With stopok, the
set of (𝛼, 𝜆) pairs under consideration for the minimum of the BIC function include identified

minimums, 𝜆bicmin, or values, 𝜆stop, that met the stopping criterion. With gridminok, the set of
(𝛼, 𝜆) pairs under consideration for the minimum of the BIC function potentially include 𝜆bicmin,

𝜆stop, or 𝜆gmin.

postselection specifies to use the postselection coefficients to compute the BIC function. By

default, the penalized coefficients are used.

selection(none) does not select an (𝛼∗, 𝜆∗) pair. In this case, the elastic net is estimated for a grid

of values for 𝜆 for each 𝛼, but no attempt is made to determine which (𝛼, 𝜆) pair is best. The

postestimation command lassoknots can be run to view a table of 𝜆’s that define the knots (that
is, the distinct sets of nonzero coefficients) for each 𝛼. The lassoselect command can then be

used to select an (𝛼∗, 𝜆∗) pair, and lassogof can be run to evaluate the prediction performance

of the selected pair.

When selection(none) is specified, neither the CV function nor the BIC function is computed.

If you want to view the knot table with values of the CV function shown and then select (𝛼∗, 𝜆∗),
you must specify selection(cv). Similarly, if you want to view the knot table with values

of the BIC function shown, you must specify selection(bic). There are no suboptions for

selection(none).

offset(varname𝑜) specifies that varname𝑜 be included in the model with its coefficient constrained to

be 1.

exposure(varname𝑒) can be specified only for the poisson model. It specifies that ln(varname𝑒) be

included in the model with its coefficient constrained to be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how

the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood

function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the sub-

sample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are kept

together in the same subsample. This option is not allowed with elasticnet cox.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv). (selection(bic) and selection(none) do not use random numbers.)

rseed(#) is equivalent to typing set seed # prior to running elasticnet. See [R] set seed.

alphas(numlist |matname) specifies either a numlist or a matrix containing the grid of values for 𝛼.
The default is alphas(0.5 0.75 1). Specifying a small, nonzero value of 𝛼 for one of the values of

alphas() will result in lengthy computation time because the optimization algorithm for a penalty

that is mostly ridge regression with a little lasso mixed in is inherently inefficient. Pure ridge regres-

sion (𝛼 = 0), however, is computationally efficient.
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grid(#𝑔 [ , ratio(#) min(#) ]) specifies the set of possible 𝜆’s using a logarithmic grid with #𝑔 grid

points.

#𝑔 is the number of grid points for 𝜆. The default is #𝑔 = 100. The grid is logarithmic with the 𝑖th grid
point (𝑖 = 1, . . . , 𝑛 = #𝑔) given by ln𝜆𝑖 = [(𝑖 − 1)/(𝑛 − 1)] ln 𝑟 + ln𝜆gmax, where 𝜆gmax = 𝜆1
is the maximum, 𝜆gmin = 𝜆𝑛 = min(#) is the minimum, and 𝑟 = 𝜆gmin/𝜆gmax = ratio(#) is the

ratio of the minimum to the maximum.

ratio(#) specifies 𝜆gmin/𝜆gmax. The maximum of the grid, 𝜆gmax, is set to the smallest 𝜆 for which

all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).

𝜆gmin is then set based on ratio(#). When 𝑝 < 𝑁, where 𝑝 is the total number of othervars

and alwaysvars (not including the constant term) and 𝑁 is the number of observations, the default

value of ratio(#) is 1e−4. When 𝑝 ≥ 𝑁, the default is 1e−2.

min(#) sets 𝜆gmin. By default, 𝜆gmin is based on ratio(#) and 𝜆gmax, which is computed from the

data.

crossgrid(augmented), crossgrid(union), and crossgrid(different) specify the type of two-

dimensional grid used for (𝛼, 𝜆). crossgrid(augmented) and crossgrid(union) produce a grid

that is the product of two one-dimensional grids. That is, the 𝜆 grid is the same for every value of 𝛼.
crossgrid(different) uses different 𝜆 grids for different values of 𝛼
crossgrid(augmented), the default grid, is formed by an augmentation algorithm. First, a suitable

𝜆 grid for each 𝛼 is computed. Then, nonoverlapping segments of these grids are formed and

combined into a single 𝜆 grid.

crossgrid(union) specifies that the union of 𝜆 grids across each value of 𝛼 be used. That is, a 𝜆
grid for each 𝛼 is computed, and then they are combined by simply putting all the 𝜆 values into

one grid that is used for each 𝛼. This produces a fine grid that can cause the computation to take

a long time without significant gain in most cases.

crossgrid(different) specifies that different 𝜆 grids be used for each value of 𝛼. This option is
rarely used. Using different 𝜆 grids for different values of 𝛼 complicates the interpretation of the

CV selection method. When the 𝜆 grid is not the same for every value of 𝛼, comparisons are based

on parameter intervals that are not on the same scale.

stop(#) specifies a tolerance that is the stopping criterion for the 𝜆 iterations. The default is 1e−5.

Estimation starts with the maximum grid value, 𝜆gmax, and iterates toward the minimum grid value,

𝜆gmin. When the relative difference in the deviance produced by two adjacent 𝜆 grid values is less than

stop(#), the iteration stops and no smaller 𝜆’s are evaluated. The value of 𝜆 that meets this tolerance

is denoted by 𝜆stop. Typically, this stopping criterion is met before the iteration reaches 𝜆gmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger 𝜆stop. To pro-

duce coefficient estimates for all values of the 𝜆 grid, you can specify stop(0). Note, however,

that computations for small 𝜆’s can be extremely time consuming. In terms of time, when you use

selection(cv) or selection(bic), the optimal value of stop(#) is the largest value that allows

estimates for just enough 𝜆’s to be computed to identify the minimum of the CV or BIC function. When

setting stop(#) to larger values, be aware of the consequences of the default 𝜆∗ selection procedure

given by the default stopok. You may want to override the stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV

function. For linear models, a minimum is identified when the CV function rises above a nominal

minimum for at least three smaller 𝜆’s with a relative difference in the CV function greater than #. For

nonlinear models, at least five smaller 𝜆’s are required. The default is 1e−3. Setting # to a bigger

value makes a stricter criterion for identifying a minimum and brings more assurance that a declared
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minimum is a true minimum, but it also means that models may need to be fit for additional smaller

𝜆, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information

about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum BIC

function. Aminimum is identified when the BIC function rises above a nominal minimum for at least

two smaller 𝜆’s with a relative difference in the BIC function greater than #. The default is 1e−2.

Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more

assurance that a declared minimum is a true minimum, but it also means that models may need to be

fit for additional smaller 𝜆, which can be time consuming. SeeMethods and formulas in [LASSO] lasso

for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-

vergence is achieved when the relative change in each coefficient is less than this tolerance. The

default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients. When

dtolerance(#) is specified, the convergence criterion is based on the change in deviance instead of

the change in the values of coefficient estimates. Convergence is declared when the relative change

in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-

ifying this option and instead using the default tolerance(1e-7) criterion or specifying a smaller

value for tolerance(#).

The following option is available with elasticnet but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients

in the penalty term. The contribution of each coefficient to the lasso penalty term is multiplied by its

corresponding weight. Weights must be nonnegative. By default, each coefficient’s penalty weight

is 1.

Remarks and examples
Elastic net, originally proposed by Zou and Hastie (2005), extends lasso to have a penalty term that is

a mixture of the absolute-value penalty used by lasso and the squared penalty used by ridge regression.

Coefficient estimates from elastic net are more robust to the presence of highly correlated covariates than

are lasso solutions.

For the linear model, the penalized objective function for elastic net is

𝑄 = 1
2𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − x𝑖β
′)2 + 𝜆

𝑝

∑
𝑗=1

(1 − 𝛼
2

𝛽2
𝑗 + 𝛼 |𝛽𝑗|)

where β is the 𝑝-dimensional vector of coefficients on covariates x. The estimated β are those that

minimize 𝑄 for given values of 𝛼 and 𝜆.
As with lasso, 𝑝 can be greater than the sample size 𝑁. When 𝛼 = 1, elastic net reduces to lasso.

When 𝛼 = 0, elastic net reduces to ridge regression.

When 𝛼 > 0, elastic net, like lasso, produces sparse solutions in which many of the coefficient

estimates are exactly zero. When 𝛼 = 0, that is, ridge regression, all coefficients are nonzero, although

typically many are small.
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Ridge regression has long been used as a method to keep highly collinear variables in a regression

model used for prediction. The ordinary least-squares (OLS) estimator becomes increasingly unstable as

the correlation among the covariates grows. OLS produces wild coefficient estimates on highly correlated

covariates that cancel each other out in terms of fit. The ridge regression penalty removes this instability

and produces point estimates that can be used for prediction in this case.

None of the ridge regression estimates are exactly zero because the squared penalty induces a smooth

tradeoff around 0 instead of the kinked-corner tradeoff induced by lasso. By mixing the two penalties,

elastic net retains the sparse-solution property of lasso, but it is less variable than the lasso in the presence

of highly collinear variables. The coefficient paths of elastic-net solutions are also smoother over 𝜆 than

are lasso solutions because of the added ridge-regression component.

To fit a model with elasticnet, you specify a set of candidate 𝛼’s and a grid of 𝜆 values. CV is

performed on the combined set of (𝛼, 𝜆) values, and the (𝛼∗, 𝜆∗) pair that minimizes the value of the CV

function is selected.

This procedure follows the convention of Hastie, Tibshirani, and Wainwright (2015), which is to

specify a few values for 𝛼 and a finer grid for 𝜆. The idea is that only a few points in the space between

ridge regression and lasso are worth reviewing, but a finer grid over 𝜆 is needed to trace out the paths of

which coefficients are not zero.

The default candidate values of 𝛼 are 0.5, 0.75, and 1. Typically, you would use the default first and

then set 𝛼 using the alpha(numlist) option to get lower and upper bounds on 𝛼∗. Models for small,

nonzero values of 𝛼 take more time to estimate than 𝛼 = 0 and larger values of 𝛼. This is because

the algorithm for fitting a model that is mostly ridge regression with a little lasso mixed in is inherently

inefficient. Pure ridge or mostly lasso models are faster.

The 𝜆 grid is set automatically, and the default settings are typically sufficient to determine 𝜆∗. The

default grid can be changed using the grid() option. See [LASSO] lasso fitting for a detailed description

of the CV selection process and how to set options to control it.

Example 1: Elastic net and data that are not highly correlated
Wewill fit an elastic-net model using the example dataset from [LASSO] lasso examples. It has stored

variable lists created by vl. See [D] vl for a complete description of the vl system and how to use it to

manage large variable lists.
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After we load the dataset, we type vl rebuild to make the saved variable lists active again.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We have four user-defined variable lists, demographics, factors, idemographics, and ifactors.
The variable lists idemographics and ifactors contain factor-variable versions of the categori-

cal variables in demographics and factors. That is, a variable q3 in demographics is i.q3 in

idemographics. See [LASSO] lasso examples to see how we created these variable lists.

We are going to use idemographics and ifactors along with the system-defined variable list

vlcontinuous as arguments to elasticnet. Together they contain the potential variables we want

to specify. Variable lists are actually global macros, and when we use them as arguments in commands,

we put a $ in front of them.

We also set the random-number seed using the rseed() option so we can reproduce our results.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)
alpha 1 of 3: alpha = 1
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.34476
(output omitted )

Grid value 37: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found
alpha 2 of 3: alpha = 0.75
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.34476
(output omitted )

Grid value 34: lambda = .0974746 no. of nonzero coef. = 126
Folds: 1...5....10 CVF = 11.95437
... cross-validation complete ... minimum found
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alpha 3 of 3: alpha = 0.5
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33643
(output omitted )

Grid value 31: lambda = .1288556 no. of nonzero coef. = 139
Folds: 1...5....10 CVF = 12.0549
... cross-validation complete ... minimum found
Elastic net linear model No. of obs = 914

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 1.818102 0 -0.0016 18.34476

32 lambda before .1174085 58 0.3543 11.82553
* 33 selected lambda .1069782 64 0.3547 11.81814

34 lambda after .0974746 66 0.3545 11.8222
37 last lambda .0737359 80 0.3487 11.92887

0.750
38 first lambda 1.818102 0 -0.0016 18.34476
71 last lambda .0974746 126 0.3473 11.95437

0.500
72 first lambda 1.818102 0 -0.0012 18.33643

102 last lambda .1288556 139 0.3418 12.0549

* alpha and lambda selected by cross-validation.

CV selected 𝛼∗ = 1, that is, the results from an ordinary lasso.

All models we fit using elastic net on these data selected 𝛼∗ = 1. The data are not correlated enough

to need elastic net.

Example 2: Elastic net and data that are highly correlated
The dataset in example 1, fakesurvey vl, contained data we created in a simulation. We did our

simulation again setting the correlation parameters to much higher values, up to 𝜌 = 0.95, and we created

two groups of highly correlated variables, with correlations between variables from different groupsmuch

lower. We saved these data in a new dataset named fakesurvey2 vl. Elastic net was proposed not just
for highly correlated variables but especially for groups of highly correlated variables.

We load the new dataset and run vl rebuild.

. use https://www.stata-press.com/data/r19/fakesurvey2_vl, clear
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )
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In anticipation of elastic net showing interesting results this time, we randomly split our data into two

samples of equal sizes. One we will fit models on, and the other we will use to test their predictions. We

use splitsample to generate a variable indicating the samples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 ”Training” 2 ”Testing”

. label values sample svalues

We fit an elastic-net model using the default 𝛼’s.
. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
alpha 1 of 3: alpha = 1
(output omitted )

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted )

Grid value 42: lambda = .161071 no. of nonzero coef. = 29
Folds: 1...5....10 CVF = 15.12964
... cross-validation complete ... minimum found
alpha 2 of 3: alpha = 0.75
(output omitted )

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted )

Grid value 40: lambda = .1940106 no. of nonzero coef. = 52
Folds: 1...5....10 CVF = 15.07523
... cross-validation complete ... minimum found
alpha 3 of 3: alpha = 0.5
(output omitted )

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.78722
(output omitted )

Grid value 46: lambda = .11102 no. of nonzero coef. = 115
Folds: 1...5....10 CVF = 14.90808
... cross-validation complete ... minimum found
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Elastic net linear model No. of obs = 449
No. of covariates = 275

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 6.323778 0 -0.0036 26.82324

42 last lambda .161071 29 0.4339 15.12964

0.750
43 first lambda 6.323778 0 -0.0036 26.82324
82 last lambda .1940106 52 0.4360 15.07523

0.500
83 first lambda 6.323778 0 -0.0022 26.78722

124 lambda before .161071 87 0.4473 14.77189
* 125 selected lambda .1467619 92 0.4476 14.76569

126 lambda after .133724 96 0.4468 14.78648
128 last lambda .11102 115 0.4422 14.90808

* alpha and lambda selected by cross-validation.
. estimates store elasticnet

Wonderful! It selected 𝛼∗ = 0.5. We should not stop here, however. There may be smaller values

of 𝛼 that give lower minimums of the CV function. If the number of observations and number of po-

tential variables are not too large, you could specify the option alpha(0(0.1)1) the first time you run

elasticnet. However, if we did this, the command would take much longer to run than the default. It

will be especially slow for 𝛼 = 0.1 as we mentioned earlier.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234) alpha(0.1 0.2 0.3)
alpha 1 of 3: alpha = .3
(output omitted )

10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted )

Grid value 59: lambda = .160193 no. of nonzero coef. = 122
Folds: 1...5....10 CVF = 14.84229
... cross-validation complete ... minimum found
alpha 2 of 3: alpha = .2
(output omitted )

10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted )
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Grid value 56: lambda = .2117657 no. of nonzero coef. = 137
Folds: 1...5....10 CVF = 14.81594
... cross-validation complete ... minimum found
alpha 3 of 3: alpha = .1
(output omitted )

10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.81813
(output omitted )

Grid value 51: lambda = .3371909 no. of nonzero coef. = 162
Folds: 1...5....10 CVF = 14.81783
... cross-validation complete ... minimum found
Elastic net linear model No. of obs = 449

No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

0.300
1 first lambda 31.61889 0 -0.0036 26.82324

59 last lambda .160193 122 0.4447 14.84229

0.200
60 first lambda 31.61889 0 -0.0036 26.82324

110 lambda before .3371909 108 0.4512 14.66875
* 111 selected lambda .3072358 118 0.4514 14.66358

112 lambda after .2799418 125 0.4509 14.67566
115 last lambda .2117657 137 0.4457 14.81594

0.100
116 first lambda 31.61889 0 -0.0034 26.81813
166 last lambda .3371909 162 0.4456 14.81783

* alpha and lambda selected by cross-validation.
. estimates store elasticnet

The selected 𝛼∗ is 0.2. This value is better, according to CV, than 𝛼 = 0.1 or 𝛼 = 0.3.
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We can plot the CV function for the selected 𝛼∗ = 0.2.

. cvplot
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αCV = .2 is the cross-validation minimum α.
λCV = .31 is the cross-validation minimum λ; # coefficients = 118.

Cross-validation plot

The CV function looks quite flat around the selected 𝜆∗. We could assess alternative 𝜆 (and alternative

𝛼) using lassoknots. We run lassoknots with options requesting the number of nonzero coefficients

be shown (nonzero), along with the CV function (cvmpe) and estimates of the out-of-sample 𝑅2 (osr2).

. lassoknots, display(nonzero cvmpe osr2)

No. of CV mean Out-of-
nonzero pred. sample

alpha ID lambda coef. error R-squared

0.300
15 9.603319 4 26.42296 0.0114

(output omitted )

54 .2550726 92 14.67746 0.4509
55 .2324126 98 14.66803 0.4512
56 .2117657 105 14.67652 0.4509

(output omitted )

59 .160193 122 14.84229 0.4447

0.200
69 14.40498 4 26.54791 0.0067

(output omitted )

110 .3371909 108 14.66875 0.4512
* 111 .3072358 118 14.66358 0.4514

112 .2799418 125 14.67566 0.4509
(output omitted )

115 .2117657 137 14.81594 0.4457
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0.100
117 28.80996 4 26.67947 0.0018

(output omitted )

161 .5369033 143 14.76586 0.4476
162 .4892063 148 14.75827 0.4478
162 .4892063 148 14.75827 0.4478
163 .4457466 152 14.76197 0.4477

(output omitted )

166 .3371909 162 14.81783 0.4456

* alpha and lambda selected by cross-validation.

When we examine the output from lassoknots, we see that the CV function appears rather flat along 𝜆
from the minimum and also across 𝛼.

Example 3: Ridge regression
Let’s continue with the previous example and fit a ridge regression. We do this by specifying

alpha(0).

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234) alpha(0)
(output omitted )

Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 3.16e+08 no. of nonzero coef. = 275
Grid value 2: lambda = 2880.996 no. of nonzero coef. = 275
(output omitted )

Grid value 99: lambda = .3470169 no. of nonzero coef. = 275
Grid value 100: lambda = .3161889 no. of nonzero coef. = 275
10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100
(output omitted )

Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
... cross-validation complete
Elastic net linear model No. of obs = 449

No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

alpha ID Description lambda coef. R-squared error

0.000
1 first lambda 3161.889 275 -0.0036 26.82323

88 lambda before .9655953 275 0.4387 15.00168
* 89 selected lambda .8798144 275 0.4388 14.99956

90 lambda after .8016542 275 0.4386 15.00425
100 last lambda .3161889 275 0.4198 15.50644

* alpha and lambda selected by cross-validation.
. estimates store ridge
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In this implementation, ridge regression selects 𝜆∗ using CV. We can plot the CV function.

. cvplot
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αCV = 0 is the cross-validation minimum α.
λCV = .88 is the cross-validation minimum λ; # coefficients = 275.

Cross-validation plot

Example 4: Comparing elastic net, ridge regression, and lasso
We fit elastic net and ridge on half of the sample in the previous examples so we could evaluate the

prediction on the other half of the sample.

Let’s continue with the data from example 2 and example 3 and fit a lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
note: 1.q14 omitted because of collinearity with another variable.
note: 1.q136 omitted because of collinearity with another variable.
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 3.161889 no. of nonzero coef. = 0
(output omitted )

Grid value 33: lambda = .161071 no. of nonzero coef. = 29
Folds: 1...5....10 CVF = 15.12964
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 449

No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 3.161889 0 0.0020 26.67513
28 lambda before .2564706 18 0.4348 15.10566

* 29 selected lambda .2336864 21 0.4358 15.07917
30 lambda after .2129264 21 0.4355 15.08812
33 last lambda .161071 29 0.4339 15.12964

* lambda selected by cross-validation.
. estimates store lasso

We stored the results of the earlier elastic net and ridge in memory using estimates store. We did

the same for the lasso results. Now we can compare out-of-sample prediction using lassogof.
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. lassogof elasticnet ridge lasso, over(sample)
Penalized coefficients

Name sample MSE R-squared Obs

elasticnet
Training 11.70471 0.5520 480
Testing 14.60949 0.4967 501

ridge
Training 11.82482 0.5576 449
Testing 14.88123 0.4809 476

lasso
Training 13.41709 0.4823 506
Testing 14.91674 0.4867 513

Elastic net did better out of sample based on the mean squared error and 𝑅2 than ridge and lasso.

Note that the numbers of observations for both the training and testing samples were slightly different

for each of the models. splitsample split the sample exactly in half with 529 observations in each half

sample. The sample sizes across the models differ because the different models contain different sets of

selected variables; hence, the pattern of missing values is different. If you want to make the half samples

exactly equal after missing values are dropped, an optional varlist containing the dependent variable and

all the potential variables can be used with splitsample to omit any missing values in these variables.

See [D] splitsample.

Before we conclude that elastic net won out over ridge and lasso, we must point out that we were

not fair to lasso. Theory states that for the lasso linear model, postselection coefficients provide slightly

better predictions. See predict in [LASSO] lasso postestimation.

We run lassogof again for the lasso results, this time specifying that postselection coefficients be

used.

. lassogof lasso, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

lasso
Training 13.14487 0.4928 506
Testing 14.62903 0.4966 513

We declare a tie with elastic net!

Postselection coefficients should not be used with elasticnet and, in particular, with ridge regres-

sion. Ridge works by shrinking the coefficient estimates, and these are the estimates that should be

used for prediction. Because postselection coefficients are OLS regression coefficients for the selected

coefficients and because ridge always selects all variables, postselection coefficients after ridge are OLS

regression coefficients for all potential variables, which clearly we do not want to use for prediction.



elasticnet — Elastic net for prediction and model selection 87

Stored results
elasticnet stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k allvars) number of potential variables

e(k nonzero sel) number of nonzero coefficients for selected model

e(k nonzero cv) number of nonzero coefficients at CV mean function minimum

e(k nonzero serule) number of nonzero coefficients for one-standard-error rule

e(k nonzero min) minimum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero max) maximum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum

e(alpha sel) value of selected 𝛼∗

e(alpha cv) value of 𝛼 at CV mean function minimum

e(lambda sel) value of selected 𝜆∗

e(lambda gmin) value of 𝜆 at grid minimum

e(lambda gmax) value of 𝜆 at grid maximum

e(lambda last) value of last 𝜆 computed

e(lambda cv) value of 𝜆 at CV mean function minimum

e(lambda serule) value of 𝜆 for one-standard-error rule

e(lambda bic) value of 𝜆 at BIC function minimum

e(ID sel) ID of selected 𝜆∗

e(ID cv) ID of 𝜆 at CV mean function minimum

e(ID serule) ID of 𝜆 for one-standard-error rule

e(ID bic) ID of 𝜆 at BIC function minimum

e(cvm min) minimum CV mean function value

e(cvm serule) CV mean function value at one-standard-error rule

e(devratio min) minimum deviance ratio

e(devratio max) maximum deviance ratio

e(L1 min) minimum value of ℓ1-norm of penalized unstandardized coefficients

e(L1 max) maximum value of ℓ1-norm of penalized unstandardized coefficients

e(L2 min) minimum value of ℓ2-norm of penalized unstandardized coefficients

e(L2 max) maximum value of ℓ2-norm of penalized unstandardized coefficients

e(ll sel) log-likelihood value of selected model

e(n lambda) number of 𝜆’s
e(n fold) number of CV folds

e(stop) stopping rule tolerance

Macros

e(cmd) elasticnet
e(cmdline) command as typed

e(depvar) name of dependent variable

e(allvars) names of all potential variables

e(allvars sel) names of all selected variables

e(alwaysvars) names of always-included variables

e(othervars sel) names of other selected variables

e(post sel vars) all variables needed for postelastic net

e(clustvar) name of cluster variable

e(lasso selection) selection method

e(sel criterion) criterion used to select 𝜆∗

e(crossgrid) type of two-dimensional grid

e(model) linear, logit, probit, poisson, or cox
e(title) title in estimation output

e(rngstate) random-number state used

e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
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Matrices

e(b) penalized unstandardized coefficient vector

e(b standardized) penalized standardized coefficient vector

e(b postselection) postselection coefficient vector

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas for elastic net are given in Methods and formulas in [LASSO] lasso. Here

we provide the methods and formulas for ridge regression, which is a special case of elastic net.

Unlike lasso and elastic net, ridge regression has a differentiable objective function, and there is

a closed-form solution to the problem of minimizing the objective function. The solutions for ridge

regression with nonlinear models are obtained by iteratively reweighted least squares.

The estimates of a generalized linear model (GLM) ridge regression model are obtained by minimizing

𝑄𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) + 𝜆

2

𝑝

∑
𝑗=1

𝜅𝑗𝛽2
𝑗

where 𝑁 is the number of observations; 𝑤𝑖 is the normalized observation-level weight; 𝑓(⋅) is the like-
lihood contribution for the regress, logit, probit, or poisson model; 𝛽0 is the intercept; x𝑖 is the

1 × 𝑝 vector of covariates; β is the 1 × 𝑝 vector of coefficients; 𝜆 is the ridge penalty parameter, which

must be greater than or equal to 0; and 𝜅𝑗 are coefficient-level weights (which by default are all 1).

The normalized weights 𝑤𝑖 sum to 1. That is,

𝑤𝑖 = 𝑤𝑖

∑𝑁
𝑖=1 𝑤𝑖

where 𝑤𝑖 is the original observation-level weight. If weights are not specified with elasticnet, 𝑤𝑖 = 1

and 𝑤𝑖 = 1/𝑁.

The penalized objective function of the ridge regression for the cox model is

𝑄𝐿 = −
𝑁𝑓

∑
𝑗=1

∑
𝑖∈𝐷𝑗

𝑤𝑖 [x𝑖β
′ − log{ ∑

ℓ∈𝑅𝑗

𝑤ℓ exp(xℓβ
′)}] + 𝜆

2

𝑝

∑
𝑗=1

𝜅𝑗𝛽2
𝑗

where 𝑗 indexes the ordered failure times 𝑡(𝑗), 𝑗 = 1, . . . , 𝑁𝑓; 𝐷𝑗 is the set of observations that fail at

𝑡(𝑗); and 𝑅𝑗 is the set of observations 𝑘 that are at risk at time 𝑡(𝑗) (that is, all 𝑘 such that 𝑡0𝑘 < 𝑡(𝑗) ≤ 𝑡𝑘,

and 𝑡0𝑘 is the entry time for the 𝑘th observation).
When the model is linear,

𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) = 1

2
(𝑦𝑖 − 𝛽0 − x𝑖β

′)2
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When the model is logit,

𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) = −𝑦𝑖(𝛽0 + x𝑖β

′) + ln{1 + exp(𝛽0 + x𝑖β
′)}

When the model is probit,

𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) = −𝑦𝑖 ln {Φ(𝛽0 + x𝑖β

′)} − (1 − 𝑦𝑖) ln {1 − Φ(𝛽0 + x𝑖β
′)}

When the model is poisson,

𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) = −𝑦𝑖(𝛽0 + x𝑖β

′) + exp(𝛽0 + x𝑖β
′)

For the linear model, the point estimates are given by

( ̂𝛽0, β̂)′ = (
𝑁

∑
𝑖=1

𝑤𝑖x̃
′
𝑖x̃𝑖 + 𝜆Ĩ)

−1 𝑁
∑
𝑖=1

𝑤𝑖𝑦𝑖x̃
′
𝑖

where x̃𝑖 = (1, x𝑖) and Ĩ is a diagonal matrix with the coefficient-level weights 0, 𝜅1, . . . , 𝜅𝑝 on the

diagonal.

For the nonlinear models, the optimization problem is solved using iteratively reweighted least

squares. See Segerstedt (1992) and Nyquist (1991) for details of the iteratively reweighted least-squares

algorithm for the GLM ridge-regression estimator.
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estimates store — Saving and restoring estimates in memory and on disk

Description Remarks and examples Also see

Description
estimates store name stores the current (active) estimation results under the name name.

estimates restore name loads the results stored under name into the current (active) estimation

results.

estimates save filename saves the current (active) estimation results in filename.

estimates use filename loads the results saved in filename into the current (active) estimation results.

The estimates commands after the lasso commands work the same as they do after other estima-

tion commands. There is only one difference. estimates save filename saves two files, not just one.

filename.ster and filename.stxer are saved. See [R] estimates for details.

Remarks and examples
Remarks are presented under the following headings:

Overview
Postestimation commands that work only with current results
Postestimation commands that work with current results
lassoselect creates new estimation results

Overview
If you are not familiar with estimates store and restore, see [R] estimates store. You will likely

want to use estimates store to compare results from multiple lassos.

If you are not familiar with estimates save and use, see [R] estimates save. Lassos fit with many

potential variables can take considerable time to run. xpo commands, especially when the resample
option is specified, can also have lengthy computation times. You will likely want to save your estimation

results to a file.

When you use estimates save, you will see

. estimates save mygreatlasso
file mygreatlasso.ster saved
extended file mygreatlasso.stxer saved

Two files are saved. Keep these files together in the same folder (directory). estimates use needs both

of them to load the results back into the current estimation results.

Postestimation commands that work only with current results
The following postestimation commands work only with current (active) estimation results:

bicplot, coefpath, cvplot, lassoknots, and lassoselect.

The following postestimation commands work with current or stored estimation results: lassocoef,
lassogof, and lassoinfo.

For the commands that work only with current results, this means that if you

. estimates store mylasso1
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and then run another estimation command, you must

. estimates restore lasso1

before you can use bicplot, coefpath, cvplot, lassoknots, or lassoselect again.

Postestimation commands that work with current results
lassocoef and lassogof are intended for use with multiple estimation results. You will often be

typing commands such as

. lassgof mylasso1 mylasso2 mylasso3, over(sample)

where mylasso1, mylasso2, and mylasso3 are names of stored estimation results. See [LASSO] lasso-

gof for examples.

lassocoef has a more complex syntax because it will work with lasso, sqrtlasso, and

elasticnet, and also with the ds, po, and xpo commands or a mixture of them. You can type something

like

. lassocoef mylasso1 (mydsregress, for(y)) (mydsregress, for(x))

where mylasso1 and mydsregress are names of stored estimation results, with mylasso1 a lasso result
and mydsregress a dsregress result. See [LASSO] lassocoef for examples. lassoinfo is designed to

tell you the available names (typically variable names) that can be specified with for().

lassoselect creates new estimation results
When you run one of the lasso commands, such as

. lasso ...

and then use lassoselect to change the selected 𝜆∗ like so

. lassoselect lambda = 0.245

lassoselect creates a new estimation result and makes it current. It is almost the same as running

another estimation command and wiping out the old estimation results. We say “almost” because it is

easy to change 𝜆∗ back to what it was originally.

A better workflow when using lassoselect is the following:

. lasso ...

. estimates store mylasso1

. lassoselect lambda = 0.245

. estimates store mylasso1sel

. lassogof mylasso1 mylasso1sel, over(sample)

See [LASSO] lassoselect.

Also see
[R] estimates save — Save and use estimation results

[R] estimates store — Store and restore estimation results
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Description Remarks and examples References Also see

Description
Lasso for inference comprises 11 related estimation commands and several postestimation commands

for performing inference about a true model. Fitting and interpreting inferential lasso models is demon-

strated via examples.

Remarks and examples
Remarks are presented under the following major headings:

1 Overview
2 Fitting and interpreting inferential models
3 Fitting logit inferential models to binary outcomes. What is different?
4 Fitting inferential models to count outcomes. What is different?
5 Exploring inferential model lassos
6 Fitting an inferential model with endogenous covariates

1 Overview

1.1 How to read the example entries

All the examples demonstrate something about the inferential lasso models, so we obviously think

you should read this entire section. That said, there are a lot of pages, so here are some other options.

Everyone should read 1.3 Review of concepts, 2.1 Overview of inferential estimation methods, and

2.2 Fitting via cross-fit partialing out (xpo) using plugin. What you read there is essential to using and

understanding all the inferential models. We are pretty sure you will also want to read 2.3 Fitting via

cross-fit partialing out (xpo) using cross-validation, 2.4 Fitting via double selection (ds) using cross-

validation, and 2.5 Fitting via the other 22 methods.

We use the variable-management tool vl to manage the variable lists used in all the examples, and

most of the examples use a common dataset. We introduce both in 1.4 The primary dataset. We say

enough in sections 2.1 and 2.2 that you will not be lost if you do not read section 1.4. But you will better

understand the dataset—and how we are manipulating it—if you read section 1.4.

If you are only interested in logit models for binary outcomes, then 3 Fitting logit inferential models

to binary outcomes. What is different? is essential reading, but only after reading sections 1.3, 2.1, and

2.2. Similarly, if your sole interest is Poisson models for count outcomes, then read 4 Fitting inferential

models to count outcomes. What is different?, but only after reading sections 1.3, 2.1, and 2.2.

The titles on all other sections are relatively self explanatory. So, if you are not reading all the sections,

choose from them based on your interest.
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1.2 Detailed outline of the topics

1 Overview
1.1 How to read the example entries
1.2 Detailed outline of the topics
1.3 Review of concepts
1.4 The primary dataset

2 Fitting and interpreting inferential models
2.1 Overview of inferential estimation methods
2.2 Fitting via cross-fit partialing out (xpo) using plugin
2.3 Fitting via cross-fit partialing out (xpo) using cross-validation
2.4 Fitting via double selection (ds) using cross-validation
2.5 Fitting via the other 22 methods
2.6 Fitting models with several variables of interest
2.7 Fitting models with factor variables of interest
2.8 Fitting models with interactions of interest
2.9 Fitting models with a nonlinear relationship of interest
2.10 Controls are controls

3 Fitting logit inferential models to binary outcomes. What is different?
3.1 Interpreting standard odds ratios
3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

4 Fitting inferential models to count outcomes. What is different?
4.1 Interpreting standard incidence-rate ratios
4.2 Interpreting models with factor variables

5 Exploring inferential model lassos
6 Fitting an inferential model with endogenous covariates

1.3 Review of concepts

We have said a lot about the inferential estimation commands elsewhere in this manual. For a quick

overview that describes what you need to know, and just what you need to know, see [LASSO] Lasso

intro. For a deeper understanding of lasso for inference, read [LASSO] Lasso inference intro. We highly

recommend reading both of those sections.

The inferential lasso estimators require you to break up your model into two parts: the part about

which you need to perform inference and the part about which you do not care. Let’s call the first part

the “inference part” and the second part the “noninference part”.

Often, the inference part is a single variable, perhaps even a single indicator variable, such as “walks

at least three miles a week”. The inference part could be more complicated than a single variable. It

might involve several variables, polynomials, or interactions. But, it will generally be relatively small.

The noninference part can bemuch larger. What you include there will sometimes reflect an ignorance

of how that part relates to your outcome. Often, our theory or intuition involves only a few variables, our

variables of interest. We know lots of other things affect our outcome; we just have little or no guidance

about which things are important or how they relate to our outcome. We will call the variables in this

noninference part controls. What makes lasso for inference special is that you need not understand how

those controls affect the outcome.

There are other requirements. We said that the inference part will typically be small. The number of

controls that lasso needs to include must also be small with respect to the sample size. See Solutions that

focus on the true model in [LASSO] Lasso inference intro.
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1.4 The primary dataset

To demonstrate the inference commands, we will mostly use one dataset—a real-world dataset that

includes children’s performance on a test of reaction time, levels of nitrogen dioxide (NO2) pollution, the

children’s physical and socioeconomic characteristics, and some other environmental factors. The data

were collected and analyzed by Sunyer et al. (2017).

Our interest is in how levels of nitrogen dioxide in the classroom affect the children’s performance on

the test, while adjusting for other factors. We will focus on two outcomes from the Attention Network

Test (ANT)—reaction time and omissions. For linear models, we will use hit reaction time—a measure

of speed in responding to stimuli. For Poisson models, we will use omissions—the number of times the

child failed to respond to a stimulus. For logit models, we will use whether there were any omissions.

We are using an extract of the data and focusing on how to use the software, so let’s not get ideas

about publishing any of this.

Let’s take a quick look at the dataset.

. use https://www.stata-press.com/data/r19/breathe
(Nitrogen dioxide and attention)
. describe
Contains data from https://www.stata-press.com/data/r19/breathe.dta
Observations: 1,089 Nitrogen dioxide and attention

Variables: 22 21 Jun 2024 12:43
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

react double %10.0g * Reaction time (ms)
correct int %10.0g * Number of correct responses
omissions byte %10.0g * Failure to respond to stimulus
no2_class float %9.0g Classroom NO2 levels (ug/m3)
no2_home float %9.0g Home NO2 levels (ug/m3)
age float %9.0g Age (years)
age0 double %4.1f Age started school
sex byte %9.0g sex Sex
grade byte %9.0g grade Grade in school
overweight byte %32.0g overwt * Overweight by WHO/CDC definition
lbweight byte %18.0g lowbw * Low birthweight
breastfeed byte %19.0f bfeed Duration of breastfeeding
msmoke byte %10.0f smoke * Mother smoked during pregnancy
meducation byte %17.0g edu Mother’s education level
feducation byte %17.0g edu Father’s education level
siblings_old byte %1.0f Number of older siblings in house
siblings_young byte %1.0f Number of younger siblings in

house
sev_home float %9.0g Home socio-economic vulnerability

index
green_home double %10.0g Home greenness (NDVI), 300m

buffer
noise_school float %9.0g School noise levels (dB)
sev_school float %9.0g School socio-economic

vulnerability index
precip double %10.0g Daily total precipitation

* indicated variables have notes

Sorted by:
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This is not a large dataset, just 22 variables. Regardless, we are going to use the vl tools to create

the variable lists we need for our analysis. This may seem like a detour, but vl is useful even for small

datasets, and it is nearly indispensable if your dataset has hundreds or even tens of thousands of variables.

Our goal is to create two lists of control covariates, for example, independent variables. One list will

contain continuous control covariates and the other will contain categorical control covariates. Why not

just one list? Because we want the categorical variables to enter our model as indicator variables for each

level (distinct value) of the categorical variable. To expand a categorical variable into indicator variables

for its levels, we must prefix it with an i., for example, i.grade.

Starting with vl is easy: we just type vl set,

. vl set

Macro’s contents

Macro # Vars Description

System
$vlcategorical 10 categorical variables
$vlcontinuous 10 continuous variables
$vluncertain 2 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Notes
1. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.
2. If there are any variables in vluncertain, you can reallocate them

to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

vl has divided our 22 variables into 4 groups and placed those groups into global macros. Do not

worry about the technical term global macro. Just know that once the macro $vlcategorical has been

created, any time you type $vlcategorical, you will get the full list of categorical variables.

. display ”$vlcategorical”
sex grade overweight lbweight breastfeed msmoke meducation feducation
> siblings_old siblings_young

That is convenient! vl has placed all of our categorical variables into one bin called

$vlcategorical. Now let’s follow the instructions in the notes after vl to be sure we like what vl
did on our behalf.
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. vl list vlcategorical

Variable Macro Values Levels

sex $vlcategorical 0 and 1 2
grade $vlcategorical integers >=0 3

overweight $vlcategorical 0 and 1 2
lbweight $vlcategorical 0 and 1 2

breastfeed $vlcategorical integers >=0 3
msmoke $vlcategorical 0 and 1 2

meducation $vlcategorical integers >=0 4
feducation $vlcategorical integers >=0 4

siblings_old $vlcategorical integers >=0 5
siblings_young $vlcategorical integers >=0 5

Among other things, we see that sex has just two values, 0 and 1; and meducation (mother’s educa-

tion level) has four values that are integers greater than or equal to 0.

Usually with categorical variables, we intend to create indicator variables for each unique value (level)

the variable takes on. So we are looking for variables that do not fit that purpose. siblings old and

siblings young have five values, but even their names make one think they might be counts. Let’s

look further at siblings old:

. tabulate siblings_old
Number of

older
siblings in

house Freq. Percent Cum.

0 564 52.17 52.17
1 424 39.22 91.40
2 84 7.77 99.17
3 8 0.74 99.91
4 1 0.09 100.00

Total 1,081 100.00

It does look like a count of siblings. We might want indicators for each count (level), or we might

want it to enter our model linearly as a continuous variable. That singleton count of 4 older siblings will

have to be dropped whenever we perform cross-validation or cross-fitting because it cannot be in both

the estimation and the validation samples. We could recode the values to represent 0, 1, 2, and 3-or-more

siblings and keep it a factor variable. After all, lasso is a technique built for handling lots of variables. It

is easier for our examples to simply redesignate the two counts of siblings as continuous:

. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.

Macro # Added/Removed

$vlcategorical -2
$vlcontinuous 2
$vluncertain 0
$vlother 0
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Let’s now take a look at all variables designated continuous. We will use summarize to get a bit more

detail:

. summarize $vlcontinuous
Variable Obs Mean Std. dev. Min Max

react 1,084 742.4808 145.4446 434.0714 1303.26
no2_class 1,089 30.16779 9.895886 7.794096 52.56397
no2_home 1,089 54.71832 18.04786 2.076335 118.6568

age 1,089 9.08788 .886907 7.45243 11.63313
age0 1,082 3.218022 1.293168 0 9

sev_home 1,089 .4196807 .1999143 .0645161 .9677419
green_home 1,089 .1980721 .077777 .0184283 .5258679

noise_school 1,089 37.96354 4.491651 28.8 51.1
sev_school 1,089 .4096389 .2064394 .1290323 .8387097

precip 1,089 .5593205 1.2364 0 5.8

siblings_old 1,081 .573543 .6752252 0 4
siblings_y~g 1,083 .565097 .6906831 0 6

We notice three things. First, age0 has a min of 0 and a max of 9—both integers. Did vl set make

a mistake? Let’s look carefully:

. tabulate age0
Age started

school Freq. Percent Cum.

0.0 4 0.37 0.37
0.3 1 0.09 0.46
0.5 1 0.09 0.55
0.8 1 0.09 0.65
0.9 1 0.09 0.74
1.0 33 3.05 3.79
1.4 1 0.09 3.88
1.5 8 0.74 4.62
1.7 1 0.09 4.71
2.0 116 10.72 15.43
2.5 4 0.37 15.80
2.8 3 0.28 16.08
2.9 1 0.09 16.17
3.0 739 68.30 84.47
4.0 35 3.23 87.71
5.0 39 3.60 91.31
6.0 54 4.99 96.30
7.0 25 2.31 98.61
8.0 8 0.74 99.35
9.0 7 0.65 100.00

Total 1,082 100.00

No mistake. There are fractional values. Also, looking back at the results of our describe, we see
that age 0 is the age at which the students started school. We do want to treat that as continuous.

Second, our dependent variable, react, is in the list. It is continuous, and so it belongs there. How-
ever, we will need to take care that we do not include it among our control covariates.

Third, our covariate of interest, no2 class, is also in the list. As with react, we will need to exclude
it from the control covariates.
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What of those two variables that were in $vluncertain?

. vl list vluncertain

Variable Macro Values Levels

correct $vluncertain integers >=0 41
omissions $vluncertain integers >=0 27

vl set knows they are integer, but one has 41 distinct values and the other has 27. vl was unwilling

to classify them as either continuous or categorical. See [D] vl for how to change vl’s rules. We said

earlier that omissions is another outcome variable from the ANT. correct is also an outcome variable

from the ANT. Both are potential dependent variables, meaning that neither are valid controls. We will

leave them where they are.

We were fortunate that correct and omissions were already left out of $vlcategorical and

$vlcontinuous. Otherwise, it would be our job to ensure they are not included among the controls.

vl is convenient for classifying variables, but it does not truly understand anything about the meaning

of the variables. It is our job to know which variables are actually other outcomes or transformations of

the outcomes.

Let’s now create our own two global macros. One will have continuous covariates, and we will call

that macro cc. The other will have categorical covariates, which we will treat as factor covariates, and

we will call that macro fc.

. vl create cc = vlcontinuous - (react no2_class)
note: $cc initialized with 10 variables.
. vl create fc = vlcategorical
note: $fc initialized with 8 variables.

fc is just a copy of vlcategorical. We could just use vlcategorical, but it is best to create our
own macro in case we want to change it later. When we created cc, we removed our dependent variable,

react, and covariate of interest, no2 class. That gives us a list of continuous controls.

Now we have control covariate lists we can use in our inference commands.

No one at StataCorp would ever type everything we just typed interactively. We would open an editor

or the Do-file Editor and work there. I suggest you do the same thing. Click on the Do-file Editor button,

. Then type in the Editor

describe
vl set
vl list vlcategorical
tabulate siblings_old
vl move (siblings_old siblings_young) vlcontinuous
summarize $vlcontinuous
tabulate age0
vl list vluncertain
vl create cc = vlcontinuous - (react no2_class)
vl create fc = vlcategorical

Save the file as no2.do. Then you can type do no2 to re-create your control covariate lists.

If you want to exclude the exploratory commands, just type

vl set
vl move (siblings_old siblings_young) vlcontinuous
vl create cc = vlcontinuous - (react no2_class)
vl create fc = vlcategorical
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2 Fitting and interpreting inferential models

2.1 Overview of inferential estimation methods

Considering only the linear models for continuous outcomes and ignoring endogeneity, there are 25

methods to fit any givenmodel. There are three commands—dsregress, poregress, and xporegress.
The po and xpo commands allow the option semi, which adjusts how they partial out, making five

methods. Within each of these methods, there is an option allowing three ways of selecting the lasso

penalty 𝜆—selection(plugin), selection(cv), and selection(adaptive). And, for 10 of these
15 methods, there is an option (sqrtlasso) to specify that the square-root lasso rather than the standard
lasso be used to select covariates. Square-root lasso cannot be combined with selection(adaptive).

What you type differs only a little when requesting any of these 25 methods. More importantly, you

interpret the coefficient estimates, standard errors, and confidence intervals exactly the same across all

25 methods. Which is to say, you interpret them exactly as you would interpret the estimates from linear

regression.

Let’s see how to request each of these 25 methods.

Assume that our dependent variable is y. We will include two covariates of interest—d1 and d2. We

will specify 100 potential continuous control covariates—x1-x100. And, we have 30 potential factor

control variables—f1-f30. The factor variables could be ordered, unordered, or just indicators. We

specify them as i.(f1-f30) so that each level of each covariate is included as its own term. So, if f3
has four levels, then it introduces four indicator variables (covariates) into the potential controls. See

[U] 11.4.3 Factor variables. We could also introduce interactions among the factor variables, among the

continuous variables, or both. Do that if you wish.

All these commands will run if you use lassoex.dta.

To make the commands easier to read, we do not specify option rseed() to make reproducible the

commands that randomly split the samples repeatedly. If you want the results to be the same each time

you run the commands, add rseed(12345) (or whatever number you like).

. use https://www.stata-press.com/data/r19/lassoex

We can first fit the model using the cross-fit partialing-out method, the partialing-out method, and the

double-selection method. In all cases, we are using the default plugin method for choosing the included

controls via its choice of the lasso penalty parameter 𝜆.
. xporegress y d1 d2, controls(x1-x100 i.(f1-f30))
. poregress y d1 d2, controls(x1-x100 i.(f1-f30))
. dsregress y d1 d2, controls(x1-x100 i.(f1-f30))

We can fit the samemodels, but this time using the cross-validation method to choose the lasso penalty

parameter 𝜆 and thereby to choose the included control covariates.

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

. poregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

. dsregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(cv)

Again, we can fit the same models, but this time using the adaptive method to choose the included

control covariates.

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)

. poregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)

. dsregress y d1 d2, controls(x1-x100 i.(f1-f30)) selection(adaptive)
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We can rerun each of the first six methods using the square-root lasso rather than the standard lasso,

by adding the option sqrtlasso. Here is one example that uses the cross-fit partialing-out method with

plugin selection:

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) sqrtlasso

And, we can rerun any of the 10 methods that use commands poregress or xporegress, including
those with sqrtlasso, using the semi option to specify an alternate form of partialing out. Here is one

example:

. xporegress y d1 d2, controls(x1-x100 i.(f1-f30)) semi

We apologize for the bewildering array of choices. Lasso and machine learning is an active area of

research, and you may want the flexibility to choose among these options. That said, if your interest is

in your research and not in researching lasso, we feel reasonably comfortable making some suggestions

based on the state of the lasso literature at the time this manual was written.

1. Use xporegress with no options to fit your model using the cross-fit partialing-out method with 𝜆,
and thereby the control covariates, selected using the plugin method.

The plugin method was designed for variable selection in this inferential framework and has the

strongest theoretical justification.

2. If you want to explore the process whereby the control covariates were selected, add option

selection(cv) to your xporegress specification.

You can then explore the path by which each lasso selected control covariates.

You are still on firm theoretical footing. Cross-validation meets the requirements of a sufficient

variable-selection method.

Cross-validation has a long history in machine learning. Moreover, what cross-validation is doing

and how it chooses the covariates is easy to explain.

3. If you do not want to explore lots of lassos and you want to fit models much more quickly, use

commands dsregress or poregress rather than using xporegress.

xporegress fits 10 lassos for the dependent variable and 10more lassos for each covariate of interest!

That is the default; you can request more. Or you can request fewer, but that is not recommended.

So, xporegress is orders of magnitude slower than poregress and dsregress. And it has orders
of magnitude more lassos to explore. Overwhelming.

Why then is xporegress our first recommendation? It is safer if you think that the process that gen-

erated your data has lots of covariates relative to your sample size. Similarly, it is also safer if you

want to explore lots of potential controls. The number of potential controls is not as problematic as

the number of true covariates because it is the natural log of the potential control that counts. For

example, needing 10 additional true covariates is the same as requesting just over 22,000 poten-

tial controls. The jargon term for this is sparsity. xporegress has a weaker sparsity requirement

than do poregress and dsregress. See Solutions that focus on the true model in [LASSO] Lasso

inference intro.

Despite this benefit, if your model is weakly identified by the data, dsregress can be more stable

than either poregress or xporegress. dsregress uses a union of all the selected controls from

all the lassos for all of its computations after selection. Both poregress and xporegress use the

results of each lasso separately to perform parts of their computations (specifically, to compute

their moments), and then put all that together when solving the moment conditions. This makes
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poregress and xporegress sensitive to which controls are selected for each lasso. So if you

change your specification slightly, dsregress may be more stable. To be clear, we said more

stable, not better.

4. We have suggested xporegress without a selection option and xporegress, poregress, and
dsregress with option selection(cv). Feel free to try any of the remaining 21 methods. They all

meet the requirements of sufficient variable-selection methods, so all can be theoretically justified.

Everything we said above applies to models for binary outcomes fit using xpologit, pologit,
and dslogit; and it applies to models for count outcomes fit using xpopoisson, popoisson, and
dspoisson.

These suggestions are based on the assumption that you are not concerned that you have violated

or are near the method’s sparsity bound. See Solutions that focus on the true model in [LASSO] Lasso

inference intro for a discussion of sparsity bounds. Data that fit your model poorly can trigger a sparsity

bound sooner than data that fit well. If you are concerned, see some alternate but similar suggestions in

[LASSO] Inference requirements.

2.2 Fitting via cross-fit partialing out (xpo) using plugin

In the previous section, we recommended using the cross-fit partialing-out estimator xporegress as

your first option. We will use that method to fit a model of how levels of nitrogen dioxide (no2 class)
in a classroom affect the reaction time (react) of students. We use the dataset described in section 1.4.

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

We created a do-file in section 1.4 that collects our variables into groups that are convenient for

specifying inferential lasso models. If you have it saved, great. We will run the one from the Stata Press

website:

. do https://www.stata-press.com/data/r19/no2
(output omitted )

Recall that the purpose of the inferential lasso estimators is to estimate the relationship between one,

or a few, covariates of interest and a dependent variable, while adjusting for a possibly large set of control

variables. And by “large”, we mean perhaps many more controls than you have observations.

We now have our list of continuous control variables in global macro $cc and our list of factor-variable
control variables in global macro $fc. What does that mean? Anywhere we type $cc, Stata substitutes
the list of continuous controls, and anywhere we type $fc, Stata substitutes the list of factor controls.
Let’s display them:

. display ”$cc”
no2_home age age0 sev_home green_home noise_school sev_school precip
> siblings_old siblings_young
. display ”$fc”
sex grade overweight lbweight breastfeed msmoke meducation feducation

That is going to save us a lot of typing.
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Now we are ready to fit our model.

. xporegress react no2_class, controls($cc i.($fc)) rseed(12345)
Cross-fit fold 1 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 2 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 3 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 4 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 5 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 6 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 7 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 8 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 9 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit fold 10 of 10 ...
Estimating lasso for react using plugin
Estimating lasso for no2_class using plugin
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 10
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 22.87
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.316063 .4843097 4.78 0.000 1.366834 3.265293

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The construct i.($fc) in controls() is factor-variable notation that expands each variable in $fc
into indicator variables for each distinct value of the variable. We specified rseed(12345) to set the seed
of the random-number generator so that our results are reproducible. We did this because the cross-fit

estimator uses cross-fitting and so divides the sample into random groups. If we do not set the seed, we
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will get slightly different results each time we run the command. There is nothing special about 12345;
choose any number you like. You will get different, but hopefully similar, results for any seed. The same

seed will always produce the same results.

Now to the output. That is a long log. xporegress is just reporting on its progress as it performs 10

cross-fits and then performs 2 lassos within each group. We see in the header that 1,036 observations

were used, that we specified 32 controls, that 10 controls were selected from the 32, and that we did

not resample. From the Wald statistic and its 𝑝-value, we see that our covariate of interest is highly

significant.

We interpret the coefficient estimates just as we would for a standard linear regression. Because this

is linear regression, that effect can be interpreted as the population average effect, the effect for any

individual, or the effect for any group. What we lose with the inferential lasso estimators is the ability to

interpret any other coefficients.

Our point estimate for the effect of nitrogen dioxide on reaction time is 2.3, meaning that we expect

reaction time to go up by 2.3 milliseconds for each microgram per cubic meter increase in nitrogen

dioxide. This value is statistically different from 0 well beyond the 5% level, in fact, beyond the 0.1%

level. Our 95% confidence interval is 1.4 to 3.3.

We also note that xporegress estimates robust standard errors, so all the associated statistics are also

robust. With xporegress, we are robust to nonnormality of the error and to heteroskedasticity.

We can see how stable the lasso selection of controls is by typing lassoinfo.

. lassoinfo
Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

no2_class linear plugin 5 5 5
react linear plugin 3 5 5

We see that, over the 10 cross-fits, the plugin method selected 5 controls for the lasso on the covariate

of interest—no2 class. It selected 5 controls every time. For the dependent variable, react, the plugin
method selected between 3 and 5 controls. Even though these are real data, they look to be easy for the

lasso and plugin to handle. There is nothing to interpret in this table, though if some of the lassos are

consistently selecting 0 controls, you might want to explore further. See Solutions that focus on the true

model in [LASSO] Lasso inference intro and see [LASSO] Inference requirements.

2.3 Fitting via cross-fit partialing out (xpo) using cross-validation

Continuing with the example above, we can use cross-validation to select our controls rather than

plugin. Cross-validation is a well-established method in the machine learning literature. Even so, it is

known to select more variables than are absolutely necessary. We add selection(cv) to our previous

xporegress command:
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. xporegress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 26
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 23.34
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.348458 .4861133 4.83 0.000 1.395693 3.301222

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

If you run this command, you will see that cross-validation takes much longer than plugin. For each

cross-fit, cross-validation performs its own 10-way partition of the data and runs lassos on each of those

10 partitions for the variables react and no2 class. After all this computation, the results look re-

markably similar. Our coefficient estimate is still 2.3 and is still highly significant. Our 95% confidence

interval is 1.4 to 3.3. This point estimate and the one obtained by plugin are close and well within each

respective confidence interval.

This high degree of similarity is not always the case. Sometimes different methods produce different

results.

Given that the results are so similar, you might guess that plugin and cross-validation selected similar

controls. A quick glance at the header will dispel that thought. Cross-validation selected 26 controls, far

more than the 10 controls selected by plugin. Remember that picking the “right” model is not what these

methods are about. As long as the selected controls adequately control for everything necessary to fit the

variables of interest, they are doing their job.

For these data and this model, the results simply are not very sensitive to the number of controls

selected. This is true over a broad range—at the least from the 10 controls selected by plugin to the 26

controls selected by cross-validation.

Let’s take a quick look at the lassos:

. lassoinfo
Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

no2_class linear cv 9 13 16
react linear cv 6 15 19

Even within cross-fits, cross-validation shows a lot more variation than plugin. The number of se-

lected controls from the lassos on no2 class ranges from 9 to 16. The lassos for react show even more

variation, ranging from 6 to 19 selected controls. Where did the 26 controls in the output of xporegress
come from? It is a count of the union of all controls from any lasso.



Inference examples — Examples and workflow for inference 105

Let’s peer a bit deeper into the lassos by using lassoinfo:

. lassoinfo, each
Estimate: active
Command: xporegress

No. of
Dependent Selection xfold Selection selected
variable Model method no. criterion lambda variables

no2_class linear cv 1 CV min. .1801304 14
no2_class linear cv 2 CV min. .2561599 10
no2_class linear cv 3 CV min. .2181624 13
no2_class linear cv 4 CV min. .1963854 13
no2_class linear cv 5 CV min. .2352711 11
no2_class linear cv 6 CV min. .2663564 12
no2_class linear cv 7 CV min. .1293717 16
no2_class linear cv 8 CV min. .1722497 15
no2_class linear cv 9 CV min. .264197 9
no2_class linear cv 10 CV min. .1184878 16

react linear cv 1 CV min. 2.130811 19
react linear cv 2 CV min. 2.443412 16
react linear cv 3 CV min. 2.062956 17
react linear cv 4 CV min. 4.220311 13
react linear cv 5 CV min. 7.434224 8
react linear cv 6 CV min. 3.356193 14
react linear cv 7 CV min. 7.954354 6
react linear cv 8 CV min. 6.422852 8
react linear cv 9 CV min. 2.982171 15
react linear cv 10 CV min. 2.738883 18

We see that the lasso penalty parameter 𝜆 and the associated number of selected variables varies

widely. This is particularly true of the lassos for react. It simply does not matter; the estimates for

no2 class, our covariate of interest, are not affected.

2.4 Fitting via double selection (ds) using cross-validation

Continuing with the example above, we will fit the model using double selection and cross-validation.

We recommend this for three reasons.

First, the double-selection method works quite a bit differently from the partialing out done by cross-

fit. Instead of working with the lasso results one at a time and then using method of moments to estimate

the parameters, double selection takes the union of selected covariates from all lassos and then just does

a linear regression of react on no2 class and that union of selected covariates. The two methods

are asymptotically equivalent if both sparsity bounds are met, but in finite samples, they can respond

differently to any violation of the conditions required by the inferential lasso estimators. See Solutions

that focus on the true model in [LASSO] Lasso inference intro for a discussion of sparsity bounds.

Second, double selection requires only two lassos for our model, making it much easier to explore the

lassos.
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Third, double selection is much easier to explain. We just did it above in half a sentence.

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
Estimating lasso for react using cv
Estimating lasso for no2_class using cv
Double-selection linear model Number of obs = 1,036

Number of controls = 32
Number of selected controls = 22
Wald chi2(1) = 24.17
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.404191 .4890458 4.92 0.000 1.445679 3.362704

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient estimate for no2 class is now to 2.4, still almost the same as fitting by xporegress
with plugin selection. The associated confidence interval is 1.4 to 3.4. Our test against 0 was strong and

is still strong. This really is a benign dataset for these linear models.

As with cross-validation, with cross-fit the number of selected controls is large—22.

What we are seeing are incredibly stable estimates.



Inference examples — Examples and workflow for inference 107

2.5 Fitting via the other 22 methods

We will not show the results of the other 22 methods for fitting this model. Here is what you would

type for each method:

. xporegress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(adaptive) semi ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(adaptive) semi ///
rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) sqrtlasso semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso semi ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) sqrtlasso semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso semi ///
rseed(12345)

By now, the commands are nearly self explanatory.

Command xporegress fits via the cross-fit partialing-out method. Command poregress fits via

the partialing-out method. Command dsregress fits via the double-selection method.

Adding option selection(cv) specifies that cross-validation select the covariates. Adding option

selection(adaptive) specifies that adaptive lasso select the covariates. No selection() op-

tion implies that the plugin method (the default) select the covariates.

Adding option sqrtlasso specifies the square-root lasso rather than standard lasso.

Adding option semi specifies an alternate way of combining themoments for the po and xpomethods.

If you are interested, run some or all of these commands.

If you do, you will find that for these data and this model, the method we choose makes little differ-

ence. The results for these 22 methods look a lot like the results for the first 3 methods. The maximum

coefficient for no2 class is 2.4, and the minimum coefficient is 2.3. The maximum standard error is

0.51, and the minimum is 0.48. All methods reject that the coefficient for no2 class is 0 well beyond

the 1% level of significance.
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The close similarity of the results from all 25 methods may seem surprising. Are they all selecting

the same controls? The answer is no. Recall from 2.2 Fitting via cross-fit partialing out (xpo) using

plugin that the selected number of controls is 10, whereas from 2.4 Fitting via double selection (ds)

using cross-validation, the selected number of controls is 22—over twice as many.

Let’s look at just two of the methods to see which controls they are selecting. We can easily do this

only lasso by lasso (not command by command), so we will use two double-selection methods. Double

selection creates only two lassos for our model. Comparing the cross-fit methods would require looking

at 20 lassos per method. Let’s use lassocoef to compare double selection using plugin and double

selection using cross-validation.

First, we rerun those two models and store their estimates.

. dsregress react no2_class, controls($cc i.($fc)) rseed(12345)
(output omitted )

. estimates store ds_plugin

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted )

. estimates store ds_cv
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Then, we compare the selected controls from each lasso.

. lassocoef (ds_plugin, for(react))
> (ds_cv , for(react))
> (ds_plugin, for(no2_class))
> (ds_cv , for(no2_class))

ds_plugin ds_cv ds_plugin ds_cv
react react no2_class no2_class

age x x x
0.sex x x

grade
2nd x x
4th x x
3rd x

feducation
University x x x

Primary x
<Primary x

age0 x
sev_home x x

siblings_young x x
0.lbweight x

meducation
1 x
2 x

no2_home x x
green_home x x

noise_school x x
sev_school x x

precip x x

breastfeed
No breastfeeding x

>6 months x

msmoke
No smoking x

_cons x x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

The first two columns of x’s show which controls were selected from the lassos for the dependent

variable, react—the first column for the plugin method and the second for cross-validation. The third

and fourth columns of x’s show which controls were selected by the lassos for the covariate of interest,

no2 class.
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Cross-validation selected more controls than did plugin in the lassos for both the dependent variable,

react, and the covariate of interest, no2 class. That is not surprising because plugin is designed

to be cautious about adding noise through variable selection while cross-validation cares only about

minimizing the cross-validation mean squared error.

Perhapsmore interesting is that for both react and no2 class, cross-validation selected a superset of
the variables selected by plugin. While not guaranteed, that result is a reflection of how the lasso works.

Plugin and cross-validation select their covariates by setting an “optimal” value of 𝜆, the lasso penalty.
Plugin selects a larger 𝜆 and thereby a stronger penalty that selects fewer variables. As the penalty gets

weaker, lasso can drop selected variables when adding others, but lasso is more likely to simply add

variables. So, in this case, cross-validation’s weaker penalty leads to a superset of the variables selected

by plugin. That is a bit of an oversimplification because plugin selects variables that have been weighted

by the inverse standard deviation of their scores while cross-validation does not weight the variables.

This means that the lambda for plugin and the lambda for cross-validation are on different scales.

Recall, though, that the only role of the selected controls is to adequately capture the unmodeled

correlations among the dependent variable, the variables of interest, and the model’s error.

2.6 Fitting models with several variables of interest

All 11 inferential models in Stata allow you to have more than one variable of interest. Let’s extend

our base example from section 2.2 to include both no2 class and student’s age as variables of interest.

The only trick is that wemust remove our new variables of interest from our list of continuous controls.

vl makes that easy:

. vl create cc6 = cc - (age)
note: $cc6 initialized with 9 variables.

We have now created the global macro cc6, which has the same variables as cc except that age has

been removed.

We fit the model using cross-fit partialing-out with the default plugin selection by typing

. xporegress react no2_class age, controls($cc6 i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 31

Number of selected controls = 9
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 25.24
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.353826 .4892462 4.81 0.000 1.394921 3.312731
age -25.01451 11.38901 -2.20 0.028 -47.33656 -2.69245

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient for no2 class has barely changed at all from its estimate in section 2.2.
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Again, we interpret the coefficients on the variables of interest just as we would if they were part of a

standard linear regression. So a 1-unit change in no2 class elicits a 2.4-unit change in react. A 1-unit

change in age elicits a −25-unit change in react. Because the relationship is linear, these changes can
be interpreted as the expected change for any individual or as the expected change for any population or

subpopulation of interest.

2.7 Fitting models with factor variables of interest

Having a factor variable of interest is really no different than having several variables of interest.

Factor variables just provide a convenient way to add several indicator variables to our model.

Those who study response times for children know that they decrease (improve) as the child is exposed

over time to educational stimuli. We might then be interested in how the response times vary across the

child’s grade level. Ignoring our original interest in the effect of nitrogen dioxide for the moment, let’s

pretend our only variable of interest is grade in school.

The distribution of grades in our sample looks like this:

. tabulate grade
Grade in

school Freq. Percent Cum.

2nd 412 37.83 37.83
3rd 397 36.46 74.29
4th 280 25.71 100.00

Total 1,089 100.00

If we wish to use the levels of grade as our variables of interest, we need to remove it from our list

of factor-variable controls:

. vl create fc7 = fc - (grade)
note: $fc7 initialized with 7 variables.

We are not currently interested in the effect of nitrogen dioxide, so we need to add it back to the list

of continuous controls:

. vl create cc7 = cc + (no2_class)
note: $cc7 initialized with 11 variables.
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We can now fit our model with the levels of grade as our variables of interest. We add the option

baselevels so that we can see which level of grade has been made the base level.

. xporegress react i.grade, controls($cc7 i.($fc7)) baselevels rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 30

Number of selected controls = 5
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 16.82
Prob > chi2 = 0.0002

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

grade
2nd 0 (base)
3rd -62.07497 15.26513 -4.07 0.000 -91.99408 -32.15587
4th -92.52593 25.02151 -3.70 0.000 -141.5672 -43.48467

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Acommon theme in these sections is that we interpret the results for the variables of interest just as we

would if they were part of a linear regression. This is no different for factor variables. As we would with

a simple linear regression, we interpret each of the coefficients as the increases in performance relative

to the base level for second graders. We can see that mean reaction time is 62 milliseconds faster for

third graders than it is for second graders. Fourth graders are, on average, 93 milliseconds faster than

second graders.

That common theme extends to the tools that are available after fitting a model with any of the lasso

inference commands. For example, we can use contrast to do comparisons of the grade levels that are

not against a reference category, as they were in the regression. We could use a reverse adjacent (ar.)
contrast to compare each grade to the prior grade:

. contrast ar.grade
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 16.54 0.0000
(4th vs 3rd) 1 4.23 0.0397

Joint 2 16.82 0.0002

Contrast Std. err. [95% conf. interval]

grade
(3rd vs 2nd) -62.07497 15.26513 -91.99408 -32.15587
(4th vs 3rd) -30.45096 14.80702 -59.47218 -1.429727
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The regression showed a 62-millisecond decrease in response time when comparing third graders to

second graders, and that is reproduced by contrast. The difference with reverse-adjacent comparisons

is that the comparison group for fourth graders is now third graders, and we estimate that difference

to be a 30-millisecond decrease. It would take a bit more work to determine if the apparently slower

improvement from third to fourth grade is indeed significantly different from the improvement from

second to third grade. If you are interested, and without explanation, you could type

. contrast ar.grade, post

. lincom _b[ar2vs1.grade] - _b[ar3vs2.grade]

You will find that, by a slim margin, we fail to distinguish between the effect of going from second to

third grade and the effect of going from third to fourth grade.

If we had a more complicated set of interest, we would find contrast indispensable. If you have factor

variables of interest, we suggest you become familiar with contrast.

What we cannot do with results from the inferential lasso models is use margins to estimate popula-

tion and subpopulation means. margins requires a full coefficient vector and variance matrix for those

coefficients. The lasso inference commands can only tell us about a subset of that coefficient vector and

associated variance matrix.

If you are epidemiologically inclined, you might wonder if the effect of grade is not just a proxy for

increasing age. Now that we have multiple variables of interest and factor variables of interest, we can

check that too:
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. vl create cc7b = cc7 - (age)
note: $cc7b initialized with 10 variables.
. xporegress react age i.grade, controls($cc7b i.($fc7)) baselevels rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 29

Number of selected controls = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(3) = 203.93
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

age -18.50751 11.16037 -1.66 0.097 -40.38143 3.366418

grade
2nd 0 (base)
3rd -67.35294 15.4679 -4.35 0.000 -97.66947 -37.03641
4th -100.7346 25.0814 -4.02 0.000 -149.8932 -51.57594

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The estimates for grade level have changed only a bit. Response times may improve with age, but

we cannot detect that at the 5% level. Regardless, the effect of educational stimulation appears to be

independent. Most importantly, we see that all of our contrast tools can be used with these estimators.

2.8 Fitting models with interactions of interest

Not surprisingly, tools for evaluating interactions for other estimation commands are also available to

evaluate interactions among our variables of interest, whether those interactions are strictly among factor

variables or are with factor variables and continuous variables. Let’s arbitrarily check for an interaction

between the child’s sex and his or her age. Again, we need to manage our list of controls by removing

sex and age from the list of factor-variable controls. And we again need to put no2 class, which is no
longer a variable of interest, back into the continuous controls.

. vl create fc8 = fc - (sex grade)
note: $fc8 initialized with 6 variables.
. vl create cc8 = cc + (no2_class)
note: $cc8 initialized with 11 variables.
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We can then fit a cross-fit model of reaction time where our variable of interest is sex##grade—the

interaction of sex and grade while also including individual indicators for the levels of sex and grade.

. xporegress react sex##grade, controls($cc8 i.($fc8)) baselevels rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 28

Number of selected controls = 6
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(5) = 64.57
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

sex
Male 0 (base)

Female 45.10077 13.73912 3.28 0.001 18.17259 72.02896

grade
2nd 0 (base)
3rd -65.62381 17.72386 -3.70 0.000 -100.362 -30.88568
4th -102.2437 26.5379 -3.85 0.000 -154.257 -50.23033

sex#grade
Female#3rd 3.173242 19.09434 0.17 0.868 -34.25098 40.59747
Female#4th 18.42495 19.98327 0.92 0.357 -20.74154 57.59144

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The two coefficients of the interaction sex#grade and their associated statistics do not give us much

hope that an interaction is statistically detectable. Let’s check anyway:

. contrast sex#grade
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

sex#grade 2 0.96 0.6188

Definitely not statistically significant, at any level.

What about the individual effects of sex and grade?

. contrast sex
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

sex 1 42.33 0.0000
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. contrast grade
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

grade 2 17.83 0.0001

Both individual effects are significant at any level you would care to consider.

Some studies have found differences in some types of reaction times between the sexes, but we might

want to consider another factor—the interaction between sex and no2 class.

We can put grade back into the controls because it has no interaction with sex.

. vl create fc8b = fc - (sex)
note: $fc8b initialized with 7 variables.

We are ready to fit a model that includes sex, no2 class, and their interaction. That can be written
in shorthand, by typing c.no2 class##i.sex. We fit the model:

. xporegress react c.no2_class##i.sex, controls($cc i.($fc8b)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 30

Number of selected controls = 9
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(3) = 63.42
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 1.708798 .5961435 2.87 0.004 .5403779 2.877217

sex
Female 17.47061 24.31548 0.72 0.472 -30.18686 65.12807

sex#
c.no2_class

Female 1.099669 .7737183 1.42 0.155 -.4167913 2.616129

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Everything we need to know is in this output.

The effect of no2 class is still positive, as it was for all of our earlier fits. The effect is now a bit

smaller at a 1.7-millisecond increase in response for every microgram increase in NO2 per cubic meter.

There is no longer a significant difference in response times for females compared with males. The

point estimate is 17, but its 𝑧 statistic is a scant 0.72.
The interaction between sex and no2 class is also not significant, though you might wish you had

more data.
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You might be curious if the effect of nitrogen dioxide across both males and females from this model

is similar to our earlier models without an interaction. If we assume 50% males and 50% females, we

just need to add half of the interaction term to the estimate for males.

. lincom no2_class + .5*c.no2_class#1.sex
( 1) no2_class + .5*1.sex#c.no2_class = 0

react Coefficient Std. err. z P>|z| [95% conf. interval]

(1) 2.258632 .4800889 4.70 0.000 1.317675 3.199589

The estimate is extremely close to the point estimate and standard errors that we obtained in 2.2 Fitting

via cross-fit partialing out (xpo) using plugin—both round to 2.3 with standard errors that round to 0.48.

While we have pretended to be performing analysis, the important thing to know is that the standard

inference tools can be applied to the variables of interest.

2.9 Fitting models with a nonlinear relationship of interest

Let’s continue with our reaction-time example and put a nonlinearity in no2 class into the covari-

ates of interest. What we really mean by “nonlinear” in this context is nonlinear-but-linearizeable—

polynomials, logs, ratios, and the like.

We just want to demonstrate how to think about nonlinearities with these models, so let’s not dwell on

where the nonlinear relationship comes from. In your work, you may have some theory or precedence

for your choice of nonlinearities. For now, we know that fractional polynomials (fp) produce whole

classes of reasonable curves, so we will arbitrarily pick one of those forms that allows for two inflection

points—including one over the square root and the cube of the variable.

. generate no2fp1 = no2_class^(-2)

. generate no2fp2 = no2_class^3

With those as our two covariates of interest, we fit a cross-fit model. Our controls are from the model

we fit in 2.2 Fitting via cross-fit partialing out (xpo) using plugin.

. xporegress react no2fp1 no2fp2, controls($cc i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 11
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 24.55
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -2915.067 2227.731 -1.31 0.191 -7281.339 1451.205
no2fp2 .0005923 .0001394 4.25 0.000 .0003191 .0008655

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.
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We see that it is unclear if we really need two terms to model this relationship. Only one of the terms

is significant. But our nonlinearity is just a construct for demonstration and we want to see how this

works, so we are undeterred.

We could do a bit of algebra and decidewhat those terms imply about the relationship between nitrogen

dioxide and reaction time. Or we could just graph the relationship. Predictions in inferential models are

typically not much use, but they are perfect for our purpose.

We say predictions are not much use because the selected controls should not be used in a prediction.

They are used by xporegress solely to obtain consistent estimates of the model of interest, but they are

not themselves interpretable. So they should not be used to form predictions. We should not even use

the intercept. For xporegress and all the other inferential models, only our covariates of interest affect

the prediction. That is fine with us; that is all we want to see. We would like to get confidence intervals

too, so let’s use predictnl to get our predictions:

. predictnl reacthat = predict(), ci(lb ub)
note: confidence intervals calculated using Z critical values.

We can then graph the prediction and its confidence interval:

. twoway rarea lb ub no2_class, sort || line reacthat no2_class,
> sort legend(off) title(”Reaction time (ms)”)
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There might be some upward curvature as nitrogen dioxide reaches its highest observed levels, but the

confidence interval is too wide to be sure. The downward bend at the lowest levels of nitrogen dioxide

is also suspect because the confidence interval is also wide in that region of the graph. We have scant

evidence that this curve is any better than a linear relationship.

If you are unfamiliar with twoway syntax, we asked for two overlaid plots: a range area for the

confidence interval from the variables lb and ub plotted against no2 class, rarea lb ub no2 class,
and a line of predicted reaction time from the variable reacthat against no2 class.

Unfortunately, we cannot use any information-criterion tools to compare our nonlinear fit with our ear-

lier linear fit. The inferential models cannot estimate the log likelihood or any form of residual required

to form any information-criterion measures.
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2.10 Controls are controls

The literature on the inferential models fit by double-selection, partialing-out, and cross-fit partialing-

out estimators refers to the “variables of interest”, but a more accurate term might be “submodel of

interest”. We say that because a maintained assumption is that the control variables are just controls and

they do not interact with the variable or variables of interest. That is to say, they can shift the expected

value of the outcome, but they cannot change the effect of the variables of interest.

If you think control variable x3 actually interacts with one of your variables of interest, say, d1, then
you will need to include that interaction in your submodel of interest. So if x3 and d1 are continuous, you

need to add c.x3#c.d1 to your submodel of interest; if x3 is an indicator or multi-value factor variable,

you need to add i.x3#c.d1; if both are factor variables, you need to add i.x3#i.d1. In these cases, x3
is not a control variable—it is part of your submodel of interest.

3 Fitting logit inferential models to binary outcomes. What is different?
Even if your current interest is logit models, we suggest you also read 2 Fitting and interpreting

inferential models. That section has many more examples and goes into more detail. If you are starting

here, we also suggest you read 1.4 The primary dataset to become familiar with the dataset and how we

are manipulating it. Section 1.4 is not essential reading, but if things become confusing, do read it. Here

we focus primarily on what is different about logit models.

Without exception, every command and example from section 2 can be run using a logit lasso infer-

ence command. Just change regress to logit in the estimation commands, and change the dependent

variable from react to the dependent variable we create below.

We will replicate a few of the analyses from section 2 using logit models and explain how the results

are interpreted with binary outcomes. Feel free to run others. Their results are interpreted in the same

way as those shown here.

Let’s continue with the dataset we have been using to measure the effect of nitrogen dioxide in the

classroom on the reaction time of school children.

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

We need to create the global macros that will hold our lists of continuous and factor-variable control

variables:

. do https://www.stata-press.com/data/r19/no2
(output omitted )

To see how these lists were created, see 1.4 The primary dataset.

This dataset does not have a binary (dichotomous) dependent variable, but it is easy enough to create

one. The variable omissions contains a count of the number of times a child failed to respond to a

stimuli. We can pretend that we only saw whether or not there were any omissions. Let’s create a

variable that is 1 when there were any omissions and is 0 otherwise:

. generate miss1 = omissions >= 1 if !missing(omissions)
(5 missing values generated)
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Then take a quick look at our new variable:

. tabulate miss1
miss1 Freq. Percent Cum.

0 508 46.86 46.86
1 576 53.14 100.00

Total 1,084 100.00

We have 508 children who never missed a stimulus from the test and 576 who missed at least one

stimulus.

3.1 Interpreting standard odds ratios

If you are new to inferential lasso models and have not at least read 2.2 Fitting via cross-fit partialing

out (xpo) using plugin, do that now. We will only explain how to interpret the odds ratios below. Section

2.2 explains more.

We can now fit a model of how classroom nitrogen dioxide levels (no2 class) affect whether chil-
dren miss any stimuli on a reaction-time test (miss1). Our continuous controls are in the global macro

$cc and our factor-variable controls are in the global macro $fc, as they were in our very first example

in section 2.2. We use xpologit to fit the model:

. xpologit miss1 no2_class, controls($cc i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 32

Number of selected controls = 5
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 11.18
Prob > chi2 = 0.0008

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

no2_class 1.027338 .0082854 3.34 0.001 1.011227 1.043706

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The odds ratio for no2 class is 1.03. We interpret that ratio just as we would if this were a logistic
regression. For every unit increase in the level of nitrogen dioxide, the odds of a student missing at least

one stimulus increase by a factor of 1.03, with a confidence interval of 1.01 to 1.04. As always with these

models, we cannot estimate a constant, so we do not know the baseline odds.

At face value, that is a small odds ratio, but the range of no2 class is 7.8 to 52.6:

. summarize no2_class
Variable Obs Mean Std. dev. Min Max

no2_class 1,089 30.16779 9.895886 7.794096 52.56397

The difference is over 44 micrograms per cubic meter. What odds ratio do we obtain if we increase

nitrogen dioxide levels by 44?
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. lincom _b[no2_class]*44, or
( 1) 44*no2_class = 0

miss1 Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) 3.276333 1.162629 3.34 0.001 1.634306 6.568144

The odds go up by 3.3 with a confidence interval from 1.6 to 6.6.

Be careful if you do this by hand. The or option did quite a bit of work. There are several ways to

write what lincom did behind the scenes. One way is

OR44 = 1.02733844

This follows directly from what we said about the original odds ratio being the factor by which odds

increase.

Equivalently, and what really happens behind the scenes, is

OR44 = 𝑒𝛽∗44

where 𝛽 is the coefficient on no2 class, which is the log of the odds ratio shown on the xpologit
results. These expressions produce identical results.

We said earlier that xpologit cannot estimate a baseline odds. It cannot estimate any odds, only odds

ratios. Even so, we might consider the degree of these effects by looking at children experiencing truly

low nitrogen dioxide levels, say, below 10:

. table miss1 if no2_class < 10

Frequency

miss1
0 24
1 10
Total 34

That gives an odds of 10/24 = 0.42, or roughly one child missing a stimulus for every two who

respond to every stimulus. If we assume that is the starting odds for a child and then increase the nitrogen

dioxide levels by 44, the odds move all the way to 3.2 × 0.42 = 1.3. At that level of nitrogen dioxide,

almost three children miss at least one stimulus for every two who respond to every stimulus.

3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

Let’s run through most of the examples that we first demonstrated with linear regression. We are

going to set the models up quickly. Read sections 2.6 through 2.9 for more about the models. We will

use the same tools; we will just ask them to report odds ratios.

In 2.6 Fitting models with several variables of interest, we added age to our covariates of interest.

That means we must pull age from our list of continuous controls.

. vl create cc31 = cc - (age)
note: $cc31 initialized with 9 variables.
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We will use different global macro names throughout this section to avoid collisions with the original

examples. These globals hold the same variable lists—they just have a different name.

We fit the model:

. xpologit miss1 no2_class age, controls($cc31 i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 31

Number of selected controls = 7
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 13.58
Prob > chi2 = 0.0011

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

no2_class 1.048213 .0760006 0.65 0.516 .9093542 1.208275
age .7922585 .0647357 -2.85 0.004 .6750174 .9298628

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

There is not much to say about the results. Interpret the odds ratios as you would any logistic model

with two covariates. The odds ratio for age is 0.79 and is significant at the 5% level with a 95% confidence

interval from 0.68 to 0.93. So, older children are less likely to miss a stimulus. We also note that

no2 class is now insignificant. We are asking a lot of a binary outcome signal.

In 2.7 Fitting models with factor variables of interest, we decided that we were interested in the effect

of the grade the child was in at school and no longer interested in nitrogen dioxide.

We will set our controls to reflect this:

. vl create fc32 = fc - (grade)
note: $fc32 initialized with 7 variables.
. vl create cc32 = cc + (no2_class)
note: $cc32 initialized with 11 variables.
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And we fit the xpologit model:

. xpologit miss1 i.grade, controls($cc32 i.($fc32)) baselevels rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 30

Number of selected controls = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 5.51
Prob > chi2 = 0.0637

Robust
miss1 Odds ratio std. err. z P>|z| [95% conf. interval]

grade
2nd 1 (base)
3rd .6371055 .1232829 -2.33 0.020 .4360134 .9309425
4th .6156729 .1974266 -1.51 0.130 .3283953 1.154259

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The odds ratio of going from second grade, the base level, to third grade is 0.64 and is significant.

The odds ratio of going from second grade to fourth grade is 0.62 and is not statistically significant at

the 5% level.

These results are weaker than those for the linear model for reaction time. Even so, we forge on and

use contrast to look at the grade-to-grade odds ratios. contrast knows how to exponentiate results to

get odds ratios, but it is not quite as smart as lincom. We will need to tell contrast to use exponential

form (eform()) and to label the results as “Odds ratio”:

. contrast ar.grade, eform(Odds ratio)
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 5.43 0.0198
(4th vs 3rd) 1 0.02 0.8777

Joint 2 5.51 0.0637

Odds ratio Std. err. [95% conf. interval]

grade
(3rd vs 2nd) .6371055 .1232829 .4360134 .9309425
(4th vs 3rd) .9663594 .2149063 .6249454 1.494291

The first comparison is still between second and third grade. We already discussed that comparison

when considering the output from xpologit. contrast reports the same odds ratio and the same 𝑝-
value. The second comparison is now between third and fourth grade. The point estimate is an odds ratio

of 0.97, almost 1, and it is not a significant ratio at the 5% level.
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We will skip section 2.8 Fitting models with interactions of interest because it does not offer any new

tools for analyzing odds ratios. You can run that model as an inferential lasso logit model on miss1. Just
remember to add option eform(Odds ratio) to any of the contrast commands.

In 2.9 Fitting models with a nonlinear relationship of interest, we analyzed a nonlinear relationship

between reaction time and nitrogen dioxide levels. Recall from section 2.9 that we arbitrarily chose a

nonlinear representation for no2 class that allows for two inflection points—one over the square root

of no2 class and one over the cube of the no2 class. If you have already worked through section 2.9
with your current dataset, you already have the two variables for the nonlinearity in your dataset. If not,

we will need to create them.

. generate no2fp1 = no2_class^(-2)

. generate no2fp2 = no2_class^3

With these variables in place, we can fit our nonlinear relationship between miss1 and no2 class.

. xpologit miss1 no2fp1 no2fp2, controls($cc i.($fc)) rseed(12345)
(output omitted )

convergence not achieved
gmm step failed to converge

r(498);

That did not end well. Generalized method of moments (GMM) is how pologit and xpologit com-

bine the scores from the partialing-out process to obtain the parameter estimates for the coefficients of

interest. With these data and model, GMM simply could not converge. This happens. In the other exam-

ples in this section, we have mentioned that the estimates are not as significant as they were for the linear

models on reaction time from section 2. Our binary outcome variable, miss1, has much less information

than the continuous reaction time variable.

Do we think all is lost? This is the first example of instability, so let’s try a little harder. We will warn

you that you can try pologit, but it fails with the same error.

Let’s take the advice from [LASSO] Inference requirements and try cross-validation as our selection

technique. We return to the cross-fit estimator:

. xpologit miss1 no2fp1 no2fp2, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted )

convergence not achieved
gmm step failed to converge

r(498);

This is tough. We cannot even try the alternate suggestion from [LASSO] Inference requirements

because we already said that pologit with plugin selection failed. We will tell you now that pologit
with cross-validation selection also fails.



Inference examples — Examples and workflow for inference 125

We did say earlier that double selection is more stable. Let’s try dslogit, first with cross-validation,
and store the results:

. dslogit miss1 no2fp1 no2fp2, controls($cc i.($fc)) selection(cv) coef
> rseed(12345)
Estimating lasso for miss1 using cv
Estimating lasso for no2fp1 using cv
Estimating lasso for no2fp2 using cv
Double-selection logit model Number of obs = 1,036

Number of controls = 32
Number of selected controls = 23
Wald chi2(2) = 16.19
Prob > chi2 = 0.0003

Robust
miss1 Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -79.45294 41.32577 -1.92 0.055 -160.45 1.544089
no2fp2 7.18e-06 2.52e-06 2.85 0.004 2.24e-06 .0000121

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store ds_cv

We have estimates. There is nothing to suggest instability in these results. The coefficient on no2fp2
is tiny, but that is the cube of no2 class. It needs to be a small coefficient.

What does the plugin selection method have to say?

. dslogit miss1 no2fp1 no2fp2, controls($cc i.($fc)) coef rseed(12345)
Estimating lasso for miss1 using plugin
Estimating lasso for no2fp1 using plugin
Estimating lasso for no2fp2 using plugin
Double-selection logit model Number of obs = 1,036

Number of controls = 32
Number of selected controls = 5
Wald chi2(2) = 14.63
Prob > chi2 = 0.0007

Robust
miss1 Coefficient std. err. z P>|z| [95% conf. interval]

no2fp1 -80.76289 39.2933 -2.06 0.040 -157.7763 -3.749442
no2fp2 6.01e-06 2.35e-06 2.56 0.010 1.41e-06 .0000106

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store ds_plugin
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Those coefficients look similar to the ones from cross-validation selection. What is more, plugin

selected only 5 controls whereas cross-validation selected 23. The double-selection results are similar

over a wide range of selected controls. We stored the results from the estimators, so let’s peek at the

controls from the two methods by using [LASSO] lassoinfo:

. lassoinfo ds_cv ds_plugin
Estimate: ds_cv
Command: dslogit

No. of
Selection Selection selected

Variable Model method criterion lambda variables

miss1 logit cv CV min. .0229644 6
no2fp1 linear cv CV min. .0000249 17
no2fp2 linear cv CV min. 636.8366 13

Estimate: ds_plugin
Command: dslogit

No. of
Selection selected

Variable Model method lambda variables

miss1 logit plugin .07161 0
no2fp1 linear plugin .1199154 4
no2fp2 linear plugin .1199154 4

Cross-validation is selecting many more controls for each variable’s lasso: for miss1, 6 versus 0; for
no2fp1, 17 versus 4; and for no2fp2, 13 versus 4.
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Let’s look more closely with lassocoef:

. lassocoef (ds_plugin, for(miss1))
> (ds_cv , for(miss1))
> (ds_plugin, for(no2fp1))
> (ds_cv , for(no2fp1))
> (ds_plugin, for(no2fp2))
> (ds_cv , for(no2fp2))

ds_plugin ds_cv ds_plugin ds_cv ds_plugin ds_cv
miss1 miss1 no2fp1 no2fp1 no2fp2 no2fp2

age x x

grade
2nd x
4th x
3rd x

0.overweight x x

feducation
University x x

<Primary x x
Primary x

no2fp1 x
no2fp2 x

no2_home x x x
green_home x x x x

noise_school x x x x
precip x x x x

age0 x
sev_home x x

sev_school x x x
siblings_old x

0.sex x

breastfeed
<6 months x
>6 months x x

meducation
1 x
2 x

msmoke
No smoking x

Smoking x

_cons x x x x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

A careful perusal of the x’s shows that cross-validation selected each control that plugin selected for

all lassos. It also selected many more controls. We have seen this behavior before. At least we are not

worried that the selection method produces different results.
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We graphed the nonlinear effect of nitrogen dioxide on reaction time by using a linear model in sec-

tion 2.9. The path of coefficients from a logit model do not have any interpretation. Wait! The results

that we saw at the beginning of this section were interpretable. All we had to do was exponentiate the

total difference from some baseline and we obtained an odds ratio. We can do that here too.

The predict commandwill give us the linear predictions for just the two fractional polynomial terms.

We want a confidence interval (CI), so let’s use predictnl:

. predictnl xbhat = predict(), ci(xblb xbub)
note: confidence intervals calculated using Z critical values.

We have no intercept, so we need to pick a level of xbhat whose exponential will be our baseline

odds. Do we think the minimum value of nitrogen dioxide is reasonable? Or do we think that is an

outlier?

. summarize no2_class, detail
Classroom NO2 levels (ug/m3)

Percentiles Smallest
1% 9.474087 7.794096
5% 16.86244 7.794096

10% 18.5384 7.794096 Obs 1,089
25% 22.81843 7.794096 Sum of wgt. 1,089
50% 29.91033 Mean 30.16779

Largest Std. dev. 9.895886
75% 36.59826 52.56397
90% 42.04398 52.56397 Variance 97.92857
95% 45.97548 52.56397 Skewness .2082405
99% 52.52346 52.56397 Kurtosis 2.63782

We have five identical values of 7.8 for at least the smallest five, and they are not far from the first

percentile. If we can find the linear prediction for the minimum value of no2 class, that would be a

serviceable baseline.

. summarize xbhat if no2_class <= r(min)
Variable Obs Mean Std. dev. Min Max

xbhat 8 -1.326629 0 -1.326629 -1.326629

The r(min) in that expression was just a saved result from the previous summarize command.

It contained the minimum of no2 class. Our linear prediction that corresponds to the minimum of

no2 class is −1.3. That is our linear baseline. We could subtract −1.3 from our linear prediction

and its bounds, but the value is stored in higher precision in r(mean). Let’s subtract our baseline and
exponentiate the results to obtain odds ratios:

. generate orhat = exp(xbhat - r(mean))

. generate orlb = exp(xblb - r(mean))

. generate orub = exp(xbub - r(mean))

Let’s label the variable holding our point estimate of the odds ratios.

. label variable orhat ”Odds ratio vs. lowest levels of NO2”

It is always good to label your variables. And we would like a little labeling on our graph. If you have

lost track of what we are computing, that label should be a hint.
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That was a bit of work. And, admittedly, it was only loosely tied to the algebra at the top of this

section. Was it worth it? What do we have?

. twoway rarea orlb orub no2_class, sort || line orhat no2_class,
> yline(1) legend(off) sort
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Well, it is pretty, in a statistical way. The lowest value of the red line is exactly 1.0. It is the baseline

odds that we assigned to the lowest levels of no2 class. We did that when we subtracted the prediction

for the lowest levels of no2 class from all of our predictions. That made the lowest prediction exactly 0

and its exponential 1.0—meaning no effect. That was done by construction.

Let’s look at the other end of the graph, the rightmost portion where no2 class levels are just above

50. The red line now looks to be between 8 and 9—we will just say 8. The odds of a child missing a

stimuli when nitrogen dioxide levels are above 50 are 8 times higher than the odds when nitrogen dioxide

levels are at the minimum in the dataset. For nitrogen dioxide levels of 30, the red odds-ratio line looks

to be about 4, meaning that children facing levels of 30 have 4 times higher odds of missing a stimuli

than do children facing the lowest levels of nitrogen dioxide. And so on. The line traces out the odds

ratio for each level of nitrogen dioxide against the odds for the lowest level of nitrogen dioxide.

The blue area is the 95% confidence boundary for the odds ratio. The boundary is pretty narrow for

the majority of the curve, but it expands as nitrogen dioxide levels exceed 35 or 40. At the highest levels,

the band ranges from about 4 all the way to about 17.

We drew a black reference line at 1.0 because an odds ratio of 1.0 means no effect. At the lowest levels

of nitrogen dioxide, the lower bound of the CI is below 1.0. So at those levels, we cannot tell whether

nitrogen dioxide has an effect.

The point estimates and their CIs are in the variables orhat, orlb, and orub. You can summarize
them or look at them for specific levels of no2 class.

Making the lowest level of no2 class the reference odds was arbitrary. Rather than subtract the

mean of the linear prediction for that level of no2 class, we could have used the value at the mean of

no2 class, or the median, or any value we choose. We need not have considered no2 class at all in

setting the baseline. Any of these changes would just shift the curves up or down. Their relative positions

do not change. If you have a specific comparison in mind, change the baseline.
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All that said, the CIs are wide and we might be curious whether a straight line fits just as well. As we

mentioned in section 2.9, the standard AIC and BIC methods for choosing among specifications are not

possible after inferential lasso estimation. We are pretty much stuck with eyeing it. If you want to do

that, do not try with this graph. The exponential has put its own curve onto the odds ratios. Look instead

at a graph of the original predictions:

twoway rarea xblb xbub no2_class, sort || line xbhat no2_class, sort

We leave you to draw that yourself.

4 Fitting inferential models to count outcomes. What is different?
Even if your current interest is Poisson models, we suggest you also read 2 Fitting and interpreting

inferential models. That section has many more examples and goes into more detail. If you are starting

here, we also suggest you read 1.4 The primary dataset to become familiar with the dataset and how we

are manipulating it. Section 1.4 is not essential reading, but it does explain more about how we manage

the variable lists in this entry. Here we focus primarily on what is different about Poisson models.

Every command and example from section 2 can be run using a Poisson lasso inference command.

Just change regress to poisson in the estimation commands, and change the dependent variable from

react to omissions.

We will replicate a few of the analyses from section 2 using Poisson models and explain how the

results are interpreted with count outcomes. Feel free to run others. Their results are interpreted in the

same way as those shown here.

Let’s continue with the dataset we have been using to measure the effect of nitrogen dioxide in the

classroom on the reaction time of school children.

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

We need to create the global macros that will hold our lists of continuous and factor-variable control

variables:

. do https://www.stata-press.com/data/r19/no2
(output omitted )

To see how these lists were created, see 1.4 The primary dataset.

4.1 Interpreting standard incidence-rate ratios

If you are new to inferential lasso models and have not read 2.2 Fitting via cross-fit partialing out

(xpo) using plugin, do that now. We will only explain how to interpret the incident-rate ratios below.

Section 2.2 explains more.

Our count outcome is omissions, the number of times a student failed to respond to a stimulus while

taking a test to measure reaction times. We are interested in how classroom nitrogen dioxide levels

(no2 class) affect the number of omissions.
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Our continuous controls are in the global macro $cc, and our factor-variable controls are in the global
macro $fc, as they were in our very first example in section 2.2. We use xpopoisson to fit the model,

. xpopoisson omissions no2_class, controls($cc i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 32

Number of selected controls = 16
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 5.42
Prob > chi2 = 0.0199

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

no2_class 1.022025 .0095654 2.33 0.020 1.003448 1.040946

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

We see that xpopoisson reports an IRR (incidence-rate ratio) by default, rather than a coefficient. That

is more useful for interpretation. The term “rate”, however, is less intuitive for the count of omissions.

Often, counts are taken over a time and thus are considered rates. Our count is for a fixed-length test,

so it is better to think of this as a ratio of means. Our point estimate of 1.02 means that we expect the

number of omissions to go up by a factor of 1.02 for every unit increase in the level of nitrogen dioxide

in the classroom. Our 95% confidence interval is 1.003 to 1.041, and the ratio is significantly different

from 1 at the 5% level.

That rate might seem small, but the level of no2 class ranges from 7.8 to 52.6:

. summarize no2_class
Variable Obs Mean Std. dev. Min Max

no2_class 1,089 30.16779 9.895886 7.794096 52.56397

The difference is over 44 micrograms per cubic meter. A reasonable question would be how much a

student is affected in going from a classroomwith, say, 8 micrograms to a classroomwith 52micrograms.

lincom can answer that question if we tell it that we want IRRs reported:

. lincom _b[no2_class]*44, irr
( 1) 44*no2_class = 0

omissions IRR Std. err. z P>|z| [95% conf. interval]

(1) 2.608014 1.073998 2.33 0.020 1.163535 5.845752

The ratio is 2.6 and is significant, having exactly the same z-statistic as the original estimate. That

is by construction because for the purpose of the test, we merely multiplied the underlying coefficient

by a constant. A child is expected to make 2.6 times as many errors when exposed to 52 micrograms of

nitrogen dioxide as compared with the number of errors when exposed to only 8 micrograms.
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That result does not rely on the starting number of 8. It depends only on the difference. We could ask

about the effect of adding 10 micrograms of nitrogen dioxide to whatever is the ambient level:

. lincom _b[no2_class]*10, irr
( 1) 10*no2_class = 0

omissions IRR Std. err. z P>|z| [95% conf. interval]

(1) 1.243414 .1163742 2.33 0.020 1.035023 1.493764

So adding 10 micrograms increases the expected number of omissions by 1.24. If the number of

omissions was 4 before the increase, we expect just under 5 after. If it was 10, we expect 12.4 after.

Be careful if you want to take two steps of the 10-microgram increase. These are ratios, so a 20-

microgram increase leads to a 1.242 = 1.54 ratio.

We cannot estimate counts after any of the Poisson inferential lasso estimators. The theory for these

estimators does not provide for estimating an intercept.

4.2 Interpreting models with factor variables

As we did with logit models for binary outcomes, let’s run through a few of the examples that we first

demonstrated with linear regression. We are going to set the models up quickly. Read sections 2.6 and

2.7 for more about the models. We will use the same tools; we will just ask them to provide IRRs.

Continuing with the same dataset, in 2.6 Fitting models with several variables of interest we added

age to our covariates of interest. That means we must pull age from our list of continuous controls:

. vl create cc41 = cc - (age)
note: $cc41 initialized with 9 variables.

As we did with logit models, we will use different global macro names throughout this section to

avoid collisions with the original examples. Again, these globals hold the same variable lists—they just

have a different name.

We fit the model.

. xpopoisson omissions no2_class age, controls($cc41 i.($fc)) rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 31

Number of selected controls = 15
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 29.20
Prob > chi2 = 0.0000

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

no2_class 1.023175 .005028 4.66 0.000 1.013368 1.033078
age .8075872 .0406566 -4.24 0.000 .7317068 .8913366

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.
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Wenowhave an IRR for age aswell as for no2 class. They are both interpreted aswe did no2 class
above, which is to say, as you would any IRR.

In 2.7 Fitting models with factor variables of interest, we decided that we were interested in the effect

of the child’s grade in school and were no longer interested in nitrogen dioxide. Really, we just want to

demonstrate a factor-variable covariate of interest.

We will set our controls to reflect this:

. vl create fc32 = fc - (grade)
note: $fc32 initialized with 7 variables.
. vl create cc32 = cc + (no2_class)
note: $cc32 initialized with 11 variables.

And we fit the xpopoisson model:

. xpopoisson omissions i.grade, controls($cc32 i.($fc32)) baselevels
> rseed(12345)
(output omitted )

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 30

Number of selected controls = 11
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 4.74
Prob > chi2 = 0.0933

Robust
omissions IRR std. err. z P>|z| [95% conf. interval]

grade
2nd 1 (base)
3rd .6008938 .1451159 -2.11 0.035 .3743109 .9646349
4th .443883 .1832475 -1.97 0.049 .197637 .9969392

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The expected number of omissions of third graders is 60% of that of second graders with a 95% CI

of 0.37 to 0.96. Fourth graders have even fewer omissions. The point estimate is 44% of the number for

second graders.
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contrast works with IRRs just as it did with ORs in section 3.2. Again, we just need to add the option

eform(IRR).

. contrast ar.grade, eform(IRR)
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

grade
(3rd vs 2nd) 1 4.45 0.0349
(4th vs 3rd) 1 1.21 0.2708

Joint 2 4.74 0.0933

IRR Std. err. [95% conf. interval]

grade
(3rd vs 2nd) .6008938 .1451159 .3743109 .9646349
(4th vs 3rd) .7387046 .2031553 .4309005 1.266382

We specified reverse-adjacent (ar) contrasts, so comparisons will now be grade to grade rather than

against a base grade. The first comparison is still between second and third grades and, of course, gives

the same results as xpopoisson itself.

The second comparison is between third and fourth grades. We fail to find a significant difference,

though the point estimate is that fourth graders make only 74% of the omissions made by third graders.

As with the logit models, we will skip section 2.8 Fitting models with interactions of interest because

it does not offer any new tools for analyzing odds ratios. You can run that model as an inferential lasso

probit model on omissions. If you run any contrasts, be sure to add option eform(IRR).

5 Exploring inferential model lassos
Aside from the two commands we have used in the examples in this entry, [LASSO] lassoinfo and

[LASSO] lassocoef, you are unlikely to need many of the postestimation commands commonly used after

lasso. Regardless, most of them are available. You can create knot tables of coefficient selection, plot

cross-validation functions, plot coefficient paths, display lasso coefficients, and even change the penalty

parameter 𝜆 that is used to select controls.

See [LASSO] lasso inference postestimation for an overview and a list of postestimation commands

that are available after the inferential lasso estimators. The entries for each command have examples that

demonstrate their use after inferential lasso estimators.

6 Fitting an inferential model with endogenous covariates
We will replicate a well-known model that was used to illustrate a two-stage least squares estimator

for handling an endogenous covariate; see Wooldridge (2010, ex. 5.3). Because the inferential lasso

estimators provide variable selection that is robust to selection mistakes, we will introduce a flexible

series expansion of the variables.

Wooldridge models the log of married women’s wages (lwage) as a function of their experience

(exper), the square of their experience, and their years of education (educ). Collectively, these are

called exogenous covariates.
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As is customary, education is treated as an endogenous variable. The reasoning is that we cannot

measure innate ability, and ability is likely to influence both education level and income. Some disci-

plines refer to this as unobserved confounding rather than endogeneity. Either way, you cannot just run

a regression of wages on education and experience and learn anything about the true effect of education

on wages.

You need more information from variables that you presume are not affected by the woman’s un-

measured ability—let’s call them instruments. And, they also cannot belong in the model for wages.

Wooldridge used their mothers’ education (motheduc), their fathers’ education (fatheduc), and their

husbands’ education (huseduc) as instruments for the woman’s education. The instruments are also

required to be exogenous, but we will just call them instruments.

The data are from Mroz (1987).

xpoivregress and poivregress use lassos to select the exogenous covariates from a list of potential

exogenous covariates. They use lassos to select the instruments from a set of potential instruments.

This means we do not have to worry about introducing noise or weak instruments by possibly including

irrelevant exogenous covariates or instruments. Lasso will ensure that sufficient amounts of irrelevant

covariates are ignored. We are free to include the kitchen sink.

Let’s add some variables that Wooldridge kept out. He was required to be thoughtful of introducing

irrelevant covariates. We are not. To the list of potential exogenous covariates, we add the number of

children younger than 6 (kidslt6), the number of children aged 6 or older (kidsge6), the women’s

ages (age), their husbands’ ages (husage), and an indicator for living in an urban area (citt). We have

nothing to add to the instruments. Good instruments are hard to find.

To make sure the sink is full, let’s take all the exogenous variables and, instead of entering them only

linearly, enter them as linear terms, as quadratic terms, and as all possible interactions. Let’s do the same

for our list of three instruments. This is often called a series expansion, or a Taylor-series expansion.

It allows for nonlinearity in the way our exogenous covariates affect the outcome and in the way our

instruments control endogeneity. We just did second-order expansion; you can go further.

We will continue using the variable-management tool vl to manage our lists of variables. First, we

use theMroz dataset and then create our base list of exogenous covariates and our base list of instruments.

. use https://www.stata-press.com/data/r19/mroz, clear

. vl create exogbase = (exper age husage kidslt6 kidsge6 city)
note: $exogbase initialized with 6 variables.
. vl create instbase = (motheduc fatheduc huseduc)
note: $instbase initialized with 3 variables.

The list of exogenous covariates is now in the global macro $exogbase, and the list of instruments is

now in $instbase.
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With these base lists in hand, we can perform our expansions to create flexible nonlinear forms:

. vl substitute exog = c.exogbase c.exogbase#c.exogbase

. vl substitute inst = c.instbase c.instbase#c.instbase

The # is the factor-variable operator for interaction. It can interact categorical variables, continuous

variables, or both. We could have used it directly on our estimation command line, but those lines are

already long enough. We also would have to handle macro expansion by typing $exogbase and such.

vl already knows about exogbase and instbase and knows to handle them as lists. The c. prefix

tells the # operator to treat the lists as continuous variables. # assumes categorical variables unless told

otherwise.

Putting it all together, c.exogbasemeans to enter all the potential exogenous covariates as themselves

(linearly). c.exogbase#c.exogbase means to enter all possible interactions of the variables. Because

an interaction of a variable with itself is a quadratic, the quadratic (squared) terms get created as part of

the expansion.

Let’s look at the smaller of these two lists so that we can see what we have created:

. macro list inst
inst: motheduc fatheduc huseduc c.motheduc#c.motheduc

c.motheduc#c.fatheduc c.motheduc#c.huseduc
c.fatheduc#c.fatheduc c.fatheduc#c.huseduc c.huseduc#c.huseduc

That is not too bad. We count nine terms—three linear terms and six interactions (including quadratic

terms).

Macro exog has 27 terms.

Imagine what a third-order expansion would look like. You can run into the thousands of terms

quickly.
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Now we can use xpoivregress to estimate the coefficient on the endogenous variable educ. We

start with the plugin method to select the covariates. We do not have to specify plugin because it is the

default. Specifying the rest of the model is easy because of the macro we created:

. xpoivregress lwage (educ = $inst), controls($exog) rseed(12345)
Cross-fit fold 1 of 10 ...
Estimating lasso for lwage using plugin
Estimating lasso for educ using plugin
Cross-fit fold 2 of 10 ...
Estimating lasso for lwage using plugin
Estimating lasso for educ using plugin
(output omitted )

Cross-fit partialing-out Number of obs = 428
IV linear model Number of controls = 27

Number of instruments = 9
Number of selected controls = 4
Number of selected instruments = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 10.84
Prob > chi2 = 0.0010

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0727853 .0221045 3.29 0.001 .0294612 .1161094

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

In the header, we see that 4 of 27 controls were selected, and 3 of 9 possible instruments were selected.

This is a sparse representation of the model.

We estimate that every year of education increases the log of wages by 0.073. Because wages are

logged, we interpret that as a rate of change, so each year of education increases wages by 7.3%. That is

close to Wooldridge’s estimate of 8%, and his estimate is well within our 95% CI of 2.8% to 11.6%.
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Let’s see how the results compare if we select using cross-validation:

. xpoivregress lwage (educ = $inst), controls($exog) selection(cv) rseed(12345)
Cross-fit fold 1 of 10 ...
Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Cross-fit fold 2 of 10 ...
Estimating lasso for lwage using cv
(output omitted )

Cross-fit partialing-out Number of obs = 428
IV linear model Number of controls = 27

Number of instruments = 9
Number of selected controls = 20
Number of selected instruments = 7
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 7.68
Prob > chi2 = 0.0056

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0645424 .0232832 2.77 0.006 .0189082 .1101765

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Cross-validation selected 20 controls compared with the 4 selected by plugin. It selected 7 instruments

compared with the 3 selected by plugin. Our point estimate of the change in wages for each additional

year of education is 6.5%with a CI of 1.9% to 11.0%. The coefficient estimate from both cross-validation

and plugin are significant at the 5% level. Despite having slightly different coefficient estimates, plugin

and cross-validation lead to the same inferences.
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Inference requirements — Requirements for inference

Description
The ds, po, and xpo commands, like other estimation procedures, require certain conditions be met

so that their inferential results are valid. In addition, the plugin and CV selection methods have distinct

properties and may perform differently under some conditions.

Remarks and examples
We assume you have read [LASSO] Lasso inference intro.

We fit a model with, for example, dsregress with the default plugin selection method, and then we

refit the model using CV. We get slightly different results. Which is correct?

Plugin and CV are more than just different numerical techniques for model estimation. They make

different assumptions, have different requirements, and have different properties. Askingwhich is correct

has only one answer. Each is correct when their assumptions and requirements are met.

In terms of practical advice, we have two alternative recommendations.

The first one involves lots of computer time.

1. Fit the model with xpo and the default plugin.

2. Fit the model with xpo and CV.

3. Compare results. If they are similar, use the results from step 1.

This alternative will save computer time.

1. Fit the model with ds with the default plugin.

2. Fit it again with ds but with CV.

3. Fit it again with po with the default plugin.

4. Fit it again with po but with CV.

5. Compare results. If they are similar, you are likely on solid ground. If so, perform step 6.

6. Fit the model again with xpo with the default plugin and use those results.

You can combine these two recommendations. Start with the alternative, and if it fails at step 5, follow

the first set of recommendations.

Also see
[LASSO] Lasso inference intro — Introduction to inferential lasso models

[LASSO] lasso — Lasso for prediction and model selection
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lasso — Lasso for prediction and model selection

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
lasso selects covariates and fits linear, logistic, probit, Poisson, and Cox proportional hazards mod-

els. Results from lasso can be used for prediction and model selection.

lasso saves but does not display estimated coefficients. The postestimation commands listed in

[LASSO] lasso postestimation can be used to generate predictions, report coefficients, and display mea-

sures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

For a description of the lasso-fitting procedure, see [LASSO] lasso fitting.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

lasso linear y1 x1-x100

Same as above, but force x1 and x2 to be in the model while lasso selects from x3 to x100
lasso linear y1 (x1 x2) x3-x100

Same as above, but fit an adaptive lasso with three steps

lasso linear y1 (x1 x2) x3-x100, selection(adaptive, steps(3))

Fit a logistic model for binary outcome y2, and set a random-number seed for reproducibility

lasso logit y2 x1-x100, rseed(1234)

Fit a Poisson model for count outcome y3 with exposure time
lasso poisson y3 x1-x100, exposure(time) rseed(1234)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.

lasso linear y2 x1-x100, selection(cv, alllambdas)

Turn off the early stopping rule, and iterate over 𝜆’s until a minimum is found or until the end of the 𝜆
grid is reached

lasso linear y1 x1-x100, stop(0)

Same as above, but extend the 𝜆 grid to smaller values

lasso linear y1 x1-x100, stop(0) grid(100, ratio(1e-5))

Fit a Cox proportional hazards model for t with failure indicator fail, and select covariates from x1 to

x100 using CV

stset t, failure(fail)
lasso cox x1-x100

Same as above, but select covariates by minimizing the Bayesian information criterion (BIC) function

lasso cox x1-x100, selection(bic)

140
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Menu
Statistics > Lasso > Lasso

Syntax
For linear, logit, probit, and Poisson models

lasso model depvar [ (alwaysvars) ] othervars [ if ] [ in ] [weight ] [ , options ]

For Cox models

lasso cox [ (alwaysvars) ] othervars [ if ] [ in ] [ , options ]

model is one of linear, logit, probit, or poisson.

alwaysvars are variables that are always included in the model.

othervars are variables that lasso will choose to include in or exclude from the model.

options Description

Model
∗ noconstant suppress constant term

selection(sel method) selection method to select a value of the lasso
penalty parameter 𝜆∗ from the set of possible 𝜆’s

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained
to 1 (poisson model only)

∗ cluster(clustvar) specify cluster variable clustvar

Optimization

[ no ]log display or suppress an iteration log

rseed(#) set random-number seed

grid(#g [ , ratio(#) min(#) ]) specify the set of possible 𝜆’s using a logarithmic grid with
#g grid points

stop(#) tolerance for stopping the iteration over the 𝜆 grid early

cvtolerance(#) tolerance for identification of the CV function minimum

bictolerance(#) tolerance for identification of the BIC function minimum

tolerance(#) convergence tolerance for coefficients based on their values

dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term
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sel method Description

cv [ , cv opts ] select 𝜆∗ using CV; the default

adaptive [ , adapt opts cv opts ] select 𝜆∗ using an adaptive lasso

∗ plugin [ , plugin opts ] select 𝜆∗ using a plugin iterative formula

bic [ , bic opts ] select 𝜆∗ using BIC function

none do not select 𝜆∗

cv opts Description

folds(#) use # folds for CV

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the CV function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select 𝜆∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was reached at 𝜆stop, set the selected 𝜆∗ to be
𝜆stop; the default

strict do not select 𝜆∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was not reached, set the selected 𝜆∗ to be the
minimum of the 𝜆 grid, 𝜆gmin; this is a looser alternative to the default
stopok and is rarely used

adapt opts Description

steps(#) use # adaptive steps (counting the initial lasso as step 1)

unpenalized use the unpenalized estimator to construct initial weights

ridge use the ridge estimator to construct initial weights

power(#) raise weights to the # th power

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default

homoskedastic assume model errors are homoskedastic
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bic opts Description

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was reached at 𝜆stop, set the selected 𝜆∗ to be
𝜆stop; the default

strict do not select 𝜆∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was not reached, set the selected 𝜆∗ to be the
minimum of the 𝜆 grid, 𝜆gmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

∗noconstant, cluster(), and selection(plugin) are not allowed with lasso cox.
You must stset your data before using lasso cox; see [ST] stset.
alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed with all sel method options. fweights are allowed when
selection(plugin), selection(bic), or selection(none) is specified. See [U] 11.1.6 weight. For lasso cox,
weights must be specified when you stset your data.

penaltywt(matname) does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Lasso estimation consists of three steps that the software performs automatically. Understanding the

steps is important for understanding how to specify options. A grid for 𝜆 is used for selection methods

cv, adaptive, bic, and none. selection(adaptive) resets the grid in the second and subsequent

lassos. selection(plugin) bypasses steps 1 and 2. It does not require a 𝜆 grid.

Step 1: Set 𝜆 grid

A grid for 𝜆 is set. Either the default grid can be used or grid options can be specified to modify the

default. The maximum 𝜆 in the grid is 𝜆gmax. It is automatically set to the smallest 𝜆 yielding a model

with all coefficients zero. The minimum 𝜆 in the grid is 𝜆gmin. Typically, estimation ends before 𝜆gmin

is reached when a minimum of the CV or BIC function is found. If 𝜆gmin is reached without finding a

minimum, you may want to make 𝜆gmin smaller. You can do this by setting 𝜆gmin or, alternatively, by

setting the ratio 𝜆gmin/𝜆gmax to a smaller value. See the grid() option below.

Step 2: Fit the model for next 𝜆 in grid

For each 𝜆 in the grid, the set of nonzero coefficients is estimated. Estimation starts with 𝜆gmax and

iterates toward 𝜆gmin. The iteration stops when a minimum of the CV or BIC function is found, the

stop(#) stopping tolerance is met, or 𝜆gmin is reached. When the deviance changes by less than

a relative difference of stop(#), the iteration over 𝜆 ends. To turn off this stopping rule, specify

stop(0). See the optimization options below.

Step 3: Select 𝜆∗

A 𝜆 denoted by 𝜆∗ is selected. selection(sel method) specifies the method used to select 𝜆∗. The

allowed sel methods are cv (the default), adaptive, plugin, bic, and none:
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cv, the default, uses CV to select 𝜆∗. After a model is fit for each 𝜆, the CV function is computed.

If a minimum of the CV function is identified, iteration over the 𝜆 grid ends. To compute the CV

function for additional 𝜆’s past the minimum, specify the suboption alllambdas. When you specify

this option, step 2 is first done for all 𝜆’s until the stopping tolerance is met or the end of the grid

is reached. Then, the CV function is computed for all 𝜆’s and searched for a minimum. See the

suboptions for selection(cv) below.

adaptive also uses CV to select 𝜆∗, but multiple lassos are performed. In the first lasso, a 𝜆∗ is

selected, and penalty weights are constructed from the coefficient estimates. Then, these weights are

used in a second lasso where another 𝜆∗ is selected. By default, two lassos are performed, but more

can be specified. See the suboptions for selection(adaptive) below.

plugin computes 𝜆∗ based on an iterative formula. Coefficient estimates are obtained only for this

single value of 𝜆.
bic selects 𝜆∗ by using the BIC function. It selects 𝜆∗ with the minimum BIC function value.

none does not select a 𝜆∗. Neither the CV function nor the BIC function is computed. Models are fit

for all 𝜆’s until the stopping tolerance is met or the end of the grid is reached. lasso postestimation

commands can be used to assess different 𝜆’s and select 𝜆∗.

A longer description of the lasso-fitting procedure is given in [LASSO] lasso fitting.

� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the oth-

ervars, lasso can potentially create the equivalent of the constant term by including all levels of a

factor variable. This option is likely best used only when all the othervars are continuous variables

and there is a conceptual reason why there should be no constant term. This option is not allowed

with lasso cox.

selection(cv), selection(adaptive), selection(plugin), selection(bic), and

selection(none) specify the selection method used to select 𝜆∗. These options also allow

suboptions for controlling the specified selection method. selection(plugin) is not allowed with

lasso cox.

selection(cv [ , cv opts ]) is the default. It selects 𝜆∗ to be the 𝜆 that gives the minimum of the

CV function. It is widely used when the goal is prediction. lasso postestimation commands can

be used after selection(cv) to assess alternative 𝜆∗ values.

cv opts are folds(#), alllambdas, serule, stopok, strict, and gridminok.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that models be fit for all 𝜆’s in the grid or until the stop(#) tolerance is

reached. By default, models are calculated sequentially from largest to smallest 𝜆, and the CV

function is calculated after each model is fit. If a minimum of the CV function is found, the

computation ends at that point without evaluating additional smaller 𝜆’s.
alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the CV function is wanted for

assurance that a trueminimum has been found. Regardless of whether alllambdas is specified,
the selected 𝜆∗ will be the same.
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serule selects 𝜆∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani,

and Wainwright (2015, 13–14) instead of the 𝜆 that minimizes the CV function. The one-

standard-error rule selects the largest 𝜆 for which the CV function is within a standard error

of the minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have an

identified minimum. A minimum is identified at 𝜆∗ when the CV function at both larger and

smaller adjacent 𝜆’s is greater than it is at 𝜆∗. When the CV function has an identified minimum,

these options all do the same thing: the selected 𝜆∗ is the 𝜆 that gives the minimum. In some

cases, however, the CV function declines monotonically as 𝜆 gets smaller and never rises to

identify a minimum. When the CV function does not have an identified minimum, stopok
and gridminok make alternative selections for 𝜆∗, and strict makes no selection. You may

specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative 𝜆∗

can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the

stop(#) stopping tolerance for 𝜆 was reached, the selected 𝜆∗ is 𝜆stop, the 𝜆 that met the

stopping criterion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is as-

sumed that 𝜆stop has a CV function value close to the true minimum. When no minimum is

identified and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the CV function has no identified

minimum and the stop(#) stopping criterion was not met, 𝜆gmin, the minimum of the 𝜆
grid, is the selected 𝜆∗.

The gridminok selection criterion is looser than the default stopok, which is looser than

strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or 𝜆stop is selected. With gridminok, either the identified minimum or 𝜆stop or

𝜆gmin is selected, in this order.

selection(adaptive [ , adapt opts cv opts ]) selects 𝜆∗ using the adaptive lasso selection

method. It consists of multiple lassos with each lasso step using CV. Variables with zero coeffi-

cients are discarded after each successive lasso, and variables with nonzero coefficients are given

penalty weights designed to drive small coefficient estimates to zero in the next step. Hence, the

final model typically has fewer nonzero coefficients than a single lasso. The adaptive method has

historically been used when the goal of lasso is model selection. As with selection(cv), lasso
postestimation commands can be used after selection(adaptive) to assess alternative 𝜆∗.

adapt opts are steps(#), unpenalized, ridge, and power(#).

steps(#) specifies that adaptive lasso with # lassos be done. By default, # = 2. That is, two

lassos are run. After the first lasso estimation, terms with nonzero coefficients 𝛽𝑖 are given

penalty weights equal to 1/|𝛽𝑖|, terms with zero coefficients are omitted, and a second lasso

is estimated. Terms with small coefficients are given large weights, making it more likely

that small coefficients become zero in the second lasso. Setting # > 2 can produce more

parsimonious models. See Methods and formulas.

unpenalized specifies that the adaptive lasso use the unpenalized estimator to construct the initial

weights in the first lasso. This option is useful when CV cannot find a minimum. unpenalized
cannot be specified with ridge.
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ridge specifies that the adaptive lasso use the ridge estimator to construct the initial weights in

the first lasso. ridge cannot be specified with unpenalized.

power(#) specifies that the adaptive lasso raise the weights to the # th power. The default is

power(1). The specified power must be in the interval [0.25, 2].
cv options are all the suboptions that can be specified for selection(cv), namely, folds(#),
alllambdas, serule, stopok, strict, and gridminok. The options alllambdas, strict, and
gridminok apply only to the first lasso estimated. For second and subsequent lassos, gridminok
is the default. When ridge is specified, gridminok is automatically used for the first lasso.

selection(plugin [ , plugin opts ]) selects 𝜆∗ based on a “plugin” iterative formula dependent

on the data. The plugin method was designed for lasso inference methods and is useful when

using lasso to manually implement inference methods, such as double-selection lasso. The plugin

estimator calculates a value for 𝜆∗ that dominates the noise in the estimating equations, which

makes it less likely to include variables that are not in the true model. See Methods and formulas.

This option is not allowed with lasso cox.

selection(plugin) does not estimate coefficients for any other values of 𝜆, so it does not require
a 𝜆 grid, and none of the grid options apply. It is much faster than the other selection methods

because estimation is done only for a single value of 𝜆. It is an iterative procedure, however, and
if the plugin is computing estimates for a small 𝜆 (which means many nonzero coefficients), the

estimation can still be time consuming. Because estimation is done only for one 𝜆, you cannot

assess alternative 𝜆∗ as the other selection methods allow.

plugin opts are heteroskedastic and homoskedastic.

heteroskedastic (linear models only) assumes model errors are heteroskedastic. It is the

default. Specifying selection(plugin) for linear models is equivalent to specifying

selection(plugin, heteroskedastic).

homoskedastic (linear models only) assumes model errors are homoskedastic. See Methods

and formulas.

selection(bic [ , bic opts ]) selects 𝜆∗ by using the BIC function. It selects the 𝜆∗ with the mini-

mum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all 𝜆’s in the grid or until the stop(#) tolerance is

reached. By default, models are calculated sequentially from largest to smallest 𝜆, and the BIC

function is calculated after each model is fit. If a minimum of the BIC function is found, the

computation ends at that point without evaluating additional smaller 𝜆’s.
alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the BIC function is wanted

for assurance that a true minimum has been found. Regardless of whether alllambdas is

specified, the selected 𝜆∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have an

identified minimum. A minimum is identified at 𝜆∗ when the BIC function at both larger and

smaller adjacent 𝜆’s is greater than it is at 𝜆∗. When the BIC function has an identifiedminimum,

these options all do the same thing: the selected 𝜆∗ is the 𝜆 that gives the minimum. In some

cases, however, the BIC function declines monotonically as 𝜆 gets smaller and never rises to

identify a minimum. When the BIC function does not have an identified minimum, stopok
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and gridminok make alternative selections for 𝜆∗, and strict makes no selection. You may

specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative 𝜆∗

can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the

stop(#) stopping tolerance for 𝜆 was reached, the selected 𝜆∗ is 𝜆stop, the 𝜆 that met the

stopping criterion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is

assumed that 𝜆stop has a BIC function value close to the true minimum. When no minimum

is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified

minimum and the stop(#) stopping criterion was not met, then 𝜆gmin, the minimum of the

𝜆 grid, is the selected 𝜆∗.

The gridminok selection criterion is looser than the default stopok, which is looser than

strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or 𝜆stop is selected. With gridminok, either the identified minimum or 𝜆stop or

𝜆gmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function. By

default, the penalized coefficients are used.

selection(none) does not select a 𝜆∗. Lasso is estimated for the grid of values for 𝜆, but no attempt

is made to determine which 𝜆 should be selected. The postestimation command lassoknots can

be run to view a table of 𝜆’s that define the knots (the sequential sets of nonzero coefficients) for
the estimation. The lassoselect command can be used to select a value for 𝜆∗, and lassogof
can be run to evaluate the prediction performance of 𝜆∗.

When selection(none) is specified, neither the CV function nor the BIC function is computed. If

you want to view the knot table with values of the CV function shown and then select 𝜆∗, you must

specify selection(cv). Similarly, if you want to view the knot table with values of the BIC func-

tion shown, you must specify selection(bic). There are no suboptions for selection(none).

offset(varname𝑜) specifies that varname𝑜 be included in the model with its coefficient constrained to

be 1.

exposure(varname𝑒) can be specified only for the poisson model. It specifies that ln(varname𝑒) be

included in the model with its coefficient constrained to be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how

the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood

function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the sub-

sample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are kept

together in the same subsample. This option is not allowed with lasso cox.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation.
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rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv) and selection(adaptive). The other selection methods, selection(plugin),
selection(bic), and selection(none), do not use random numbers. rseed(#) is equivalent to

typing set seed # prior to running lasso. See [R] set seed.

grid(#𝑔 [ , ratio(#) min(#) ]) specifies the set of possible 𝜆’s using a logarithmic grid with #𝑔 grid

points.

#𝑔 is the number of grid points for 𝜆. The default is #𝑔 = 100. The grid is logarithmic with the 𝑖th grid
point (𝑖 = 1, . . . , 𝑛 = #𝑔) given by ln𝜆𝑖 = [(𝑖 − 1)/(𝑛 − 1)] ln 𝑟 + ln𝜆gmax, where 𝜆gmax = 𝜆1
is the maximum, 𝜆gmin = 𝜆𝑛 = min(#) is the minimum, and 𝑟 = 𝜆gmin/𝜆gmax = ratio(#) is the

ratio of the minimum to the maximum.

ratio(#) specifies 𝜆gmin/𝜆gmax. The maximum of the grid, 𝜆gmax, is set to the smallest 𝜆 for which

all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).

𝜆gmin is then set based on ratio(#). When 𝑝 < 𝑁, where 𝑝 is the total number of othervars

and alwaysvars (not including the constant term) and 𝑁 is the number of observations, the default

value of ratio(#) is 1e−4. When 𝑝 ≥ 𝑁, the default is 1e−2.

min(#) sets 𝜆gmin. By default, 𝜆gmin is based on ratio(#) and 𝜆gmax, which is computed from the

data.

stop(#) specifies a tolerance that is the stopping criterion for the 𝜆 iterations. The default is 1e−5. This

suboption does not apply when the selection method is selection(plugin). Estimation starts with

the maximum grid value, 𝜆gmax, and iterates toward the minimum grid value, 𝜆gmin. When the relative

difference in the deviance produced by two adjacent 𝜆 grid values is less than stop(#), the iteration
stops and no smaller 𝜆’s are evaluated. The value of 𝜆 that meets this tolerance is denoted by 𝜆stop.

Typically, this stopping criterion is met before the iteration reaches 𝜆gmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger 𝜆stop. To pro-

duce coefficient estimates for all values of the 𝜆 grid, stop(0) can be specified. Note, however,

that computations for small 𝜆’s can be extremely time consuming. In terms of time, when using

selection(cv), selection(adaptive), or selection(bic), the optimal value of stop(#) is

the largest value that allows estimates for just enough 𝜆’s to be computed to identify the minimum of

the CV or BIC function. When setting stop(#) to larger values, be aware of the consequences of the

default 𝜆∗ selection procedure given by the default stopok. You may want to override the stopok
behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV

function. For linear models, a minimum is identified when the CV function rises above a nominal

minimum for at least three smaller 𝜆’s with a relative difference in the CV function greater than #. For

nonlinear models, at least five smaller 𝜆’s are required. The default is 1e−3. Setting # to a bigger

value makes a stricter criterion for identifying a minimum and brings more assurance that a declared

minimum is a true minimum, but it also means that models may need to be fit for additional smaller

𝜆, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information

about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum BIC

function. Aminimum is identified when the BIC function rises above a nominal minimum for at least

two smaller 𝜆’s with a relative difference in the BIC function greater than #. The default is 1e−2.

Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more
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assurance that a declared minimum is a true minimum, but it also means that models may need to be

fit for additional smaller 𝜆, which can be time consuming. SeeMethods and formulas in [LASSO] lasso

for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-

vergence is achieved when the relative change in each coefficient is less than this tolerance. The

default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients. When

dtolerance(#) is specified, the convergence criterion is based on the change in deviance instead of

the change in the values of coefficient estimates. Convergence is declared when the relative change

in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-

ifying this option and instead using the default tolerance(1e-7) criterion or specifying a smaller

value for tolerance(#).

The following option is available with lasso but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients

in the penalty term. The contribution of each coefficient to the lasso penalty term is multiplied by its

corresponding weight. Weights must be nonnegative. By default, each coefficient’s penalty weight

is 1.

Remarks and examples
We assume you have read the lasso introduction [LASSO] Lasso intro.

Remarks are presented under the following headings:

Lasso fitting and selection methods
selection(cv): Cross-validation
The CV function
Penalized and postselection coefficients
predict
Selecting lambda by hand using lassoselect
More lasso examples

Lasso fitting and selection methods
Lasso finds a vector of coefficient estimates, β, such that

1
2𝑁

(y − Xβ′)′(y − Xβ′) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|

is minimized for a given value of 𝜆. The first thing to note is that for every 𝜆 there is a β. The second
thing is that some of the coefficients, 𝛽𝑗, will be zero. The third thing is that the larger the value of 𝜆,
the fewer number of nonzero coefficients there will be.

The goal is to select a 𝜆 such that the set of variables corresponding to the nonzero coefficients for

that 𝜆 has some sort of desirable property. We term the selected 𝜆∗. But remember whenever we talk

about the selected 𝜆∗, we are really thinking about the properties of the corresponding set of variables

with nonzero coefficients.

Different criteria can be used to select 𝜆∗. The lasso command has options for four different se-

lection methods: selection(cv), selection(adaptive), selection(plugin), selection(bic),
and selection(none).
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selection(cv) comes in two variants: the default, which selects 𝜆∗ as the value of 𝜆 that minimizes

the CV function; and selection(cv, serule), which selects a 𝜆∗ that is one standard error from the

minimum in the direction of larger 𝜆’s (so fewer selected variables than using the minimum in most

cases).

selection(adaptive) fits multiple lassos, typically just two, with each lasso using CV. The selected

𝜆∗ is the 𝜆 selected by the last lasso. See Adaptive lasso in [LASSO] lasso examples.

selection(plugin) selects 𝜆∗ based on an iterative formula. It comes in two variants, the default

selection(plugin, heteroskedastic) and selection(plugin, homoskedastic). It is intended
to be used as a tool for implementing inferential models. It is not intended to be used for prediction. See

[LASSO] Lasso inference intro.

selection(bic) selects the 𝜆∗ that minimizes the BIC function. Zhang, Li, and Tsai (2010) show

that the 𝜆 selected by minimizing the BIC will select a set of covariates close to the true set under the

conditions described in their article. See BIC in [LASSO] lasso examples.

selection(none) does not select𝜆∗. Afterward, you can select𝜆 using the command lassoselect.
See Selecting lambda by hand using lassoselect below.

We will first explain CV.

selection(cv): Cross-validation
Wewill illustrate CV using Stata’s auto dataset. This is an unrealistic dataset to use with lasso because

the number of variables and the number of observations are small. Lasso was invented with the idea of

using hundreds or thousands of variables. See [LASSO] lasso examples for examples with a large dataset.

The small size of the auto dataset, however, is convenient because it does not produce lots of output, and

it illustrates some important concepts perfectly.

We load the data.

. sysuse auto
(1978 automobile data)

We want to model the variable mpg, which is a car’s miles per gallon. Choices for type of lasso

model are linear, logit, probit, poisson, and cox. Obviously, linear is the only appropriate type

of model for mpg. We follow mpg in the command specification with all the other numeric variables

in the dataset. foreign and rep78 are categorical variables, so we specify them using factor-variable

operator i. to create indicators for their categories. We do not specify the selection() option because

selection(cv) is the default.
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Before we run lasso, we set the random-number seed. CV uses random numbers, so if we want to be

able to reproduce our results, we must first set the seed.

. set seed 1234

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 33.97832
Grid value 2: lambda = 4.274392 no. of nonzero coef. = 2
Folds: 1...5....10 CVF = 31.62288
(output omitted )

Grid value 44: lambda = .0858825 no. of nonzero coef. = 10
Folds: 1...5....10 CVF = 13.39785
Grid value 45: lambda = .0782529 no. of nonzero coef. = 11
Folds: 1...5....10 CVF = 13.45168
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 69

No. of covariates = 15
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 -0.0018 33.97832
41 lambda before .1135316 8 0.6062 13.3577

* 42 selected lambda .1034458 8 0.6066 13.3422
43 lambda after .0942559 9 0.6060 13.36279
45 last lambda .0782529 11 0.6034 13.45168

* lambda selected by cross-validation.
. estimates store autolasso

After lasso finished, we typed estimates store autolasso to keep the results in memory. This

lasso was quick to compute, but lassos with lots of observations and lots of variables can take some time

to compute, so it is a good idea to store them.

lasso almost always produces a long iteration log. In this example, it iterated from grid value 1 with

𝜆 = 4.691140 to grid value 45 with 𝜆 = 0.078253. By default, selection(cv) sets up a grid of 100

𝜆’s, which are spaced uniformly on a logarithmic scale. It ended at grid value 45 and did not do any

calculations for the 55 smallest 𝜆 gird points.

If we look at the output table, we see that the 𝜆 at grid value 1 has 0 nonzero coefficients corresponding

to it. This is how the first 𝜆 is calculated. It is the smallest 𝜆 that gives 0 nonzero coefficients. The 𝜆 at

grid value 100 is set by the grid() suboption ratio(#), which specifies the ratio of the last (minimum)

𝜆 to the first (maximum) 𝜆. The default for ratio(#) in this case is 1e−4.
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For each value of 𝜆, coefficients are estimated. The entire list of 𝜆’s can be viewed at any time using

the postestimation command lassoknots with the option alllambdas. It shows what happened at

every iteration.

. lassoknots, alllambdas

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

1 4.69114 0 33.97832 U
2 4.274392 2 31.62288 A weight length
3 3.894667 2 28.65489 U
4 3.548676 2 26.0545 U
5 3.233421 2 23.8774 U
6 2.946173 2 22.07264 U
7 2.684443 2 20.57514 U
8 2.445964 2 19.30795 U
9 2.228672 2 18.23521 U

10 2.030683 2 17.43067 U
11 1.850282 2 16.78884 U
12 1.685908 2 16.32339 U
13 1.536137 2 15.97483 U
14 1.399671 2 15.70143 U
15 1.275328 3 15.48129 A 5.rep78
16 1.162031 3 15.34837 U
17 1.0588 3 15.30879 U
18 .9647388 3 15.30897 U
19 .8790341 4 15.3171 A turn
20 .8009431 5 15.32254 A gear_ratio
21 .7297895 6 15.31234 A price
22 .664957 6 15.28881 U
23 .6058841 6 15.26272 U
24 .552059 6 15.20981 U
25 .5030156 6 15.1442 U
26 .4583291 6 15.04271 U
27 .4176124 6 14.92838 U
28 .3805129 6 14.877 U
29 .3467091 6 14.83908 U
30 .3159085 7 14.77343 A 0.foreign
31 .287844 8 14.67034 A 3.rep78
32 .2622728 8 14.53728 U
33 .2389732 8 14.35716 U
34 .2177434 8 14.15635 U
35 .1983997 8 13.95308 U
36 .1807744 8 13.77844 U
37 .1647149 8 13.62955 U
38 .1500821 8 13.519 U
39 .1367492 8 13.43867 U
40 .1246008 8 13.39141 U
41 .1135316 8 13.3577 U

* 42 .1034458 8 13.3422 U
43 .0942559 9 13.36279 A 1.rep78
44 .0858825 10 13.39785 A headroom
45 .0782529 11 13.45168 A displacement

* lambda selected by cross-validation.
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As 𝜆 gets smaller, there are more nonzero coefficients. As the nonzero coefficients change, variables

are added to the model. Sometimes, variables are removed from the model. That is, a coefficient once

nonzero becomes zero at a smaller 𝜆. In this example, once added to the model, no variable was ever

removed. When there are more potential variables, you will typically see some variables removed as

other variables are added.

Usually, the number of nonzero coefficients increases monotonically as 𝜆 gets smaller, but not always.

Occasionally, the net number of variables in the model goes down, rather than up, in an iteration to a

smaller 𝜆.
The 𝜆’s at which variables are added or removed are called knots. By default, lassoknots shows

only the knots—and the 𝜆 that minimizes the CV function if it is not a knot. This 𝜆 is denoted by 𝜆∗ and

is indicated in the table with an *.

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

2 4.274392 2 31.62288 A weight length
15 1.275328 3 15.48129 A 5.rep78
19 .8790341 4 15.3171 A turn
20 .8009431 5 15.32254 A gear_ratio
21 .7297895 6 15.31234 A price
30 .3159085 7 14.77343 A 0.foreign
31 .287844 8 14.67034 A 3.rep78

* 42 .1034458 8 13.3422 U
43 .0942559 9 13.36279 A 1.rep78
44 .0858825 10 13.39785 A headroom
45 .0782529 11 13.45168 A displacement

* lambda selected by cross-validation.

The CV function
After coefficients are estimated for each 𝜆, the value of the CV function is calculated. CV is done by

dividing the data randomly into folds, by default, 10 of them. (This is the step where random numbers

are used.)

One fold is chosen, and then a linear regression is fit on the other nine folds using the variables in the

model for that 𝜆. Then, with these new coefficient estimates, a prediction is computed for the data of the

chosen fold. The mean squared error (MSE) of the prediction is computed. This process is repeated for

the other nine folds. The 10 MSEs are then averaged to give the value of the CV function. On the output,

the CV function is labeled CV mean prediction error.

By default, selection(cv) looks for a minimum of the CV function and then stops once it has found

one. We see that models for three 𝜆’s past the minimum were fit. For linear models, selection(cv)
needs to see three smaller 𝜆’s with larger values of the CV function to declare that it has found a minimum.

It sets the selected 𝜆∗ to the 𝜆 that gave the minimum and stops.
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We can plot the CV function using cvplot.

. cvplot
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λCV = .1 is the cross-validation minimum λ; # coefficients = 8.

Cross-validation plot

If we want to see more values of the CV function, we can run lasso again using selection(cv,
alllambdas).

. set seed 1234

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement, selection(cv, alllambdas)
Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
Grid value 2: lambda = 4.274392 no. of nonzero coef. = 2
(output omitted )

Grid value 76: lambda = .004375 no. of nonzero coef. = 13
Grid value 77: lambda = .0039863 no. of nonzero coef. = 13
... change in deviance stopping tolerance reached
10-fold cross-validation with 77 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70...
Fold 2 of 10: 10....20....30....40....50....60....70...
(output omitted )

Fold 9 of 10: 10....20....30....40....50....60....70...
Fold 10 of 10: 10....20....30....40....50....60....70...
... cross-validation complete
Lasso linear model No. of obs = 69

No. of covariates = 15
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 -0.0018 33.97832
41 lambda before .1135316 8 0.6062 13.3577

* 42 selected lambda .1034458 8 0.6066 13.3422
43 lambda after .0942559 9 0.6060 13.36279
77 last lambda .0039863 13 0.5765 14.36306

* lambda selected by cross-validation.
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The iteration log is in a different order than it was earlier. Here we see messages about all the grid

values first and then the folds of the CV. Earlier, we saw grid values and then folds, and then grid values

and then folds, etc. With alllambdas, coefficient vectors for all the 𝜆’s are estimated first, and then CV

is done. When we are not going to stop when a minimum is found, this is a slightly faster way of doing

the computation.

The selected 𝜆∗ and the values of the CV function and 𝑅2 are exactly the same—if we set the random-

number seed to the same value we used before. Had we forgotten to set the random-number seed or set

it to a different value, the values of the CV function and 𝑅2 would be slightly different, and frequently,

even the selected 𝜆∗ is different.

Let’s plot the CV function again with these additional 𝜆’s.
. cvplot
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λCV = .1 is the cross-validation minimum λ; # coefficients = 8.

Cross-validation plot

The suboption alllambdas lied to us. It did not give us all 𝜆’s. There are 100 𝜆’s in the grid. It

showed us 77 of them this time, not all 100.

There is another rule that determines when the iteration over 𝜆’s ends. It is the stopping tolerance set
by the option stop(#). When the deviance calculated from the estimated coefficients changes little from

one 𝜆 to the next, the iteration stops. The idea behind this stopping rule is that it means the CV function

would flatten out at this point, and there is no reason to continue estimating coefficients for smaller 𝜆’s.
If you really want to see the smallest 𝜆, specify stop(0) like so:

. lasso linear ..., selection(cv, alllambdas) stop(0)

Note that stop(#) is not specified as a suboption of the selection(cv) option. The stop(#)
stopping rule has nothing to do with CV. It is based solely on the change in deviance produced by the

coefficient estimates.

Why do we have all these rules for ending the iteration over 𝜆 as soon as possible? The reason is

because the smaller the 𝜆, the longer the computation time. If you have lots of observations and lots

of variables, you still see the iteration log going slower and slower with each successive 𝜆. There is no
point in burning lots of computer time—except if you want to draw a prettier picture of the CV function.

Advanced note: If you want more evidence that the identified minimum is the true minimum, you are

better off setting the option cvtolerance(#) to a larger value than specifying alllambdas. You will

get assurance in much shorter time.
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Another advanced note: Setting stop(0) without specifying alllambdas is sometimes useful. See

[LASSO] lasso fitting for details.

Penalized and postselection coefficients
We have discussed how lasso fitting and CVworks without even mentioning the purpose of lasso. But

you read [LASSO] Lasso intro, right? The purposes of lasso are covered there. We are assuming here

that our purpose for this lasso is to build a predictive model for mpg.

To get predictions after lasso, we use predict, just as we use predict after regress. But we have
two choices after lasso. After lasso, we can use penalized coefficients to compute our predictions, or

we can use postselection coefficients.

Actually, there are three types of coefficients after lasso. What we refer to as standardized,
penalized, and postselection.

Before we minimize the objective function

1
2𝑁

(y − Xβ′)′(y − Xβ′) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|

we standardize the columns of X (that is, the potential variables in the model) so that they each have

mean 0 and standard deviation 1. Otherwise, the term

𝑝

∑
𝑗=1

|𝛽𝑗|

would be dependent on the scales of the variables.

standardized refers to the coefficients of the standardized variables exactly as estimated by the

minimization of the objective function.

Whenwe are doing lasso for prediction, we are not supposed to care about the values of the coefficients

or look at them. (Read [LASSO] Lasso intro!) However, even we could not follow our own advice, so

we developed a command, lassocoef, especially for listing the coefficients.
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Let’s list the coefficients of the standardized variables.

. lassocoef, display(coef, standardized)

active

0.foreign 1.49568

rep78
3 -.3292316
5 1.293645

weight -.2804677
turn -.7378134

gear_ratio 1.378287
price -.2809065

length -2.942432
_cons 0

Legend:
b - base level
e - empty cell
o - omitted

The coefficients of the standardized variables seem to be the same order of magnitude as we expect.

penalized refers to the coefficients from the minimization of the objective function with the stan-

dardization unwound. standardized, strictly speaking, gives the penalized coefficients of the stan-

dardized variables. penalized gives the penalized coefficients of the unstandardized variables. Let’s

list them.

. lassocoef, display(coef, penalized)

active

0.foreign 3.250554

rep78
3 -.6641369
5 3.533896

weight -.0003563
turn -.167352

gear_ratio 3.000733
price -.0000972

length -.1303001
_cons 42.62583

Legend:
b - base level
e - empty cell
o - omitted
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The third type, postselection, is computed by taking the selected variables, estimating a linear

regression with them, and using those coefficients.

. lassocoef, display(coef, postselection)

active

0.foreign 4.769344

rep78
3 -1.010493
5 4.037817

weight -.000157
turn -.2159788

gear_ratio 3.973684
price -.0000582

length -.1355416
_cons 40.79938

Legend:
b - base level
e - empty cell
o - omitted

We can duplicate these results with regress.

. regress mpg 0bn.foreign 3bn.rep78 5bn.rep78 weight turn gear_ratio
> price length

Source SS df MS Number of obs = 69
F(8, 60) = 22.14

Model 1748.04019 8 218.505024 Prob > F = 0.0000
Residual 592.162704 60 9.86937839 R-squared = 0.7470

Adj R-squared = 0.7132
Total 2340.2029 68 34.4147485 Root MSE = 3.1416

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Domestic 4.769344 1.596469 2.99 0.004 1.575931 7.962757

rep78
3 -1.010493 .8775783 -1.15 0.254 -2.765911 .7449251
5 4.037817 1.262631 3.20 0.002 1.512178 6.563455

weight -.000157 .0021651 -0.07 0.942 -.0044878 .0041739
turn -.2159788 .1886946 -1.14 0.257 -.5934242 .1614665

gear_ratio 3.973684 1.603916 2.48 0.016 .7653732 7.181994
price -.0000582 .0001996 -0.29 0.772 -.0004574 .0003411

length -.1355416 .0595304 -2.28 0.026 -.2546201 -.0164632
_cons 40.79938 9.206714 4.43 0.000 22.38321 59.21555

What are you doing looking at the 𝑝-values! If we are not supposed to look at the coefficients, surely
this applies many times over to 𝑝-values. We looked, too. And we see that the lasso selected a bunch

with big 𝑝-values. Lasso does not care about 𝑝-values. Its sole goal is to build a model that is good for

prediction, and it thought these variables would help do that. Maybe it is just fitting random noise, and

CV as a selection method is known to do that. Adding extra variables that are fitting only random noise

is called “overselecting”.
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We want to point out that although rep78 has five categories, lasso selected only two of them,

rep78 = 3 and rep78 = 5, to be in the final model. See Factor variables in lasso in [LASSO] lasso

examples and [LASSO] Collinear covariates.

predict
The options penalized and postselection carry over to predict. We can

predict yhat, penalized

Or we can

predict yhat, postselection

If we simply type

predict yhat

we get penalized.

For linear models, postselection coefficients give predictions that are theoretically slightly better than

those given by penalized coefficients. In practice, however, the difference in the prediction is small.

For logit, probit, Poisson, and Cox models, there is no theory for the postselection predictions. Only

the penalized predictions have a theoretical basis. So the default, penalized, is recommended for these

models.

See [LASSO] lasso postestimation.

Selecting lambda by hand using lassoselect
We can change the selected 𝜆∗ if we want. It is easy to do. Recall that we stored our original lasso

results in memory using

. estimates store name

We can then compare these results with those from other lassos. We show examples of this in

[LASSO] lasso examples. Note, however, that estimates store only saves them in memory. To save

the results to disk, use

. estimates save filename

See [LASSO] estimates store.

We restore our previous results.

. estimates restore autolasso
(results autolasso are active now)
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Let’s run lassoknots again with options to show 𝑅2. There are two types of 𝑅2 available. See

[LASSO] lassoknots for a discussion. The one labeled out-of-sample is the better one to look at.

. lassoknots, display(cvmpe r2 osr2)

CV mean Out-of-
pred. sample In-sample

ID lambda error R-squared R-squared

2 4.274392 31.62288 0.0676 0.1116
15 1.275328 15.48129 0.5435 0.6194
19 .8790341 15.3171 0.5484 0.6567
20 .8009431 15.32254 0.5482 0.6627
21 .7297895 15.31234 0.5485 0.6684
30 .3159085 14.77343 0.5644 0.7030
31 .287844 14.67034 0.5675 0.7100

* 42 .1034458 13.3422 0.6066 0.7422
43 .0942559 13.36279 0.6060 0.7431
44 .0858825 13.39785 0.6050 0.7439
45 .0782529 13.45168 0.6034 0.7449

* lambda selected by cross-validation.

That 𝜆 with ID = 15 looks almost as good as the one CV picked. Let’s select it.

. lassoselect id = 15
ID = 15 lambda = 1.275328 selected

The new selected 𝜆∗ is shown on cvplot.

. cvplot
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λCV = .1 is the cross-validation minimum λ; # coefficients = 8.
λLS = 1.3 is the lassoselect specified λ; # coefficients = 3.

Cross-validation plot



lasso — Lasso for prediction and model selection 161

We can look at the coefficients and compare them with the earlier results.

. lassocoef autolasso ., display(coef, postselection)

autolasso active

0.foreign 4.769344

rep78
3 -1.010493
5 4.037817 2.782347

weight -.000157 -.0024045
turn -.2159788

gear_ratio 3.973684
price -.0000582

length -.1355416 -.1120782
_cons 40.79938 49.23984

Legend:
b - base level
e - empty cell
o - omitted

The earlier lasso was stored as autolasso. When we use lassoselect, it is just like running a new
lasso. New estimation results are created. The period (.) used as an argument to lassocoef means

the current estimation results. If we want to compare these results with others in the future, we can use

estimates store and store them under a new name. Then we can use this name with lassocoef.

Our new selected 𝜆∗ certainly gives a more parsimonious model. Too bad we do not have any theo-

retical basis for choosing it.

More lasso examples
We have yet to give examples for many important features. They include using split samples to

evaluate predictions, fitting logit, probit, Poisson, and Cox models, and selecting 𝜆∗ using adaptive lasso.

In [LASSO] lasso examples, we illustrate these capabilities using a dataset with lots of variables. We

also show how to use the vl commands, a system for managing large variable lists.

Stored results
lasso stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k allvars) number of potential variables

e(k nonzero sel) number of nonzero coefficients for selected model

e(k nonzero cv) number of nonzero coefficients at CV mean function minimum

e(k nonzero serule) number of nonzero coefficients for one-standard-error rule

e(k nonzero min) minimum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero max) maximum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum

e(lambda sel) value of selected 𝜆∗

e(lambda gmin) value of 𝜆 at grid minimum

e(lambda gmax) value of 𝜆 at grid maximum
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e(lambda last) value of last 𝜆 computed

e(lambda cv) value of 𝜆 at CV mean function minimum

e(lambda serule) value of 𝜆 for one-standard-error rule

e(lambda bic) value of 𝜆 at BIC function minimum

e(ID sel) ID of selected 𝜆∗

e(ID cv) ID of 𝜆 at CV mean function minimum

e(ID serule) ID of 𝜆 for one-standard-error rule

e(ID bic) ID of 𝜆 at BIC function minimum

e(cvm min) minimum CV mean function value

e(cvm serule) CV mean function value at one-standard-error rule

e(devratio min) minimum deviance ratio

e(devratio max) maximum deviance ratio

e(L1 min) minimum value of ℓ1-norm of penalized unstandardized coefficients

e(L1 max) maximum value of ℓ1-norm of penalized unstandardized coefficients

e(L2 min) minimum value of ℓ2-norm of penalized unstandardized coefficients

e(L2 max) maximum value of ℓ2-norm of penalized unstandardized coefficients

e(ll sel) log-likelihood value of selected model

e(n lambda) number of 𝜆’s
e(n fold) number of CV folds

e(stop) stopping rule tolerance

Macros

e(cmd) lasso
e(cmdline) command as typed

e(depvar) name of dependent variable

e(allvars) names of all potential variables

e(allvars sel) names of all selected variables

e(alwaysvars) names of always-included variables

e(othervars sel) names of other selected variables

e(post sel vars) all variables needed for postlasso

e(clustvar) name of cluster variable

e(lasso selection) selection method

e(sel criterion) criterion used to select 𝜆∗

e(plugin type) type of plugin 𝜆
e(model) linear, logit, probit, poisson, or cox
e(title) title in estimation output

e(rngstate) random-number state used

e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) penalized unstandardized coefficient vector

e(b standardized) penalized standardized coefficient vector

e(b postselection) postselection coefficient vector

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
This section provides the methods and formulas for lasso and elasticnet.

Methods and formulas are presented under the following headings:

Lasso and elastic-net objective functions
Coordinate descent
Grid of values for 𝜆
How to choose the penalty parameter

How CV is performed
Adaptive lasso
Plugin estimators
BIC

Lasso and elastic-net objective functions
lasso and elasticnet estimate the parameters by finding the minimum of a penalized objective

function.

The penalized objective function of the lasso for the linear, logit, probit, or poisson model is

𝑄𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) + 𝜆

𝑝

∑
𝑗=1

𝜅𝑗|𝛽𝑗| (1)

where 𝑁 is the number of observations, 𝑤𝑖 is the normalized observation-level weight, 𝑓(⋅) is the like-
lihood contribution for the regress, logit, probit, or poisson model, 𝛽0 is the intercept, x𝑖 is the

1 × 𝑝 vector of covariates, β is the 1 × 𝑝 vector of coefficients, 𝜆 is the lasso penalty parameter, which

must be greater than or equal to 0, and 𝜅𝑗 are coefficient-level weights (which by default are all 1).

The normalized weights 𝑤𝑖 sum to 1. That is,

𝑤𝑖 = 𝑤𝑖

∑𝑁
𝑖=1 𝑤𝑖

where 𝑤𝑖 is the original observation-level weight. If weights are not specified with lasso, 𝑤𝑖 = 1 and

𝑤𝑖 = 1/𝑁.

When the model is linear,

𝑓(𝛽0 + x𝑖β) = 1
2

(𝑦𝑖 − 𝛽0 − x𝑖β
′)2

When the model is logit,

𝑓(𝛽0 + x𝑖β) = −𝑦𝑖(𝛽0 + x𝑖β
′) + ln{1 + exp(𝛽0 + x𝑖β

′)}

When the model is probit,

𝑓(𝛽0 + x𝑖β) = −𝑦𝑖 ln{Φ(𝛽0 + x𝑖β
′)} − (1 − 𝑦𝑖) ln{1 − Φ(𝛽0 + x𝑖β

′)}

When the model is poisson,

𝑓(𝛽0 + x𝑖β) = −𝑦𝑖(𝛽0 + x𝑖β
′) + exp(𝛽0 + x𝑖β

′)
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The penalized objective function of the lasso for the cox model is

𝑄𝐿 = −
𝑁𝑓

∑
𝑗=1

∑
𝑖∈𝐷𝑗

𝑤𝑖 [x𝑖β
′ − ln{ ∑

ℓ∈𝑅𝑗

𝑤ℓ exp(xℓβ
′)}] + 𝜆

𝑝

∑
𝑗=1

𝜅𝑗|𝛽𝑗|

where 𝑗 indexes the ordered failure times 𝑡(𝑗), 𝑗 = 1, . . . , 𝑁𝑓; 𝐷𝑗 is the set of observations that fail at

𝑡(𝑗); and 𝑅𝑗 is the set of observations 𝑘 that are at risk at time 𝑡(𝑗) (that is, all 𝑘 such that 𝑡0𝑘 < 𝑡(𝑗) ≤ 𝑡𝑘,

and 𝑡0𝑘 is the entry time for the 𝑘th observation). The first term in 𝑄𝐿 is the weighted negative partial

log-likelihood function of the Cox proportional hazards model. There is no constant term 𝛽0 because the

constant term is absorbed in the baseline hazard function.

Ties are handled using the Breslow approximation (Breslow 1974). The other methods of handling

ties that are options for stcox—the Efron method, the exact marginal-likelihood method, and the exact

partial-likelihood method—are not available with lasso cox.

The penalized objective function of elastic net for the linear, logit, probit, and poisson models

is

𝑄en =
𝑁

∑
𝑖=1

𝑤𝑖𝑓(𝑦𝑖, 𝛽0 + x𝑖β
′) + 𝜆

𝑝

∑
𝑗=1

𝜅𝑗 {1 − 𝛼
2

𝛽2
𝑗 + 𝛼 |𝛽𝑗|} (2)

where 𝛼 is the elastic-net penalty parameter and 𝛼 can take on values only in [0, 1].
The penalized objective function of elastic net for the cox model is

𝑄en = −
𝑁𝑓

∑
𝑗=1

∑
𝑖∈𝐷𝑗

𝑤𝑖 [x𝑖β
′ − ln{ ∑

ℓ∈𝑅𝑗

𝑤ℓ exp(xℓβ
′)}] + 𝜆

𝑝

∑
𝑗=1

𝜅𝑗 {1 − 𝛼
2

𝛽2
𝑗 + 𝛼 |𝛽𝑗|}

Some values for 𝛼 and 𝜆 cause elastic net to reduce to the objective function of another estimator of

interest. There are three special cases to note:

1. Lasso is a special case of elastic net. When 𝛼 = 1, the objective function in (2) reduces to the

lasso objective function in (1).

2. Ridge regression is a special case of the elastic net. When 𝛼 = 0 and 𝜆 > 0, (2) reduces to the

objective function for the ridge-regression estimator.

3. When 𝜆 = 0 in (2), there is no penalty term, and 𝑄en reduces to the objective function for the

unpenalized maximum-likelihood estimator.

When 0 < 𝛼 < 1 and 𝜆 > 0, (2) is the objective function for an elastic-net estimator that does not

reduce to a special case.

We discuss methods that apply to the lasso estimator and to the elastic-net estimator in this section

because the same algorithm is used to estimate the coefficients. We discuss the optimization procedure

in terms of the elastic-net objective function 𝑄en because it reduces to the lasso estimator when 𝛼 = 1.

We discuss the methods for ridge regression in Methods and formulas in [LASSO] elasticnet because

a different algorithm is used to estimate the coefficients.

By default, the coefficient-level weights are 1 in (1) and (2). They may be specified using the option

penaltywt(). If the cluster() option is specified, the log likelihood is computed as the sum of log

likelihood at the cluster levels. This option is not allowed for the cox model.

The penalized objective function of the lasso with cluster is

𝑄𝐿 =
𝑁clust

∑
𝑖=1

{
𝑇𝑖

∑
𝑡=1

̃̂𝑤𝑖𝑡𝑓(𝑦𝑖𝑡, 𝛽0 + x𝑖𝑡β
′)} + 𝜆

𝑝

∑
𝑗=1

𝜅𝑗|𝛽𝑗|
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where 𝑁clust is the total number of clusters and 𝑇𝑖 is the number of observations in cluster 𝑖. For the 𝑡th
observation in cluster 𝑖, ̃̂𝑤𝑖𝑡 is its normalized observational level weight, 𝑦𝑖𝑡 is the dependent variable,

and x𝑖𝑡 are the covariates.

The normalized weights ̃̂𝑤𝑖𝑡 are defined as

̃̂𝑤𝑖𝑡 = 𝑤𝑖𝑡

∑𝑁clust

𝑖=1 ∑𝑇𝑖
𝑡=1 𝑤𝑖𝑡

where𝑤𝑖𝑡 are the cluster-level normalizedweights. For fweights,𝑤𝑖𝑡 = 𝑤𝑖𝑡/ ∑𝑇𝑖
𝑡=1 𝑤𝑖𝑡. For iweights,

𝑤𝑖𝑡 = 𝑤𝑖𝑡/𝑇𝑖.

The penalized objective function of elastic net with cluster is

𝑄en =
𝑁clust

∑
𝑖=1

{
𝑇𝑖

∑
𝑡=1

̃̂𝑤𝑖𝑡𝑓(𝑦𝑖𝑡, 𝛽0 + x𝑖𝑡β
′)} + 𝜆

𝑝

∑
𝑗=1

𝜅𝑗 {1 − 𝛼
2

𝛽2
𝑗 + 𝛼 |𝛽𝑗|}

Coordinate descent
lasso and elasticnet use the coordinate descent algorithm to minimize 𝑄en for given values of 𝜆

and 𝛼.
The coordinate descent algorithm for lasso problems was first applied to lasso as a “shooting algo-

rithm” in Fu (1998). Daubechies, Defrise, and Mol (2004) also discussed using coordinate descent for

lasso. The combination of Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), and Hastie,

Tibshirani, and Wainwright (2015) provide a complete introduction to using the coordinate descent al-

gorithm for lasso and elastic net, and these references detail the formulas implemented in lasso and

elasticnet.

The numerical problem is made much easier and more stable by standardizing all the covariates to

have mean 0 and standard deviation 1. The standardization also removes 𝛽0 from the problem when the

model is regress.

Minimization problems are solved by finding the parameter values that set the first derivative equa-

tions to 0. The first derivative equations are known as score equations in statistics. When the score

equations for all the elements in β are well defined, we frequently use a version of Newton’s method

that produces a series of updated guesses for β that get increasingly close to solving the score equations.

When the updated guess is close enough to solving the score equations, the algorithm converges and we

have our estimates.

Unfortunately, 𝑄en is not always differentiable. When 𝜆 > 0 and the 𝑘th element in β is 0, 𝑄en is

not differentiable. Convex analysis provides a way of getting a generalized score equation for the 𝑘th
element of β that handles the case in which β𝑘 is 0. It is not feasible to write down equations for all 𝑝
generalized score equations at the same time. It is too complicated.

In general terms, coordinate descent is a solve-and-replace algorithm that repeatedly solves each gen-

eralized score equation for a new coefficient value until a minimum of 𝑄en is found. For those familiar

with the Gauss–Seidel algorithm, coordinate descent is basically Gauss–Seidel on the generalized score

equations. Quandt (1984) discusses the Gauss–Seidel algorithm.
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To be more specific, we provide an outline of the implemented coordinate descent algorithm.

Step 1: Specify initial values.

a. Set each coefficient to an initial value β̂𝑘 = 𝑣𝑘. We refer to β̂ as the current coefficient vector.

b. Initialize each coefficient in the previous coefficient vector β̃ to be a missing value.

c. Initialize the difference, Δ, between the current and the previous coefficient vectors to be a missing

value.

Step 2: As long as Δ is larger than tolerance(#), do the following.

a. Set each coefficient in the current coefficient vector to the value that sets its generalized score

equation to 0. In other words, set

β̂𝑘 = 𝑔𝑘(𝑦, x, ̂𝛽1, . . . ̂𝛽𝑘−1, ̂𝛽𝑘+1, . . . ̂𝛽𝑝)

where 𝑔𝑘(𝑦, x, ̂𝛽1, . . . ̂𝛽𝑘−1, ̂𝛽𝑘+1, . . . ̂𝛽𝑝) is the expression for ̂𝛽𝑘 that sets the generalized score

equation with respect to ̂𝛽𝑘 to 0.

b. Let Δ be the largest of the relative differences between β̂ and β̃.

c. Set β̃ = β̂.

The algorithm converges when step 2 finishes and β̂ contains the values that minimize 𝑄en for given

values of 𝜆 and 𝛼.
When the model is regress, Hastie, Tibshirani, andWainwright (2015, eq. 4.4) provide a formula for

𝑔𝑘(𝑦, x, ̂𝛽1, . . . ̂𝛽𝑘−1, ̂𝛽𝑘+1, . . . ̂𝛽𝑝). This coordinate descent algorithm is discussed in Hastie, Tibshirani,

and Wainwright (2015, chap. 4 and 5).

When the model is logit, probit, poisson, or cox the objective function can be minimized by

extensions to the method of iteratively reweighted least squares discussed by Nelder and Wedderburn

(1972). See Hastie, Tibshirani, and Wainwright (2015, chap. 3) and Friedman, Hastie, and Tibshirani

(2010) for details.

Grid of values for λ
For any given value of 0 < 𝛼 ≤ 1, letting 𝜆 decrease from∞ to 0 creates a vector of coefficient paths.

When 𝜆 is large enough, all the coefficients are 0. Holding 𝛼 fixed and decreasing 𝜆 from a large value

to 0 induces coefficient paths in which each coefficient emerges from 0. In a particular lasso example,

we see the following:
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Coefficient paths

In this example, there are fewer covariates than observations, so at 𝜆 = 0, each coefficient path has

the value of its unpenalized estimate.

The convention that has emerged following Hastie, Tibshirani, and Wainwright (2015) is to consider

a few candidate values for 𝛼 and a grid of 100 or so candidate values for 𝜆. The default number of

grid points is 100, and it can be changed by specifying option grid(#). The candidate values for 𝛼 are

specified by option alpha() in elasticnet.

The largest value in the grid is the smallest value for which all the coefficients are zero, and we denote

it by 𝜆gmax. The smallest value in the grid is 𝜆gmin, where 𝜆gmin = 𝑟𝜆gmax and 𝑟 is set by the option grid(,
ratio(#)). The grid is logarithmic with the 𝑖th grid point given by ln𝜆𝑖 = [(𝑖 − 1)/(𝑛 − 1)] ln 𝑟 +
ln𝜆gmax, where 𝑛 is the number of grid points.

How to choose the penalty parameter
To use a lasso, we need to decide which value of 𝜆 is best. We denote the selected 𝜆 as 𝜆∗.

Some methods for choosing 𝜆∗ are designed or advertised as facilitating the ability of the lasso as

a covariate selection technique. Some authors seem to advocate using the covariates selected by lasso

as if this estimate always picked out the true covariates. Unfortunately, the lasso estimate of which

covariates to include is too noisy to be treated as without error in subsequent steps, unless all the not-zero

coefficients are sufficiently large. This “beta-min” condition is widely viewed as too strong for applied

work. See Leeb and Pötscher (2008), Belloni and Chernozhukov (2011), Belloni, Chernozhukov, and

Hansen (2014a), and Chernozhukov et al. (2018) for discussions that have led to the rejection of beta-

min assumptions. See Remarks and examples in [LASSO] Lasso inference intro for an introduction to

commands that produce reliable inference without a beta-min condition.

The four methods for selecting 𝜆∗ for lasso are CV, adaptive lasso, plugin estimators, and BIC.

CV finds the 𝜆∗ that will produce coefficient estimates that predict best out of sample. When 𝜆∗ is

selected by CV and the nonzero coefficients are used for covariate selection, the process tends to select

some covariates that do not belong in the model—in addition to ones that belong. See Bühlmann and

van de Geer (2011, sec. 2.5.1) for a discussion and further references. This is due to its larger bound

on the number of covariates it will find. See Chetverikov, Liao, and Chernozhukov (2019) and their

sparsity-bound results.
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Adaptive lasso was derived by Zou (2006) and refined by Bühlmann and van de Geer (2011) to pro-

vide more reliable covariate selection. As mentioned above, it will not provide mistake-free covariate

selection without the widely rejected “beta-min” condition. See section 7.8.6 of Bühlmann and van de

Geer (2011) for a discussion of the versions of the beta-min and section 7.10 for a frank conclusion on

the difficulty of the problem. While it is not mistake free, covariate selection based on the adaptive lasso

will produce a more parsimonious model than covariate selection based on a 𝜆∗ selected by CV.

The plugin estimators were designed to pick 𝜆∗ to produce accurate results for the subsequently es-

timated lasso coefficients. See Bickel, Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2011),

Belloni, Chernozhukov, and Hansen (2014a, 2014b). These estimators for 𝜆∗ are primarily used as part

of estimation methods that are robust to the covariate selection mistakes a lasso makes with any choice

of 𝜆∗. Plugin estimators for 𝜆∗ select a more parsimonious model than does CV. Simulations indicate

that plugin-based lassos select fewer covariates than adaptive lasso when there are small coefficients in

the true model, but there are no formal results.

BIC selects the 𝜆∗ that will produce coefficient estimates that minimize the BIC. Our simulations show

that BIC avoids the overselection problem seen in CV and is often faster. BIC tends to select models similar

to those of the plugin method but can be applied to a more general class of models.

CV is implemented for lasso, elasticnet, and sqrtlasso. Adaptive lasso is implemented for

lasso. Plugin estimators are implemented for lasso and for sqrtlasso. BIC is implemented for lasso,
elasticnet, and sqrtlasso.

How CV is performed

CV finds the model that minimizes an out-of-sample prediction error, also known as the CV function.

We denote the CV function for the model with parameters 𝜃 by CV(𝜃). Formally, CV finds

̂𝜃 = arg min𝜃∈Θ{CV(𝜃)}

For lasso or sqrtlasso, Θ is the set of 𝜆 grid values. For elasticnet, Θ is the set of all pairs

(𝜆, 𝛼), where 𝜆 is in the 𝜆 grid and 𝛼 is one of the specified candidate values.

The value of CV(𝜃) for each 𝜃 ∈ Θ is stored in the estimation results after CV is performed. This

allows postestimation commands like cvplot to plot or display values of the CV function for ranges of

𝜃 values.

Here is how CV(𝜃) is computed.

1. Randomly partition the data into 𝐾 folds.

2. Do the following for each fold 𝑘 ∈ {1, . . . , 𝐾}.
a. Estimate the parameters of the model for specified 𝜃 using the observations not in fold 𝑘.
b. Use the estimates computed in step 2a to fill in the out-of-sample deviance for the observations

in fold 𝑘.
3. For each model 𝜃, compute the mean of the out-of-sample deviance.

4. The value of 𝜃 ∈ Θ with the smallest mean out-of-sample deviance minimizes the CV function.

For the cox model, we use the approach in van Houwelingen et al. (2006) to compute the deviance in

step 2b. Especially,

D̂ev
𝑘
𝜆 = Dev{ ̂𝜃−𝑘(𝜆)} − Dev−𝑘{ ̂𝜃−𝑘(𝜆)}
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where ̂𝜃−𝑘(𝜆) are the estimates obtained in step 2a, Dev{ ̂𝜃−𝑘(𝜆)} is the deviance using the full sample

and ̂𝜃−𝑘(𝜆), and Dev−𝑘{ ̂𝜃−𝑘(𝜆)} is the deviance using the observations not in the 𝑘th fold and ̂𝜃−𝑘(𝜆).
For the details of deviance, see Methods and formulas in [LASSO] lassogof.

Adaptive lasso

Adaptive lasso is a sequence of CV lassos, each at least as parsimonious as the previous one. Mechan-

ically, adaptive lasso is implemented in the following way.

Step A:

Get the initial coefficient estimates and denote them β̂. By default, these estimates come from

a cross-validated lasso. Optionally, they come from an unpenalized model or from a ridge

estimator with 𝜆 selected by CV. Zou (2006, 1423) recommends ridge when collinearity is a

problem.

Step B:

a. Exclude covariates for which ̂𝛽𝑗 = 0.

b. Construct coefficient level weights for included covariates, 𝜅𝑗 = 1/| ̂𝛽𝑗|𝛿, where 𝛿 is the power
to which the weight is raised. By default, 𝛿 = 1. To specify another value for 𝛿, use option
selection(adaptive, power(#)).

Each adaptive step selects either the covariates selected by the previous step or a proper subset of

them.

The option selection(adaptive, step(#)) counts all lassos performed. So the default # = 2

means one adaptive step is done.

Plugin estimators

Heuristically, we get good lasso coefficient estimates when 𝜆∗ is large enough to dominate the noise

that is inherent in estimating the coefficients when the penalty-loadings 𝜅𝑗 are at their optimal levels.

Plugin estimators use the structure of the model and advanced theoretical results to find the smallest 𝜆
that dominates the noise, given estimates of the penalty loadings.

For simplicity and compatibility with the rest of the documentation, we did not divide 𝜆 by 𝑁 in (1).

Multiply our formulas for 𝜆 by 𝑁 to compare them with those in the cited literature.

As discussed by Bickel, Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2011), Belloni et al.

(2012), and Belloni, Chernozhukov, and Wei (2016), the estimation noise is a function of the largest of

the absolute values of the score equations of the unpenalized estimator. In particular, when the penalty

loadings 𝜅𝑗 are at optimal values, 𝜆∗ is chosen so that

𝑃 (𝜆∗ ≥ 𝑐max1≤𝑗≤𝑝 ∣ 1
𝑁𝜅𝑗

𝑁
∑
𝑖=1

h𝑗(𝑦𝑖, x𝑖β
′
0)∣) →𝑁 1

where 𝑐 is a constant, and
1
𝑁

𝑁
∑
𝑖=1

h𝑗(𝑦𝑖, x𝑖β
′
0)

is the 𝑗th score from the unpenalized estimator at the true coefficients β0. The optimal values of the

penalty loadings normalize the scores of the unpenalized estimator to have unit variance.
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Belloni and Chernozhukov (2011), Belloni et al. (2012), and Belloni, Chernozhukov, and Wei (2016)

derive values for 𝜆∗ and estimators for 𝜅𝑗 for a variety of models. This firm theoretical structure keeps

the lasso with a plugin estimator from including too many irrelevant covariates and provides it with a

fast rate of convergence.

In all the implemented methods described below, we use the following notation:

𝑐 = 1.1 per the recommendation of Belloni and Chernozhukov (2011);

𝑁 is the sample size;

𝛾 = 0.1/ ln[max{𝑝, 𝑁}] is the probability of not removing a variable when it has a coefficient of

zero;

𝑝 is the number of candidate covariates in the model.

Two plugin estimators are implemented for lasso linear:

• selection(plugin, homoskedastic)

The errors must be homoskedastic, but no specific distribution is assumed.

The formula for 𝜆∗ is

𝜆homoskedastic = 𝑐𝜎̂√
𝑁

Φ−1 (1 − 𝛾
2𝑝

)

𝜎̂ is an estimator of the variance of the error term. This estimator is implemented in algorithm 1.

In the linear homoskedastic case, there is no need to estimate the penalty loadings 𝜅𝑗; they are

implied by 𝜎̂.
• selection(plugin, heteroskedastic)

The errors may be heteroskedastic and no specific distribution is assumed.

The formula for 𝜆 is

𝜆heteroskedastic = 𝑐√
𝑁

Φ−1 (1 − 𝛾
2𝑝

)

In the linear-heteroskedastic case, penalty loadings are estimated by

𝜅𝑗 = √ 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖𝑗 ̂𝜖𝑖)2

Algorithm 2 is used to estimate the 𝜖𝑖.



lasso — Lasso for prediction and model selection 171

One plugin estimator is implemented for lasso logit:

𝜆logit = 𝑐
2
√

𝑁
Φ−1 [1 − 1.1

2max{𝑁, 𝑝 ln𝑁}
]

This value is from the notes to table 2 in Belloni, Chernozhukov, andWei (2016), divided by 𝑁
as noted above. Belloni, Chernozhukov, and Wei (2016) use the structure of the binary model

to bound the 𝜅𝑗, so they are not estimated. This bound is why 𝑐 is divided by 2.
One plugin estimator is implemented for lasso poisson and lasso probit:

𝜆 = 𝑐√
𝑁

Φ−1 (1 − 𝛾
2𝑝

)

𝜅𝑗 are estimated in algorithm 3.

All three algorithms used the normalized covariates that each x𝑗 has mean 0 and variance 1.

Algorithm 1: Estimate 𝜎̂
This iterative algorithm estimates 𝜎; it is adopted from Belloni and Chernozhukov (2011, 20–21).

The algorithm depends on a starting value for 𝜎̂ denoted by 𝜎̂0, a convergence tolerance 𝑣 = 1e–8, and

a maximum number of iterations 𝑀 = 15.

We set 𝜎̂0 to be the square root of the mean of the squared residuals from a regression of 𝑦 on the five

covariates in x that have the five highest univariate correlations with 𝑦.
Set the iteration counter 𝑘 = 1 and the absolute value of the difference between the current and the

previous estimate of 𝜎 to be a missing value.

1. Let 𝜆̂𝑘 = (𝑐𝜎̂𝑘−1/
√

𝑁) Φ−1(1 − 𝛾/2𝑝).

2. Compute the lasso estimates β̂𝑘 using 𝜆̂𝑘.

3. Let 𝜎̂𝑘 = √(1/𝑁) ∑𝑁
𝑖=1(𝑦𝑖 − x𝑖β̂𝑘)2.

4. If |𝜎̂𝑘 − 𝜎̂𝑘−1| < 𝑣 or 𝑘 > 𝑀, set 𝜎̂ = 𝜎̂𝑘 and stop; otherwise, set 𝑘 = 𝑘 + 1 and go to step 1.

Algorithm 2: Estimate linear-heteroskedastic penalty loadings

This iterative algorithm estimates the penalty loadings 𝜅𝑗 for the linear-heteroskedastic model; it is

adopted from Belloni, Chernozhukov, and Hansen (2014b, 640). The algorithm depends on a conver-

gence tolerance 𝑣 = 1e–8 and a maximum number of iterations 𝑀 = 15.

1. Get initial values:

a. Let ̂𝜖0 be the residuals from the regression of 𝑦 on the five covariates in x that have the highest

univariate correlations with 𝑦.

b. Let ̂𝜅0,𝑗 = √1/𝑁 ∑𝑁
𝑖=1(𝑥𝑖,𝑗 ̂𝜖𝑘)2 be the initial penalty loading for each covariate 𝑗.

c. Let 𝜆̂ = 𝑐/
√

𝑁 Φ−1(1 − 𝛾/2𝑝).
d. Set the iteration counter to 𝑘 = 1.

2. Compute the lasso estimates β̂𝑘 using 𝜆̂ and the penalty loadings ̂𝜅𝑘−1,𝑗. Let ̂𝑠 be the number of

nonzero coefficients in this lasso.
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3. Let ̂𝜖𝑘 be the residuals from the postlasso regression of 𝑦 on the ̂𝑠 covariates that have nonzero

lasso coefficients.

4. For each of the 𝑗 covariates in the original model, compute the penalty loading

̂𝜅𝑘,𝑗 = √ 1
𝑁 − ̂𝑠

𝑁
∑
𝑖=1

(𝑥𝑖𝑗 ̂𝜖𝑘)2

5. If max1≤𝑗≤𝑝| ̂𝜅𝑘,𝑗 − ̂𝜅𝑘−1,𝑗| < 𝑣 or 𝑘 > 𝑀, set ̂𝜅𝑗 = ̂𝜅𝑘,𝑗 for each 𝑗 and stop; otherwise, set

𝑘 = 𝑘 + 1 and go to step 2.

Algorithm 3: Estimate penalty loadings for Poisson and probit

This is the algorithm used for Poisson and probit models.

In the Poisson case, references to the unpenalized quasi–maximum likelihood (QML) estimator are to

the unpenalized Poisson QML estimator. In the probit case, references to the unpenalized QML estimator

are to the unpenalized probit QML estimator.

In the Poisson case, h𝑗(𝑦𝑖, x̃𝑖β̃) is the contribution of observation 𝑖 to the unpenalized Poisson-score
equation using covariates x̃𝑖 and coefficients β̃. In the probit case, h𝑗(𝑦𝑖, x̃𝑖β̃) is the contribution of

observation 𝑖 to the unpenalized probit-score equation using covariates x̃𝑖 and coefficients β̃.

On exit, 𝜆 contains the penalty value, and the penalty loadings are in ( ̃𝜅1, . . . , ̃𝜅𝑝).

1. Set 𝜆 = 𝑐/
√

𝑁 Φ−1 [1 − 𝛾/(2𝑝)].
2. Find the five covariates with highest correlations with 𝑦. Denote the vector of them by x̃0, and let

x̃0𝑖 be the 𝑖th observation on this vector of variables.

3. Estimate the coefficients β̃0 on x̃0 by unpenalized QML.

4. For each 𝑗 ∈ {1, . . . , 𝑝}, set

̃𝜅0,𝑗 = √ 1
𝑁

𝑁
∑
𝑖=1

h𝑗(𝑦𝑖, ̃x0𝑖β̃0)2

5. Set 𝑘 = 1 and do the following loop. (It will be executed at most 15 times.)

a. Using 𝜆 and loadings { ̃𝜅𝑘−1,1, . . . , ̃𝜅𝑘−1,𝑝}, solve the lasso to get estimates
̃̃
β𝑘.

b. Let x̃𝑘 be the covariates with nonzero coefficients in
̃̃
β𝑘.

c. Estimate the coefficients β̃𝑘 on x̃𝑘 by unpenalized QML.

d. For each 𝑗 ∈ {1, . . . , 𝑝}, set

̃𝜅𝑘,𝑗 = √ 1
𝑁

𝑁
∑
𝑖=1

h𝑗(𝑦𝑖, x̃𝑘𝑖β̃𝑘)2

e. Set 𝑘 = 𝑘 + 1.

f. If 𝑘 > 15 or the variables in x̃𝑘 are the same as those in x̃𝑘−1, set each ̃𝜅𝑗 = ̃𝜅𝑘,𝑗 and exit;

otherwise, go to step 5a.



lasso — Lasso for prediction and model selection 173

BIC

lasso and elasticnet compute the BIC function for each vector of coefficients corresponding to

each 𝜆. The BIC function is defined as

BIC = −2 ln𝐿(𝑦, 𝛽0 + xβ′) + 𝑘 ln𝑁

where ln𝐿(𝑦, 𝛽0 + xβ′) is the log-likelihood function, 𝑘 is the number of nonzero coefficients, and 𝑁 is

the number of observations.

When the model is linear,

ln𝐿(𝑦, 𝛽0 + xβ′) = −1
2

[ ln 2𝜋 + ln{
𝑁

∑
𝑖=1

𝑤∗
𝑖 (𝑦𝑖 − 𝛽0 − x𝑖β

′)2} + 1]

When the model is logit,

ln𝐿(𝑦, 𝛽0 + xβ′) =
𝑁

∑
𝑖=1

𝑤∗
𝑖 [ 𝑦𝑖 (𝛽0 + x𝑖β

′) − ln {1 + exp(𝛽0 + x𝑖β
′)}]

When the model is probit,

ln𝐿(𝑦, 𝛽0 + xβ′) =
𝑁

∑
𝑖=1

𝑤∗
𝑖 [ 𝑦𝑖 ln {Φ(𝛽0 + x𝑖β

′)} + (1 − 𝑦𝑖) ln {1 − Φ(𝛽0 + x𝑖β
′)}]

When the model is poisson,

ln𝐿(𝑦, 𝛽0 + xβ′) =
𝑁

∑
𝑖=1

𝑤∗
𝑖 {− exp(𝛽0 + x𝑖β

′) + (𝛽0 + x𝑖β
′)𝑦𝑖 − ln(𝑦𝑖!)}

When the model is cox,

ln𝐿(𝑦, xβ′) = −
𝑁𝑓

∑
𝑗=1

∑
𝑖∈𝐷𝑗

𝑤∗
𝑖 [x𝑖β

′ − ln{ ∑
ℓ∈𝑅𝑗

𝑤∗
ℓ exp(xℓβ

′)}]

The weights 𝑤∗
𝑖 are normalized to sum to 𝑁. That is,

𝑤∗
𝑖 = 𝑁𝑤𝑖

∑𝑁
𝑖=1 𝑤𝑖

where 𝑤𝑖 is the original observation-level weight.

When the selection(bic, postselection) option is specified, the postselection coefficients are

used to compute the BIC. By default, penalized coefficients are used.



lasso — Lasso for prediction and model selection 174

References
Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments

with an application to eminent domain. Econometrica 80: 2369–2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2011. “High dimensional sparse econometric models: An Introduction”. In Inverse

Problems of High-Dimensional Estimation, edited by P. Alguier, E. Gautier, and G. Stoltz, 121–156. Berlin: Springer.

https://doi.org/10.1007/978-3-642-19989-9_3.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014a. High-dimensional methods and inference on structural and

treatment effects. Journal of Economic Perspectives 28: 29–50. https://doi.org/10.1257/jep.28.2.29.

———. 2014b. Inference on treatment effects after selection among high-dimensional controls. Review of Economic

Studies 81: 608–650. https://doi.org/10.1093/restud/rdt044.

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-

trols. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Bickel, P. J., Y. Ritov, andA. B. Tsybakov. 2009. Simultaneous analysis of Lasso and Dantzig selector.Annals of Statistics

37: 1705–1732. https://doi.org/10.1214/08-AOS620.

Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics 30: 89–99. https://doi.org/10.2307/

2529620.

Bühlmann, P., and S. van de Geer. 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications. Berlin:

Springer.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018. Dou-

ble/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68. https:

//doi.org/10.1111/ectj.12097.

Chetverikov, D., Z. Liao, and V. Chernozhukov. 2019. On cross-validated lasso in high dimensions. arXiv:1605.02214

[math.ST], https://doi.org/10.48550/arXiv.1605.02214.

Daubechies, I., M. Defrise, and C. D. Mol. 2004. An iterative thresholding algorithm for linear inverse problems with

a sparsity constraint. Communications on Pure and Applied Mathematics 57: 1413–1457. https://doi.org/10.1002/cpa.

20042.

Friedman, J. H., T. J. Hastie, H. Höfling, and R. J. Tibshirani. 2007. Pathwise coordinate optimization.Annals of Applied

Statistics 1: 302–332. https://doi.org/10.1214/07-AOAS131.

Friedman, J. H., T. J. Hastie, and R. J. Tibshirani. 2010. Regularization paths for generalized linear models via coordinate

descent. Journal of Statistical Software 33: art. 1. https://doi.org/10.18637/jss.v033.i01.

Fu, W. J. 1998. Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical Statistics 7:

397–416. https://doi.org/10.1080/10618600.1998.10474784.

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations.

Boca Raton, FL: CRC Press. https://doi.org/10.1201/b18401.

Leeb, H., and B. M. Pötscher. 2008. Sparse estimators and the oracle property, or the return of Hodges’ estimator. Journal

of Econometrics 142: 201–211. https://doi.org/10.1016/j.jeconom.2007.05.017.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society, A ser.,

135: 370–384. https://doi.org/10.2307/2344614.

Quandt, R. E. 1984. “Computational problems and methods”. In Handbook of Econometrics, edited by Z. Griliches and

M. D. Intriligator, vol. 2: 699–764. Amsterdam: Elsevier. https://doi.org/10.1016/S1573-4412(83)01016-8.

van Houwelingen, H. C., T. Bruinsma, A. A. M. Hart, L. J. van’t Veer, and L. F. A. Wessels. 2006. Cross-validated Cox

regression on microarray gene expression data. Statistics in Medicine 25: 3201–3216. https://doi.org/10.1002/sim.

2353.

Zhang, Y., R. Li, and C.-L. Tsai. 2010. Regularization parameter selections via generalized information criterion. Journal

of the American Statistical Association 105: 312–323. https://doi.org/10.1198/jasa.2009.tm08013.

Zou, H. 2006. The adaptive lasso and its oracle properties. Journal of theAmerican StatisticalAssociation 101: 1418–1429.

https://doi.org/10.1198/016214506000000735.

https://doi.org/10.3982/ECTA9626
https://doi.org/10.1007/978-3-642-19989-9_3
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.1093/restud/rdt044
https://doi.org/10.1080/07350015.2016.1166116
https://doi.org/10.1214/08-AOS620
https://doi.org/10.2307/2529620
https://doi.org/10.2307/2529620
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097
https://doi.org/10.48550/arXiv.1605.02214
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1214/07-AOAS131
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.1998.10474784
https://doi.org/10.1201/b18401
https://doi.org/10.1016/j.jeconom.2007.05.017
https://doi.org/10.2307/2344614
https://doi.org/10.1016/S1573-4412(83)01016-8
https://doi.org/10.1002/sim.2353
https://doi.org/10.1002/sim.2353
https://doi.org/10.1198/jasa.2009.tm08013
https://doi.org/10.1198/016214506000000735


lasso — Lasso for prediction and model selection 175

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] elasticnet — Elastic net for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] Lasso intro — Introduction to lasso

[LASSO] sqrtlasso — Square-root lasso for prediction and model selection

[R] logit — Logistic regression, reporting coefficients

[R] poisson — Poisson regression

[R] probit — Probit regression

[R] regress — Linear regression

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict stcurve Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after lasso, sqrtlasso, and

elasticnet:

Command Description

bicplot plot Bayesian information criterion function

coefpath plot path of coefficients

cvplot plot cross-validation function

lassocoef display selected coefficients

lassogof goodness of fit after lasso for prediction

lassoinfo information about lasso estimation results

lassoknots knot table of coefficient selection and measures of fit

lassoselect select alternative 𝜆∗ (and 𝛼∗ for elasticnet)
∗ stcurve plot the survivor, failure, hazard, or cumulative hazard function

∗stcurve is appropriate only after lasso cox or elasticnet cox.

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estimates cataloging estimation results

etable table of estimation results

predict linear predictions

176
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions; probabilities when

the model is logit or probit; number of events when the model is Poisson; or hazard ratios and baseline

survivor, cumulative hazard, and hazard functions when the model is Cox.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic options ]

statistic Description

Main

xb linear predictions; the default for the linear model

pr probability of a positive outcome; the default for the logit and probit models

n number of events; the default for the poisson model

ir incidence rate; optional for the poisson model

hr predicted hazard ratio, also known as the relative hazard; the default for
the cox model

basesurv baseline survivor function

basechazard baseline cumulative hazard function

basehc baseline hazard contributions

pr is allowed only when the model is logit or probit.
n and ir are allowed only when the model is poisson.
hr, basesurv, basechazard, and basehc are allowed only when the model is cox.

options Description

Main

penalized use penalized coefficients; the default

postselection use postselection (unpenalized) coefficients

nooffset ignore the offset or exposure variable (if any)

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the
estimation sample. Starred statistics are calculated only for the estimation sample, even when e(sample) is not specified.
nooffset is allowed only with unstarred statistics.
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Options for predict

� � �
Main �

xb, the default for the linear model, calculates linear predictions.

pr, the default for and only allowed with the logit and probit models, calculates the probability of a

positive event.

n, the default for and only allowed with the poisson model, calculates the number of events, which is

exp(x𝑗β) if neither offset() nor exposure() was specified when the model was fit; exp(x𝑗β +
offset𝑗) if offset() was specified; or exp(x𝑗β) × exposure𝑗 if exposure() was specified.

ir applies to the poisson model only. It calculates the incidence rate exp(xβ′), which is the predicted
number of events when exposure is 1. Specifying ir is equivalent to specifying n when neither

offset() nor exposure() was specified when the model was fit.

hr, the default for the cox model, calculates the relative hazard (hazard ratio), that is, the exponentiated

linear prediction exp(xβ′).
basesurv applies to the cox model only. It calculates the baseline survivor function. In the null model,

this is equivalent to the Kaplan–Meier product-limit estimate.

basechazard applies to the cox model only. It calculates the cumulative baseline hazard.

basehc applies to the cox model only. It calculates the baseline hazard contributions. These are used to

construct the product-limit type estimator for the baseline survivor function generated by basesurv.

penalized specifies that penalized coefficients be used to calculate predictions. This is the default.

Penalized coefficients are those estimated by lasso in the calculation of the lasso penalty. SeeMethods

and formulas in [LASSO] lasso.

postselection specifies that postselection coefficients be used to calculate predictions. Postselection

coefficients are calculated by taking the variables selected by lasso and refitting the model with the

appropriate ordinary estimator: linear regression for linear models, logistic regression for logit
models, probit regression for probit models, Poisson regression for poisson models, and Cox re-

gression for cox models.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-

fies the calculations made by predict so that they ignore the offset or exposure variable; the linear

prediction is treated as xβ′ rather than xβ′ + offset or xβ′ + ln(exposure). For the poisson model,

specifying predict ..., nooffset is equivalent to specifying predict ..., ir. This option is not
allowed when basesurv, basechazard, or basehc is specified.
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stcurve

Description for stcurve
stcurve plots the survivor, failure, hazard, or cumulative hazard function after lasso cox or

elasticnet cox.

Menu for stcurve
Statistics > Survival analysis > Regression models > Plot survivor or related function

Syntax for stcurve
stcurve [ , penalized postselection stcurve options ]

Options for stcurve
penalized, the default, specifies that penalized coefficients be used to calculate predictions. Penalized

coefficients are those estimated by lasso in the calculation of the lasso penalty. See Methods and

formulas in [LASSO] lasso.

postselection specifies that postselection coefficients be used to calculate predictions. Postselection

coefficients are calculated by taking the variables selected by lasso and refitting themodel with stcox.

stcurve options are options available for stcurve; see Options in [ST] stcurve.

Remarks and examples
By default, predict after lasso uses the penalized coefficient estimates to predict the outcome.

Specifying the postselection option causes predict to use the postselection coefficients to calcu-

late predictions. Postselection coefficients are calculated by taking the variables selected by lasso and

refitting the model with the unpenalized estimator.

stcurve after lasso cox or elasticnet cox also uses the penalized coefficients by default. Spec-

ifying the postselection option causes stcurve to use the postselection coefficients.

Belloni and Chernozhukov (2013) and Belloni et al. (2012) provide results under which predictions

using postselection coefficients perform at least as well as predictions using penalized coefficients. Their

results are only for linear models. Their conditions essentially limit the cases to ones in which the co-

variates selected by the lasso are close to the set of covariates that best approximates the outcome. Said

plainly, this means that under the conditions for which lasso provides valid predictions, the postselection

coefficients should do slightly better than the penalized coefficients in most cases; in other cases, they

should be about the same.

Rather than relying on theorems, standard practice in prediction applications uses split-sample tech-

niques to find which of several models produces the best predictions. One standard practice in prediction

applications is to randomly split the sample into training and testing samples. When you use the training

data, the coefficients for several competing predictors are computed. When you use the testing data, an

out-of-sample prediction error is computed for each of the predictors whose coefficients were estimated

on the training data. The predictor with the smallest out-of-sample prediction error is preferred. This

practice is illustrated in [LASSO] lassogof.
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Methods and formulas
Below, we discuss themethods and formulas for the predictions of baseline survivor function, baseline

cumulative hazard function, and baseline hazard contributions after lasso cox or elasticnet cox.

Define 𝑧𝑖 = x𝑖β̂
′

+ offset𝑖, where β̂ is either the penalized or the postselection coefficients. The

estimated baseline hazard contribution is obtained at each failure time as ℎ𝑗 = 1 − ̂𝛼𝑗, where ̂𝛼𝑗 is the

solution to

∑
𝑘∈𝐷𝑗

exp(𝑧𝑘)
1 − ̂𝛼exp(𝑧𝑘)

𝑗

= ∑
ℓ∈𝑅𝑗

exp(𝑧ℓ)

(Kalbfleisch and Prentice 2002, eq. 4.34, 115), where 𝑗 indexes the ordered failure times 𝑡𝑗 ( 𝑗 =
1, . . . , 𝐷); 𝐷𝑗 is the set of 𝑑𝑗 observations that fail at 𝑡𝑗; 𝑑𝑗 is the number of failures at 𝑡𝑗; and 𝑅𝑗
is the set of observations 𝑘 that are at risk at time 𝑡𝑗 (that is, all 𝑘 such that 𝑡0𝑘 < 𝑡𝑗 ≤ 𝑡𝑘, and 𝑡0𝑘 is the

entry time for the 𝑘th observation).
The estimated baseline survivor function is

̂𝑆0(𝑡) = ∏
𝑗∶𝑡𝑗≤𝑡

̂𝛼𝑗

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor

function calculation; yet the values of ̂𝛼𝑗 are set at their starting values and are not iterated. Equivalently,

𝐻0(𝑡) = ∑
𝑗∶𝑡𝑗≤𝑡

𝑑𝑗

∑ℓ∈𝑅𝑗
exp(𝑧ℓ)

For an application of this formula in the context of lasso cox, see Ternès, Rotolo, and Michiels (2017).
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see

Description
lassocoef displays a table showing the selected variables after one or more lasso estimation results.

It can also display the values of the coefficient estimates. When used with stored results from two or

more lassos, it can be used to view the overlap between sets of selected variables.

After ds, po, and xpo commands, and after telasso, lassocoef can be used to view coefficients

for a single lasso or for multiple lassos displayed side by side.

Quick start
Display the selected variables after lasso, sqrtlasso, or elasticnet

lassocoef

Display the values of the postselection coefficients after lasso, sqrtlasso, or elasticnet
lassocoef, display(coef, postselection)

Display the penalized coefficients of the standardized variables after lasso, sqrtlasso, or elasticnet
sorted by their absolute values in descending order

lassocoef, display(coef, standardized) sort(coef, standardized)

Compare which variables were selected from three different runs of lasso, where the estimation results

are stored under the names mylasso1, mylasso2, and mylasso3
lassocoef mylasso1 mylasso2 mylasso3

Same as above, but display the penalized coefficients of the unstandardized variables sorted by the values

of the penalized coefficients of the standardized variables

lassocoef mylasso1 mylasso2 mylasso3, display(coef, penalized) ///
sort(coef, standardized)

After fitting a lasso logit model, display the exponentiated postselection coefficients, which are odds

ratios, and specify their display format

lassocoef, display(coef, postselection eform format(%6.2f))

After any of the ds or po commands, display the selected variables in the lasso for the dependent vari-

able y
lassocoef (., for(y))

Same as above, but display the penalized coefficients of the standardized variables in the lasso for y
sorted by their absolute values

lassocoef (., for(y)), display(coef, standardized) ///
sort(coef, standardized)

181
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Same as above, but compare the lasso for y from the results stored in mydsregress with the lasso for y
from the results stored in myporegress

lassocoef (mydsregress, for(y)) (myporegress, for(y)), ///
display(coef, standardized) sort(coef, standardized)

After xpologit without resample, compare the variables selected by the lassos for x in each of the 10

cross-fit folds

lassocoef (myxpo, for(x) xfold(1)) ///
(myxpo, for(x) xfold(2)) ///
⋮
(myxpo, for(x) xfold(10))

After xpologit with resample, compare the variables selected by the lassos for x in each of the 10

cross-fit folds in the first resample

lassocoef (myxpo, for(x) xfold(1) resample(1)) ///
(myxpo, for(x) xfold(2) resample(1)) ///
⋮
(myxpo, for(x) xfold(10) resample(1))

After telasso, display the selected variables in the lasso for the outcome variable y at treatment levels 1

and 0

lassocoef (., for(y) tlevel(1)) (., for(y) tlevel(0))

Menu
Statistics > Postestimation
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Syntax

For current estimation results

After lasso, sqrtlasso, or elasticnet

lassocoef [ , options ]

After ds or po

lassocoef (., for(varspec)) [ , options ]

After xpo without resample

lassocoef (., for(varspec) xfold(#)) [ , options ]

After xpo with resample

lassocoef (., for(varspec) xfold(#) resample(#)) [ , options ]

After telasso for the outcome variable

lassocoef (., for(varspec) tlevel(#)) [ , options ]

After telasso for the treatment variable

lassocoef (., for(varspec)) [ , options ]

After telasso for the outcome variable with cross-fitting but without resample

lassocoef (., for(varspec) tlevel(#) xfold(#)) [ , options ]

After telasso for the treatment variable with cross-fitting but without resample

lassocoef (., for(varspec) xfold(#)) [ , options ]

After telasso for the outcome variable with cross-fitting and resample

lassocoef (., for(varspec) tlevel(#) xfold(#) resample(#)) [ , options ]

After telasso for the treatment variable with cross-fitting and resample

lassocoef (., for(varspec) xfold(#) resample(#)) [ , options ]

For multiple stored estimation results

lassocoef [ estspec1 [ estspec2 . . . ] ] [ , options ]
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estspec for lasso, sqrtlasso, and elasticnet is

name

estspec for ds and po models is

(name, for(varspec))

estspec for xpo without resample is

(name, for(varspec) xfold(#))

estspec for xpo with resample is

(name, for(varspec) xfold(#) resample(#))

estspec for the treatment model in telasso is

(name, for(varspec))

estspec for the outcome model at the treatment level # in telasso is

(name, for(varspec) tlevel(#))

estspec for the treatment model in telasso with cross-fitting but without resample is

(name, for(varspec) xfold(#))

estspec for the outcome model at the treatment level # in telasso with cross-fitting but without

resample is

(name, for(varspec) tlevel(#) xfold(#))

estspec for the treatment model in telasso with resample is

(name, for(varspec) xfold(#) resample(#))

estspec for the outcome model at the treatment level # in telasso with resample is

(name, for(varspec) tlevel(#) xfold(#) resample(#))

name is the name of a stored estimation result. Either nothing or a period (.) can be used to specify
the current estimation result. all or * can be used to specify all stored estimation results when

all stored results are lasso, sqrtlasso, or elasticnet.

varspec is varname, except after poivregress and xpoivregress, when it is either varname or

pred(varname).
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options Description

Options

display(x) indicate selected variables with an x; the default
display(u) same as display(x), except variables unavailable to be

selected indicated with a u
display(coef [ , coef di opts ]) display coefficient values

sort(none) order of variables as originally specified; the default

sort(names) order by the names of the variables

sort(coef [ , coef sort opts ]) order by the absolute values of the coefficients in descending
order

nofvlabel display factor-variable level values rather than value labels

nolegend report or suppress table legend

nolstretch do not stretch the width of the table to accommodate long
variable names

collect is allowed; see [U] 11.1.10 Prefix commands.

nofvlabel, nolegend, and nolstretch do not appear in the dialog box.

coef di opts Description

standardized display penalized coefficients of standardized variables; the default

penalized display penalized coefficients of unstandardized variables

postselection display postselection coefficients of unstandardized variables

eform display exp(𝑏) rather than the coefficient 𝑏
format(% fmt) use numerical format % fmt for the coefficient values

coef sort opts Description

standardized sort by penalized coefficients of standardized variables

penalized sort by penalized coefficients of unstandardized variables

postselection sort by postselection coefficients of unstandardized variables

Options

� � �
Options �

display(displayspec) specifies what to display in the table. The default is display(x).

Blank cells in the table indicate that the corresponding variable was not selected by the lasso or was

not specified in the model.

For some variables without fitted values, a code that indicates the reason for omission is reported in

the table.

Empty levels of factors and interactions are coded with the letter e.

Base levels of factors and interactions are coded with the letter b. Base levels can be set on alwaysvars

(variables always included in the lasso) but not on othervars (the set of variables from which lasso

selects).
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Variables omitted because of collinearity are coded with the letter o. Lasso does not label as omit-

ted any othervars because of collinearity. Collinear variables are simply not selected. Variables in

alwaysvars can be omitted because of collinearity. See Remarks and examples in [LASSO] Collinear

covariates.

display(x) displays an x in the table when the variable has been selected by the lasso; that is, it has

a nonzero coefficient.

display(u) is the same as display(x), except that when a variable was not specified in the model,

u (for unavailable) is displayed instead of a blank cell.

display(coef [ , standardized penalized postselection eform format(% fmt) ])
specifies that coefficient values be displayed in the table.

standardized specifies that the penalized coefficients of the standardized variables be displayed.
This is the default when display(coef) is specified without options. Penalized coefficients of
the standardized variables are the coefficient values used in the estimation of the lasso penalty.

See Methods and formulas in [LASSO] lasso.

penalized specifies that the penalized coefficients of the unstandardized variables be displayed.

Penalized coefficients of the unstandardized variables are the penalized coefficients of the stan-

dardized variables with the standardization removed.

postselection specifies that the postselection coefficients of the unstandardized variables be

displayed. Postselection coefficients of the unstandardized variables are obtained by fitting

an ordinary model (regress for lasso linear, logit for lasso logit, probit for lasso
probit, and poisson for lasso poisson) using the selected variables. See Methods and

formulas in [LASSO] lasso.

eform displays coefficients in exponentiated form. For each coefficient, exp(𝑏) rather than 𝑏
is displayed. This option can be used to display odds ratios or incidence-rate ratios after the

appropriate estimation command.

format(% fmt) specifies the display format for the coefficients in the table. The default is

format(%9.0g).

sort(sortspec) specifies that the rows of the table be ordered by specification given by sortspec.

sort(none) specifies that the rows of the table be ordered by the order the variables were specified

in the model specification. This is the default.

sort(names) orders rows alphabetically by the variable names of the covariates. In the case of factor

variables, main effects and nonfactor variables are displayed first in alphabetical order. Then, all

two-way interactions are displayed in alphabetical order, then, all three-way interactions, and so

on.

sort(coef [ , standardized penalized postselection ]) orders rows in descending order by

the absolute values of the coefficients. When results from two or more estimation results are dis-

played, results are sorted first by the ordering for the first estimation result with rows representing

coefficients not in the first estimation result last. Within the rows representing coefficients not in

the first estimation result, the rows are sorted by the ordering for the second estimation result with

rows representing coefficients not in the first or second estimation results last. And so on.

standardized orders rows in descending order by the absolute values of the penalized coeffi-

cients of the standardized variables. This is the default when sort(coef) is specified without

options.
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penalized orders rows in descending order by the absolute values of the penalized coefficients

of the unstandardized variables.

postselection orders rows in descending order by the absolute values of the postselection co-

efficients of the unstandardized variables.

nofvlabel displays factor-variable level numerical values rather than attached value labels. This option

overrides the fvlabel setting. See [R] set showbaselevels.

nolegend specifies that the legend at the bottom of the table not be displayed. By default, it is shown.

nolstretch specifies that the width of the table not be automatically widened to accommodate long

variable names. When nolstretch is specified, names are abbreviated to make the table width no

more than 79 characters. The default, lstretch, is to automatically widen the table up to the width

of the Results window. To change the default, use set lstretch off.

Required options for estspec after telasso, ds, po, and xpo:

for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation com-

mand fit using the option selection(cv), selection(adaptive), or selection(bic). For
all commands except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either
depvar, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso
for depvar is specified with its varname. Each of the endogenous variables have two lassos, spec-

ified by varname and pred(varname). The exogenous variables of interest each have only one

lasso, and it is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the

option xfolds(#) was specified. For each variable to be fit with a lasso, 𝐾 lassos are done, one

for each cross-fit fold, where 𝐾 is the number of folds. This option specifies which fold, where

# = 1, 2, . . . , 𝐾. xfold(#) is required after an xpo command and after telasso when the option

xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using

the option resample(#). For each variable to be fit with a lasso, 𝑅 × 𝐾 lassos are done, where 𝑅
is the number of resamples and 𝐾 is the number of cross-fitting folds. This option specifies which

resample, where # = 1, 2, . . . , 𝑅. resample(#), along with xfold(#), is required after an xpo
command and after telasso with resampling.

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

Remarks and examples
lassocoef lists the variables selected by a lasso and optionally lists the values of their coefficients.

It is useful for comparing the results of multiple lassos. It shows how much overlap there is among the

sets of selected variables from the lassos.

By default, lassocoef indicates only whether a variable was selected, marking a selected variable

with an x. The option display(coef, coef type) can be used to display the values of the coefficients.
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Lassos store three different types of coefficients (coef types). We refer to them as standardized,
penalized, and postselection.

Before a lasso is fit, the potential variables in the model are standardized so that they each have mean

0 and standard deviation 1. standardized refers to the coefficients of the standardized variables exactly
as estimated by the minimization of the objective function.

penalized refers to the coefficients from the minimization of the objective function with the stan-

dardization unwound. standardized, strictly speaking, gives the penalized coefficients of the standard-
ized variables. penalized gives the penalized coefficients of the unstandardized variables.

postselection coefficients are computed by taking the selected variables and, for a linear lasso,

estimating an ordinary least-squares linear regression with them, and using those coefficients. For a logit

lasso, a logistic regression gives the postselection coefficients; for a probit lasso, a probit regression gives

them; and for a Poisson lasso, a Poisson regression gives them.

lassocoef also has a sort(coef, coef type) option, which controls the order in which the variables
are listed. The most useful ordering is sort(coef, standardized). It sorts the listing by the absolute
values of the standardized coefficients with the largest displayed first. Variables with larger absolute

values of their standardized coefficients take up a larger share of the lasso penalty, and so in this sense,

they are “more important” for prediction than variables with smaller values.

Example 1: lasso
We will show some uses of lassocoef after lasso.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the vl
variable lists active.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )
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We fit the lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331
(output omitted )

Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553

* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

By default, after only one lasso, lassocoef lists the variables selected by the lasso.

. lassocoef

active

0.gender x
0.q3 x
0.q4 x
0.q5 x
2.q6 x
0.q7 x

(output omitted )

q111 x
q139 x

_cons x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

lassocoef is intended to be used to compare multiple lassos. So let’s store the results of this lasso

before we fit another. See [LASSO] estimates store for more on storing and saving lasso results.

. estimates store lassocv
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We fit an adaptive lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous,
> selection(adaptive) rseed(1234)
(output omitted )

Lasso linear model No. of obs = 914
No. of covariates = 277

Selection: Adaptive No. of lasso steps = 2
Final adaptive step results

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

29 first lambda 52.54847 0 -0.0011 18.3349
82 lambda before .3794425 40 0.4077 10.84767

* 83 selected lambda .3457338 41 0.4077 10.84764
84 lambda after .3150198 42 0.4074 10.85301

128 last lambda .0052548 62 0.3954 11.07398

* lambda selected by cross-validation in final adaptive step.
. estimates store lassoadaptive

Adaptive lasso selected 41 variables. Lasso selected 64. We can compare both the differences in se-

lection and differences in the values of the coefficients. We use lassocoef with display(coef,
standardized) to list the values of the standardized coefficients. We specify sort(coef,
standardized) to sort them so that the largest ones in absolute value from the first lasso are shown

first. The option nofvlabel means that numerical values for the factor-variable levels are displayed

rather than value labels.

. lassocoef lassocv lassoadaptive, display(coef, standardized)
> sort(coef, standardized) nofvlabel nolegend

lassocv lassoadaptive

0.q19 -.8228234 -.9542076
0.q88 .7464342 .8650972

3.q156 -.6770033 -.770628
0.q48 -.6055556 -.7086328
0.q73 -.5962807 -.7036719
0.q85 -.5855315 -.684066

q31 .5843145 .7228376
0.q101 .5565875 .6682665

(output omitted )

0.q75 -.0056084
q63 -.0055279

0.q55 -.0054106
0.q51 .0043129
0.q77 .0019468

0.q115 .0005097
_cons 0 3.55e-15

Most of the differences occur in the coefficients with the smallest absolute values.
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Let’s fit another lasso. Note that we omitted the variable list idemographics from the potential

variables this time.

. lasso linear q104 $ifactors $vlcontinuous, selection(cv) rseed(1234)
(output omitted )

Lasso linear model No. of obs = 916
No. of covariates = 269

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9127278 0 -0.0020 18.33925
24 lambda before .1074109 57 0.3406 12.06842

* 25 selected lambda .0978688 62 0.3407 12.06704
26 lambda after .0891744 70 0.3400 12.07962
28 last lambda .0740342 78 0.3361 12.15082

* lambda selected by cross-validation.
. estimates store lassocv2

The option display(u) puts a u next to the variables that were unavailable to be selected.

. lassocoef lassocv lassocv2, display(u)

lassocv lassocv2

0.gender x u
0.q3 x u
0.q4 x u
0.q5 x u

q6
2 x x
3 x

(output omitted )

q100
No x
q21 x
q52 x

_cons x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated
u - not selected for estimation

If display(u) was not specified, there would be empty space in place of the u’s. So this option is useful
for distinguishing whether a variable was not selected or simply not included in the model specification.
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Example 2: poivregress
Wewant to show you some differences that arise when you fit models containing endogenous variables

using poivregress and xpoivregress.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r19/mroz2, clear

set vl variable lists,

. vl create vars = (kidslt6 kidsge6 age husage city exper)
note: $vars initialized with 6 variables.
. vl substitute vars2 = c.vars c.vars#c.vars
. vl create iv = (huseduc motheduc fatheduc)
note: $iv initialized with 3 variables.
. vl substitute iv2 = c.iv c.iv#c.iv

and fit our model using poivregress.

. poivregress lwage (educ = $iv2), controls($vars2) selection(cv) rseed(12345)
Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Estimating lasso for pred(educ) using cv
Partialing-out IV linear model Number of obs = 428

Number of controls = 27
Number of instruments = 9
Number of selected controls = 16
Number of selected instruments = 4
Wald chi2(1) = 11.10
Prob > chi2 = 0.0009

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0765154 .0229707 3.33 0.001 .0314936 .1215371

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store poivregresscv

We use lassoinfo to see the lassos fit by poivregress.

. lassoinfo poivregresscv
Estimate: poivregresscv
Command: poivregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

lwage linear cv CV min. .0353704 3
educ linear cv CV min. .0530428 10

pred(educ) linear cv CV min. .013186 12
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We have two lassos for educ, the endogenous variable in the model. One is named educ and the other

pred(educ). To compare the coefficient estimates for these two lassos, we type

. lassocoef (poivregresscv, for(educ)) (poivregresscv, for(pred(educ))),
> display(coef, standardized) sort(coef, standardized) nolegend

poivregresscv poivregresscv
educ pred(educ)

c.huseduc#c.huseduc 1.047956

c.motheduc#c.fatheduc .5574474

c.kidsge6#c.kidsge6 -.2293016 -.274782

c.kidslt6#c.kidslt6 .1175937

c.kidsge6#c.exper .1087689 .2928483

c.motheduc#c.motheduc .0813009

c.huseduc#c.fatheduc .0411326

c.city#c.exper .0207999 .1020498

c.husage#c.exper .0077213

c.kidsge6#c.city -.0017114

kidslt6 .5342914

c.kidslt6#c.kidsge6 -.2364133

kidsge6 -.2129479
husage -.2091804

c.husage#c.city .1396385

c.exper#c.exper -.133589

c.kidslt6#c.exper -.1322304

c.city#c.city .1320515

c.kidslt6#c.city .0237243

_cons 0 1.78e-15

Example 3: xporegress
The xpo commands fit many lassos. For each lasso fit by a po command, the corresponding xpo

command fits xfolds(#) × resample(#) lassos. Cross-fitting randomly creates different divisions of

the data for each resample. We expect that lasso will select different variables for different cross-fit folds

and resamples. See [LASSO] Inference examples for a description of the data and model.

We load the data, set vl variable lists, fit our model using xporegress with the options xfolds(3)
and resample(2), and then store the results with estimates store.
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. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)
. vl set
(output omitted )

. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.
(output omitted )

. vl create mycontinuous = vlcontinuous - (react no2_class)
note: $mycontinuous initialized with 10 variables.
. vl substitute mycontrols = i.vlcategorical mycontinuous
. xporegress react no2_class, controls($mycontrols) xfolds(3) resample(2)
> selection(cv) rseed(12345)
Resample 1 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 27
Number of folds in cross-fit = 3
Number of resamples = 2
Wald chi2(1) = 20.99
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.332193 .5090902 4.58 0.000 1.334394 3.329991

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store xpocv
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For each cross-fit fold and each resample, xporegress fits lassos. It fit six lassos for the dependent

variable, react, and six for the variable of interest, no2 class. To see how the variables selected differ

for different folds and for different resamples, we type

. lassocoef (xpocv, for(react) resample(1) xfold(1))
> (xpocv, for(react) resample(1) xfold(2))
> (xpocv, for(react) resample(1) xfold(3))
> (xpocv, for(react) resample(2) xfold(1))
> (xpocv, for(react) resample(2) xfold(2))
> (xpocv, for(react) resample(2) xfold(3))
> , sort(coef, standardized)

xpocv xpocv xpocv xpocv xpocv xpocv
react_1_1 react_2_1 react_3_1 react_1_2 react_2_2 react_3_2

grade
2nd x x x x x x

sex
Male x x x x x x

grade
4th x x x x x x

age x x x x x x

feducation
University x x x x x x

age0 x x x x x

meducation
Primary x x x x x x

breastfeed
2 x x x

0.msmoke x x x

feducation
Primary x x x x

<Primary x x

sev_school x x

meducation
<Primary x x x x

(output omitted )

0.overweight x
precip x

green_home x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated
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Even though we had lassocoef display x’s, we specified the sort(coef, standardized) option so

that the table is ordered by the most important variables from the lasso in the first column.

Stored results
lassocoef stores the following in r():

Macros

r(names) names of results used

Matrices

r(coef) matrix 𝑀: 𝑛 × 𝑚
𝑀[𝑖, 𝑗] = 𝑖th coefficient estimate for model 𝑗; 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑚

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] lassoinfo — Display information about lasso estimation results

[CAUSAL] telasso postestimation — Postestimation tools for telasso



lasso examples — Examples of lasso for prediction

Description Remarks and examples References Also see

Description
This entry contains more examples of lasso for prediction. It assumes you have already read

[LASSO] Lasso intro and [LASSO] lasso.

Remarks and examples
Remarks are presented under the following headings:

Overview
Using vl to manage variables
Using splitsample
Lasso linear models
Adaptive lasso
Cross-validation folds
BIC
More potential variables than observations
Factor variables in lasso
Lasso logit and probit models
Lasso Poisson models
Lasso Cox models

Overview
In the examples of this entry, we use a dataset of a realistic size for lasso. It has 1,058 observations

and 172 variables. Still, it is a little on the small side for lasso. Certainly, you can use lasso on datasets of

this size, but lasso can also be used with datasets that have thousands or tens of thousands of variables.

The number of variables can even be greater than the number of observations. What is essential for

lasso is that the set of potential variables contains a subset of variables that are in the true model (or

something close to it) or are correlated with the variables in the true model.

As to howmany variables there can be in the true model, we can say that the number cannot be greater

than something proportional to
√

𝑁/ ln 𝑞, where 𝑁 is the number of observations, 𝑝 is the number of

potential variables, and 𝑞 = max{𝑁, 𝑝}. We cannot, however, say what the constant of proportionality

is. That this upper bound decreases with 𝑞 can be viewed as the cost of performing covariate selection.

Using vl to manage variables
Wewill show how to use commands in the vl system to manage large numbers of variables. vl stands

for “variable lists”. The idea behind it is that we might want to run a lasso with hundreds or thousands or

tens of thousands of variables specified as potential variables. We do not want to have to type all these

variable names.

Many times, we will have a mix of different types of variables. Some we want to treat as continuous.

Some we want to treat as categorical and use factor-variable operators with them to create indicator

variables for their categories. See [U] 11.4.3 Factor variables.

197
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The first goal of the vl system is to help us separate variables we want to treat as categorical from

those we want to treat as continuous. The second goal of the system is to help us create named variable

lists we can use as arguments to lasso or any other Stata command simply by referring to their names.

The purpose here is to illustrate the power of vl, not to explain in detail how it works or show all of

its features. For that, see [D] vl.

We load the dataset we will use in these examples.

. use https://www.stata-press.com/data/r19/fakesurvey
(Fictitious survey data)

It is simulated data designed to mimic survey data. It has 1,058 observations and 172 variables.

. describe
Contains data from https://www.stata-press.com/data/r19/fakesurvey.dta
Observations: 1,058 Fictitious survey data

Variables: 172 14 Jun 2024 15:31

Variable Storage Display Value
name type format label Variable label

id str8 %9s Respondent ID
gender byte %8.0g gender Gender
age byte %8.0g Age (y)
q1 byte %10.0g Question 1
q2 byte %8.0g Question 2
q3 byte %8.0g yesno Question 3
(output omitted )

q160 byte %8.0g yesno Question 160
q161 byte %8.0g yesno Question 161
check8 byte %8.0g Check 8

Sorted by: id

The variables are a mix. Some we know are integer-valued scales that we want to treat as continuous

variables in our models. There are a lot of 0/1 variables, and there are some with only a few categories

that we will want to turn into indicator variables. There are some with more categories that we do not

yet know whether to treat as categorical or continuous.

The first vl subcommand we run is vl set. Nonnegative integer-valued variables are candidates for
use as factor variables. Because factor variables cannot be negative, any variable with negative values

is classified as continuous. Any variable with noninteger values is also classified as continuous.

vl set has two options, categorical(#) and uncertain(#), that allow us to separate out the

nonnegative integer-valued variables into three named variable lists: vlcategorical, vluncertain,
and vlcontinuous.
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When the number of levels (distinct values), 𝐿, is

2 ≤ 𝐿 ≤ categorical(#)

the variable goes in vlcategorical. When

categorical(#) < 𝐿 ≤ uncertain(#)

the variable goes in vluncertain. When

𝐿 > uncertain(#)

the variable goes in vlcontinuous.

The defaults are categorical(10) and uncertain(100). For our data, we do not like the defaults,
so we change them. We specify categorical(4) and uncertain(19). We also specify the option

dummy to create a variable list, vldummy, consisting solely of 0/1 variables. Let’s run vl set with these

options.

. vl set, categorical(4) uncertain(19) dummy

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 20 continuous variables
$vluncertain 27 perhaps continuous, perhaps categorical variables
$vlother 9 all missing or constant variables

Notes
1. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.
2. If there are any variables in vluncertain, you can reallocate them

to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.
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The vluncertain variable list contains all the variables we are not sure whether we want to treat as

categorical or continuous. We use vl list to list the variables in vluncertain.

. vl list vluncertain

Variable Macro Values Levels

q12 $vluncertain integers >=0 5
q18 $vluncertain integers >=0 7
q23 $vluncertain integers >=0 10
q27 $vluncertain integers >=0 8
q28 $vluncertain integers >=0 15
q35 $vluncertain integers >=0 7
q39 $vluncertain integers >=0 5
q54 $vluncertain integers >=0 10
q63 $vluncertain integers >=0 7
q66 $vluncertain integers >=0 5
q80 $vluncertain integers >=0 5
q81 $vluncertain integers >=0 5
q92 $vluncertain integers >=0 5
q93 $vluncertain integers >=0 7
q99 $vluncertain integers >=0 5

q103 $vluncertain integers >=0 7
q107 $vluncertain integers >=0 18
q111 $vluncertain integers >=0 7
q112 $vluncertain integers >=0 7
q119 $vluncertain integers >=0 8
q120 $vluncertain integers >=0 7
q124 $vluncertain integers >=0 14
q127 $vluncertain integers >=0 5
q132 $vluncertain integers >=0 7
q135 $vluncertain integers >=0 10
q141 $vluncertain integers >=0 12
q157 $vluncertain integers >=0 7

We are going to have to go through these variables one by one and reclassify them. We know we have

several seven-level Likert scales in these data. We tabulate one of them.

. tabulate q18
Question 18 Freq. Percent Cum.

Very strongly disagree 139 13.15 13.15
Strongly disagree 150 14.19 27.34

Disagree 146 13.81 41.15
Neither agree nor disagree 146 13.81 54.97

Agree 174 16.46 71.43
Strongly agree 146 13.81 85.24

Very strongly agree 156 14.76 100.00

Total 1,057 100.00
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We look at all the variables with seven levels, and they are all Likert scales. We want to treat them as

continuous in our models, so we move them out of vluncertain and into vlcontinuous.

. vl move (q18 q35 q63 q93 q103 q111 q112 q120 q132 q157) vlcontinuous
note: 10 variables specified and 10 variables moved.

Macro # Added/Removed

$vldummy 0
$vlcategorical 0
$vlcontinuous 10
$vluncertain -10
$vlother 0

When variables are moved into a new vl system-defined variable list, they are automatically moved out

of their current system-defined variable list.

In our examples, we have three variables we want to predict: q104, a continuous variable; q106, a 0/1
variable; and q107, a count variable. Because we are going to use the variables in vlcategorical and

vlcontinuous as potential variables to select in our lassos, we do not want these dependent variables

in these variable lists. We move them into vlother, which is intended as a place to put variables we do
not want in our models.

. vl move (q104 q106 q107) vlother
note: 3 variables specified and 3 variables moved.

Macro # Added/Removed

$vldummy -1
$vlcategorical 0
$vlcontinuous -1
$vluncertain -1
$vlother 3

Notice the parentheses around the variable names when we used vl move. The rule for vl is to use

parentheses around variable names and to not use parentheses for variable-list names.

The system-defined variable lists are good for a general division of variables. But we need further

subdivision for our models. We have four demographic variables, which are all categorical, but we want

them included in all lasso models. So we create a user-defined variable list containing these variables.

. vl create demographics = (gender q3 q4 q5)
note: $demographics initialized with 4 variables.

Wewant to convert the variables in vldummy and vlcategorical into indicator variables. We create

a new variable list, factors, containing the union of these lists. Because we want to handle the variables
in demographics separately, we remove them from factors.

. vl create factors = vldummy + vlcategorical
note: $factors initialized with 114 variables.
. vl modify factors = factors - demographics
note: 4 variables removed from $factors.

The vl substitute command allows us to apply factor-variable operators to a variable list. We turn

the variables in demographics and factors into factor variables.
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. vl substitute idemographics = i.demographics

. vl substitute ifactors = i.factors

We are done using vl and we save our dataset. One nice feature of vl is that the variable lists are

saved with the data.

. label data ”Fictitious survey data with vl”

. save fakesurvey_vl
file fakesurvey_vl.dta saved

We are now ready to run some lassos.

Using splitsample
Well, almost ready. We want to evaluate our lasso predictions on a sample that we did not use to fit

the lasso. So we decide to randomly split our data into two samples of equal sizes. We will fit models

on one, and we will use the other to test their predictions.

Let’s load the version of our dataset that contains our variable lists. We first increase maxvar because

we are going to create thousands of interactions in a later example.

. clear all

. set maxvar 10000

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)

Variable lists are not automatically restored. We have to run vl rebuild to make them active.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We now use splitsample to generate a variable indicating the two subsamples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 ”Training” 2 ”Testing”

. label values sample svalues
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Lasso linear models
When fitting our lasso model, we can now specify variables succinctly using our vl variable lists.

Variable lists are really global macros—we bet you already guessed this. Listing them under the header

“Macro” in vl output was a real tip-off, right? Because they are global macros, when we use them as

arguments in commands, we put a $ in front of them.

We put parentheses around idemographics. This notation means that we want to force these vari-

ables into the model regardless of whether lasso wants to select them. See Syntax in [LASSO] lasso.

We also set the random-number seed using the rseed() option so that we can reproduce our results.

We fit lasso on the first subsample.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93341
(output omitted )

Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10 CVF = 12.17933
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991

* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.
. estimates store linearcv

After the command finished, we used estimates store to store the results in memory so that we can

later compare these results with those from other lassos. Note, however, that estimates store only

saves them in memory. To save the results to disk, use

. estimates save filename

See [LASSO] estimates store.

The minimum of the cross-validation (CV) function was found to be at 𝜆 = 0.1682318. It selects 𝜆∗

as this 𝜆, which corresponds to 49 variables in the model, out of 277 potential variables.
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After fitting a lasso using CV to select 𝜆, it is a good idea to plot the CV function and look at the shape

of the curve around the minimum.

. cvplot
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λCV = .17 is the cross-validation minimum λ; # coefficients = 49.

Cross-validation plot

By default, the lasso command stops when it has identified a minimum. Computation time in-

creases as 𝜆’s get smaller, so computing the CV function for smaller 𝜆’s is computationally expensive.

We could specify the option selection(cv, alllambdas) to compute models for more small 𝜆’s. See
[LASSO] lasso and [LASSO] lasso fitting for details and a description of less computationally intensive

options to get more assurance that lasso has identified a minimum.

We can also get a plot of the size of the coefficients as they become nonzero and change as 𝜆 gets

smaller. Typically, they get larger as 𝜆 gets smaller. But they can sometimes return to 0 after being

nonzero.

. coefpath
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We see four lines that do not start at 0. These are lines corresponding to the four variables in

idemographics that we forced into the model.
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Adaptive lasso
We are now going to run an adaptive lasso, which we do by specifying the option

selection(adaptive).
. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(4321) selection(adaptive)
Lasso step 1 of 2:
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 17.012
(output omitted )

Grid value 24: lambda = .1056545 no. of nonzero coef. = 78
Folds: 1...5....10 CVF = 12.40012
... cross-validation complete ... minimum found
Lasso step 2 of 2:
Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 48.55244 no. of nonzero coef. = 4
(output omitted )

Grid value 100: lambda = .0048552 no. of nonzero coef. = 59
10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100
(output omitted )

Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
... cross-validation complete
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Adaptive No. of lasso steps = 2
Final adaptive step results

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

25 first lambda 48.55244 4 0.0101 17.01083
77 lambda before .3847698 46 0.3985 10.33691

* 78 selected lambda .3505879 46 0.3987 10.33306
79 lambda after .3194427 47 0.3985 10.33653

124 last lambda .0048552 59 0.3677 10.86697

* lambda selected by cross-validation in final adaptive step.
. estimates store linearadaptive

Adaptive lasso performs multiple lassos. In the first lasso, a 𝜆∗ is selected, and penalty weights are

constructed from the coefficient estimates. Then these weights are used in a second lasso, where another

𝜆∗ is selected. We did not specify how many lassos should be performed, so we got the default of two.

We could specify more, but typically the selected 𝜆∗ does not change after the second lasso, or it changes

little. See the selection(adaptive) option in [LASSO] lasso.
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We can see details of the two lassos by using lassoknots and specifying the option steps to see all

steps of the adaptive lasso.

. lassoknots, steps

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

Step ID lambda coef. error or left (U)nchanged

1
1 .8978025 4 17.012 A 1.q3 1.q4

1.q5 1.gender
2 .8180442 7 16.91096 A 0.q19 0.q85

3.q156
3 .7453714 8 16.66328 A 0.q101
4 .6791547 9 16.33224 A 0.q88

(output omitted )

23 .1159557 74 12.35715 A 3.q6 0.q40
0.q82 0.q98
0.q128 2.q134
0.q148 q157

24 .1056545 78 12.40012 A 2.q6 0.q9
1.q34 4.q155

2
25 48.55244 4 17.01083 A 1.q3 1.q4

1.q5 1.gender
26 44.23918 6 16.94087 A 0.q19 0.q85

(output omitted )

76 .4222844 45 10.33954 A 0.q44
77 .3847698 46 10.33691 A q111

* 78 .3505879 46 10.33306 U
79 .3194427 47 10.33653 A 0.q97
80 .2910643 48 10.3438 A 0.q138

(output omitted )

112 .0148272 59 10.7663 A q70
124 .0048552 59 10.86697 U

* lambda selected by cross-validation in final adaptive step.

Notice how the scale of 𝜆 changes in the second lasso. That is because of the penalty weights generated

by the first lasso.

The ordinary lasso selected 49 variables, and the adaptive lasso selected 46. It is natural to ask how

much these two groups of variables overlap. When the goal is prediction, however, we are not supposed to

care about this. Ordinary lasso might select one variable, and adaptive lasso might instead select another

that is highly correlated to it. So it is wrong to place importance on any particular variable selected or

not selected. It is the group of variables selected as a whole that matters.

Still, we cannot resist looking, and the lassocoef command was designed especially for this pur-

pose. We specify lassocoef with the option sort(coef, standardized). This sorts the listing by

the absolute values of the standardized coefficients with the largest displayed first. lassocoef can list

different types of coefficients and display them in different orderings. See [LASSO] lassocoef.
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. lassocoef linearcv linearadaptive, sort(coef, standardized)

linearcv linearadaptive

q19
No x x

q85
No x x

q5
Yes x x

3.q156 x x

q101
No x x

(output omitted )

q160
No x x
age x x
q53 x x

2.q105 x

q102
No x x

q154
No x x

q111 x x

q142
No x x

0.q55 x
0.q97 x

q65
4 x x

1.q110 x x
q70 x

q44
No x

(output omitted )

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

We see that the adaptive lasso did not select four variables that the lasso did, and it selected one that the

lasso did not. All the differences occurred among the variables with smaller standardized coefficients.
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Themost important question to ask is which performed better for out-of-sample prediction. lassogof
is the command for that. We specify the over() option with the name of our sample indicator variable,

sample. We specify the postselection option because for linear models, postselection coefficients

are theoretically slightly better for prediction than the penalized coefficients (which lassogof uses by

default).

. lassogof linearcv linearadaptive, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

The ordinary lasso did a little better in this case than the adaptive lasso.

Cross-validation folds
CVworks by dividing the data randomly into 𝐾 folds. One fold is chosen, and then a linear regression

is fit on the other𝐾 −1 folds using the variables in the model for that 𝜆. Then using these new coefficient

estimates, a prediction is computed for the data of the chosen fold. The mean squared error (MSE) of the

prediction is computed. This process is repeated for the other𝐾 −1 folds. The𝐾 MSEs are then averaged

to give the value of the CV function.

Let’s increase the number of folds from the default of 10 to 20 by specifying selection(cv,
folds(20)).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, selection(cv, folds(20)) rseed(9999)
20-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10....15....20 CVF = 17.08362
(output omitted )

Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10....15....20 CVF = 12.12667
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 20

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0059 17.08362
19 lambda before .1682318 49 0.2999 12.03169

* 20 selected lambda .1532866 55 0.3002 12.02673
21 lambda after .139669 62 0.2988 12.05007
23 last lambda .1159557 74 0.2944 12.12667

* lambda selected by cross-validation.
. estimates store linearcv2
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Which performs better for out-of-sample prediction?

. lassogof linearcv linearcv2, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearcv2
Training 8.545785 0.5126 502
Testing 14.7507 0.2594 488

The first lasso with 10 folds did better than the lasso with 20 folds. This is generally true. More than 10

folds typically does not yield better predictions.

We should mention again that CV is a randomized procedure. Changing the random-number seed can

result in a different 𝜆∗ being selected and so give different predictions.

BIC
We are now going to select 𝜆∗ by minimizing the BIC function, which we do by specifying the option

selection(bic).
. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, selection(bic)
Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4

BIC = 2618.642
Grid value 2: lambda = .8180442 no. of nonzero coef. = 7

BIC = 2630.961
Grid value 3: lambda = .7453714 no. of nonzero coef. = 8

BIC = 2626.254
Grid value 4: lambda = .6791547 no. of nonzero coef. = 9

BIC = 2619.727
Grid value 5: lambda = .6188205 no. of nonzero coef. = 10

BIC = 2611.577
Grid value 6: lambda = .5638462 no. of nonzero coef. = 13

BIC = 2614.155
Grid value 7: lambda = .5137556 no. of nonzero coef. = 13

BIC = 2597.164
Grid value 8: lambda = .468115 no. of nonzero coef. = 14

BIC = 2588.189
Grid value 9: lambda = .4265289 no. of nonzero coef. = 16

BIC = 2584.638
Grid value 10: lambda = .3886373 no. of nonzero coef. = 18

BIC = 2580.891
Grid value 11: lambda = .3541118 no. of nonzero coef. = 22

BIC = 2588.984
Grid value 12: lambda = .3226535 no. of nonzero coef. = 26

BIC = 2596.792
Grid value 13: lambda = .2939899 no. of nonzero coef. = 27

BIC = 2586.521
Grid value 14: lambda = .2678726 no. of nonzero coef. = 28

BIC = 2578.211
Grid value 15: lambda = .2440755 no. of nonzero coef. = 32

BIC = 2589.632



lasso examples — Examples of lasso for prediction 210

Grid value 16: lambda = .2223925 no. of nonzero coef. = 35
BIC = 2593.753

Grid value 17: lambda = .2026358 no. of nonzero coef. = 37
BIC = 2592.923

Grid value 18: lambda = .1846342 no. of nonzero coef. = 42
BIC = 2609.975

Grid value 19: lambda = .1682318 no. of nonzero coef. = 49
BIC = 2639.437

... selection BIC complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Bayesian information criterion

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

1 first lambda .8978025 4 0.0308 2618.642
13 lambda before .2939899 27 0.3357 2586.521

* 14 selected lambda .2678726 28 0.3563 2578.211
15 lambda after .2440755 32 0.3745 2589.632
19 last lambda .1682318 49 0.4445 2639.437

* lambda selected by Bayesian information criterion.
. estimates store linearbic

The minimum of the BIC function was found to be at 𝜆 = 0.268. It selects 𝜆∗ as this 𝜆, which
corresponds to 28 variables in the model out of 277 potential variables.

After fitting a lasso using BIC, it is a good idea to plot the BIC function and look at the shape of the

curve around the minimum.

. bicplot
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λBIC = .27 is the BIC minimum λ; # coefficients = 28.

BIC plot

We see that the BIC function rises sharply once it hits the minimum. By default, the lasso command

stops when it has identified a minimum.

So far, we have fit lasso linear models using CV, an adaptive lasso, and BIC. Which one performs

better in the out-of-sample prediction?
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. lassogof linearcv linearadaptive linearbic, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

linearbic
Training 9.740229 0.4421 508
Testing 13.44496 0.3168 503

The BIC lasso performs the best.

More potential variables than observations
Lasso has no difficulty fitting models when the number of potential variables exceeds the number of

observations.

We use vl substitute to create interactions of all of our factor-variable indicators with our contin-

uous variables.

. vl substitute interact = i.factors##c.vlcontinuous

We fit the lasso.

. lasso linear q104 ($idemographics) $interact if sample == 1, rseed(1234)
note: 1.q32#c.q70 omitted because of collinearity with another variable.
note: 2.q34#c.q63 omitted because of collinearity with another variable.
(output omitted )

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 1.020288 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93478
(output omitted )

Grid value 34: lambda = .2198144 no. of nonzero coef. = 106
Folds: 1...5....10 CVF = 12.91285
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 7,227
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 1.020288 4 0.0146 16.93478
29 lambda before .2773743 80 0.2531 12.83525

* 30 selected lambda .2647672 85 0.2545 12.81191
31 lambda after .2527331 89 0.2541 12.81893
34 last lambda .2198144 106 0.2486 12.91285

* lambda selected by cross-validation.
. estimates store big
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There were 7,227 potential covariates in our model, of which lasso selected 85. That seems signifi-

cantly more than the 49 selected by our earlier lasso.

Let’s see how they do for out-of-sample prediction.

. lassogof linearcv big, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

big
Training 6.705183 0.6117 490
Testing 17.00972 0.1403 478

Our model with thousands of potential covariates did better for in-sample prediction but significantly

worse for out-of-sample prediction.

Factor variables in lasso
It is important to understand how lasso handles factor variables. Let’s say we have a variable, region,

that has four categories representing four different regions of the country. Other Stata estimation com-

mands handle factor variables by setting one of the categories to be the base level; it then makes indicator

variables for the other three categories, and they become covariates for the estimation.

Lasso does not set a base level. It creates indicator variables for all levels (1.region, 2.region,
3.region, and 4.region) and adds these to the set of potential covariates. The reason for this should

be clear. What if 1.region versus the other three categories is all that matters for prediction? Lasso

would select 1.region and not select the other three indicators. If, however, 1.region was set as a

base level and omitted from the set of potential covariates, then lasso would have to select 2.region,
3.region, and 4.region to pick up the 1.region effect. It might be wasting extra penalty on three

coefficients when only one was needed.

See [LASSO] Collinear covariates.
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Lasso logit and probit models
lasso will also fit logit, probit, Poisson, and Cox models.

We fit a logit model.

. lasso logit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .1155342 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.384878
(output omitted )

Grid value 27: lambda = .010285 no. of nonzero coef. = 88
Folds: 1...5....10 CVF = 1.147343
... cross-validation complete ... minimum found
Lasso logit model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1155342 0 -0.0004 1.384878
22 lambda before .0163767 65 0.1857 1.127315

* 23 selected lambda .0149218 69 0.1871 1.125331
24 lambda after .0135962 73 0.1864 1.126333
27 last lambda .010285 88 0.1712 1.147343

* lambda selected by cross-validation.
. estimates store logit

Logit and probit lasso models are famous for having CV functions that are more wiggly than those for

linear models.

. cvplot
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λCV = .015 is the cross-validation minimum λ; # coefficients = 69.

Cross-validation plot
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This curve is not as smoothly convex as was the CV function for the linear lasso shown earlier. But it is

not as bad as some logit CV functions. Because the CV functions for nonlinear models are not as smooth,

lasso has a stricter criterion for declaring that a minimum of the CV function is found than it has for

linear models. lasso requires that five smaller 𝜆’s to the right of a nominal minimum be observed with

larger CV function values by a relative difference of cvtolerance(#) or more. Linear models only

require three such 𝜆’s be found before declaring a minimum and stopping.

Let’s now fit a probit model.

. lasso probit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .1844415 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.384877
(output omitted )

Grid value 26: lambda = .0180201 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 1.152188
... cross-validation complete ... minimum found
Lasso probit model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1844415 0 -0.0004 1.384877
21 lambda before .0286931 61 0.1820 1.132461

* 22 selected lambda .0261441 64 0.1846 1.128895
23 lambda after .0238215 70 0.1841 1.129499
26 last lambda .0180201 87 0.1677 1.152188

* lambda selected by cross-validation.
. estimates store probit
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lassocoef can be used to display coefficient values. Obviously, logit and probit coefficient values

cannot be compared directly. But we do see similar relative scales.

. lassocoef logit probit, sort(coef, standardized) display(coef, standardized)

logit probit

q142
No -.50418 -.3065817

q154
No -.3875702 -.2344515

q90
No -.3771052 -.2288992

q8
No -.3263827 -.200673

(output omitted )

q37
No -.0128537 -.0062874

2.q158 .0065661 .0012856
3.q65 -.0062113

3.q110 -.0055616
q120 .0044864

0.q146 -.004312

q95
3 .0030261

Legend:
b - base level
e - empty cell
o - omitted

The probit lasso selected five fewer variables than logit, and they were the five variables with the smallest

absolute values of standardized coefficients.

We look at how they did for out-of-sample prediction.

. lassogof logit probit, over(sample)
Penalized coefficients

Deviance
Name sample Deviance ratio Obs

logit
Training .8768969 0.3674 499
Testing 1.268346 0.0844 502

probit
Training .8833892 0.3627 500
Testing 1.27267 0.0812 503

Neither did very well. The out-of-sample deviance ratios were notably worse than the in-sample values.

The deviance ratio for nonlinear models is analogous to 𝑅2 for linear models. See Methods and formulas

for [LASSO] lassogof for the formal definition.
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We did not specify the postselection option in this case because there are no theoretical grounds

for using postselection coefficients for prediction with nonlinear models.

Lasso Poisson models
Next, we fit a Poisson model.

. lasso poisson q107 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .5745539 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 2.049149
(output omitted )

Grid value 21: lambda = .089382 no. of nonzero coef. = 66
Folds: 1...5....10 CVF = 1.653376
... cross-validation complete ... minimum found
Lasso Poisson model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .5745539 0 -0.0069 2.049149
16 lambda before .1423214 37 0.1995 1.629222

* 17 selected lambda .129678 45 0.1999 1.628315
18 lambda after .1181577 48 0.1993 1.62962
21 last lambda .089382 66 0.1876 1.653376

* lambda selected by cross-validation.

We see how it does for out-of-sample prediction.

. lassogof, over(sample)
Penalized coefficients

Deviance
sample Deviance ratio Obs

Training 1.289175 0.3515 510
Testing 1.547816 0.2480 502

Its in-sample and out-of-sample predictions are fairly close. Much closer than they were for the logit and

probit models.

Lasso Cox models
lasso will also fit Cox proportional hazards models. We illustrate lasso cox with an example that

predicts risk of death for stage I lung adenocarcinoma patients. Lung adenocarcinoma is one of the most

common non-small-cell lung cancers.
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Stage I adenocarcinoma indicates that the tumor size is relatively small, and cancer has not spread

to other distant organs. Stage I adenocarcinoma patients usually have varied survival outcomes even

though they are in the early cancer development stage. For example, Yu et al. (2016) show that, in one

cohort, more than 50% of stage I adenocarcinoma patients died within 5 years after the initial diagnosis,

while about 15% of the patients survived for more than 10 years.

Histopathology image features are indispensable for prognostic analysis. Examples of the histopathol-

ogy image features include image granularity, image intensity, cell size and shape, pixel intensity of the

cell, cell texture, area occupied by cells, neighboring relation of the cells, nucleus size and shape, and

nucleus texture. We can use lasso cox to extract the top histopathology image features that distinguish

short-term survivors from long-term survivors.

We have a fictitious survival dataset (lungcancer.dta) inspired by Yu et al. (2016). The variable t
records either the time of death or censoring in months for stage I adenocarcinoma lung cancer patients.

The indicator variable died is 1 or 0 if the patient died or is censored, respectively. There are 500

histopathology image features, histfeature1 to hisfeature500, and only 250 patients. The analysis
aims to classify a new patient into a low-risk or high-risk group, given the histopathology image features.

We first load the dataset and then type stset to show it has already been stset.
. use https://www.stata-press.com/data/r19/lungcancer
(Fictitious data on stage I adenocarcinoma lung cancer)
. stset
-> stset t, failure(died)
Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, t]

Exit on or before: failure

250 total observations
0 exclusions

250 observations remaining, representing
211 failures in single-record/single-failure data

18,465.093 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 260

Next, we need to split the entire sample into training and testing data. The training data will be used

for estimation, and the testing data will be used to measure the prediction performance. These steps are

typically used in the microarray survival literature; for an application to the performance of a Cox model

with lasso, see Sohn et al. (2009).

We use splitsample to split the data into two parts. The generate(group) option creates a new

variable group for the identification of the training and testing data. That is, group equals 1 if it belongs

to the training data or 0 if it belongs to the testing data. The split(0.6 0.4) option specifies that 60%

of the entire data be used as training data and 40% of them be used as testing data. To make the results

reproducible, we specify the rseed() option.

. splitsample, generate(group) split(0.6 0.4) rseed(12345)

For the convenience of later use, we separately save the training data (lungcancer training.dta)
and the testing data (lungcancer testing.dta).
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. preserve

. keep if group == 1
(100 observations deleted)
. save lungcancer_training
file lungcancer_training.dta saved
. restore
. preserve
. keep if group == 2
(150 observations deleted)
. save lungcancer_testing
file lungcancer_testing.dta saved
. restore

We are now ready to fit a lasso cox model using only the training data. By default, we use cross-

validation. We specify rseed() to make the results reproducible.

. use lungcancer_training, clear
(Fictitious data on stage I adenocarcinoma lung cancer)
. lasso cox histfeature*, rseed(12345671)

Failure _d: died
Analysis time _t: t

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .3539123 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 8.922501
Grid value 2: lambda = .3378265 no. of nonzero coef. = 1
Folds: 1...5....10 CVF = 8.917438
(output omitted )

Grid value 30: lambda = .0918411 no. of nonzero coef. = 45
Folds: 1...5....10 CVF = 8.042941
Grid value 31: lambda = .0876668 no. of nonzero coef. = 48
Folds: 1...5....10 CVF = 8.039609
Grid value 32: lambda = .0836822 no. of nonzero coef. = 52
Folds: 1...5....10 CVF = 8.05246
Grid value 33: lambda = .0798787 no. of nonzero coef. = 57
Folds: 1...5....10 CVF = 8.070293
Grid value 34: lambda = .0762481 no. of nonzero coef. = 63
Folds: 1...5....10 CVF = 8.105045
... cross-validation complete ... minimum found
Lasso Cox model No. of obs = 150

No. of covariates = 500
Selection: Cross-validation No. of CV folds = 10

No. of
nonzero In-sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .3539123 0 0.0000 8.922501
30 lambda before .0918411 45 0.2199 8.042941

* 31 selected lambda .0876668 48 0.2306 8.039609
32 lambda after .0836822 52 0.2419 8.05246
34 last lambda .0762481 63 0.2662 8.105045

* lambda selected by cross-validation.
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lasso cox selects 48 of the 500 features. We can now predict the relative-hazard ratio, which we will

call riskscore training, and evaluate risk scores. We will use the median of riskscore training
as a threshold to classify a patient as low risk or high risk. We store the median value in a global macro

(median) for later use.

. predict riskscore_training
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)
. summarize riskscore_training, detail

Predicted hazard ratio, penalized

Percentiles Smallest
1% .054982 .0414753
5% .0838301 .054982

10% .1308778 .0702972 Obs 150
25% .3676802 .0727958 Sum of wgt. 150
50% .9458244 Mean 1.998198

Largest Std. dev. 3.75226
75% 2.368032 9.962103
90% 4.912702 11.13334 Variance 14.07945
95% 6.651043 12.4411 Skewness 7.054249
99% 12.4411 39.40631 Kurtosis 67.68195
. global median = r(p50)

Based on the median of the predicted risk ratio in the training data, we now use the testing data

to validate the model. First, we predict the risk ratio in the testing sample, which we will call

riskscore testing. Then, we compare riskscore testing with the median of the risk ratio ob-

tained in the training data ($median). If the predicted risk score is greater than or equal to the median, the

patient is labeled as high risk. If the predicted risk score is less than the median, the patient is classified

as low risk.

. use lungcancer_testing, clear
(Fictitious data on stage I adenocarcinoma lung cancer)
. predict riskscore_testing
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)
. generate byte risk = (riskscore_testing >= $median)
. label define risk_lb 1 ”High risk” 0 ”Low risk”
. label values risk risk_lb
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To evaluate the effectiveness of risk classification, we first look at the Kaplan–Meier plot, which

draws the survival curve for both low-risk and high-risk groups.

. sts graph, by(risk)
Failure _d: died

Analysis time _t: t

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Analysis time

risk = Low risk
risk = High risk

Kaplan–Meier survival estimates

The graph shows that the predicted high-risk patients have a more steeply falling survival curve than

the predicted low-risk patients. To confirm this conjecture, we do a log-rank test.

. sts test risk
Failure _d: died

Analysis time _t: t
Equality of survivor functions
Log-rank test

Observed Expected
risk events events

Low risk 39 68.17
High risk 51 21.83

Total 90 90.00
chi2(1) = 61.50
Pr>chi2 = 0.0000

The log-rank test rejects the hypothesis that the predicted low-risk and high-risk patients have the

same survival functions. Both the Kaplan–Meier plot and the log-rank test show that using the predicted

hazard ratios’median can effectively distinguish a low-risk patient from a high-risk patient. We can now

make prognostic predictions given new data.

The dataset (newlungcancer.dta) contains histopathology image features for some new stage I

adenocarcinoma patients, but their survival time is not recorded because they are still alive. Based on

the prediction model from lasso cox, we want to classify these new patients as low risk or high risk.

To achieve this objective, we need to predict the new patients’ hazard ratios and compare them with the

median level of risk score obtained in the training data.
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. use https://www.stata-press.com/data/r19/newlungcancer, clear
(Fictitious new data on stage I adenocarcinoma lung cancer)
. predict riskscore_new
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)
. generate risk = (riskscore_new >= $median)
. label define risk_lb 1 ”High risk” 0 ”Low risk”
. label values risk risk_lb
. tabulate risk

risk Freq. Percent Cum.

Low risk 27 54.00 54.00
High risk 23 46.00 100.00

Total 50 100.00

The table of the predicted risk level shows that 27 patients are classified as low risk, while 23 patients

are classified as high risk.
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Description Remarks and examples Also see

Description
This entry describes the process of fitting lasso models.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Model selection
The process

Step 1. Set the grid range
Step 2. Fit the model for next lambda in grid
Selection method none
Step 3. Identifying a minimum of the CV function
Plotting the CV function
Selecting another model

What exactly is CV?
Adaptive lasso
Plugin selection
Selection using the BIC function

Introduction
If you are to fit lasso models successfully, you need to understand how the software computes them.

There are options you can specify to modify the process and specifying them is sometimes necessary just

to find the solution. This entry explains the process.

The process of fitting lasso models applies to the three commands that directly fit lasso and related

models:

lasso sqrtlasso elasticnet

The lasso inferential commands

dsregress poregress xporegress
dslogit pologit xpologit
dspoisson popoisson xpopoisson

poivregress xpoivregress

fit multiple lasso models under the hood, and you may want to try using different lasso model-selection

methods with these commands. If you do, then this entry is also for you. All the options described here

can be used with the inferential commands to specify different lasso model-selection methods andmodify

the settings that control the lasso-fitting process.

222
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Model selection
Fitting lasso models requires that the software fit lots of models behind the scenes from which one

will be selected. The trick to minimizing the time needed is to avoid fitting unnecessary models, while

ensuring that you fit the right one so it is there to select.

Lasso has a way of ordering models. They are ordered on scalar parameter 𝜆 defined over 0 to +∞. 𝜆
is a parameter of the penalty function. For ordinary lassos, the penalty is 𝜆 times the sum of the absolute

values of the coefficients of the normalized variables. Every possible model has a 𝜆 associated with it.

When 𝜆 is large, the penalty is large, and the model has few or no variables. Models with smaller 𝜆’s
have more variables.

We can think of lasso as fitting model(𝜆), where 𝜆 varies over a range, and then selecting one of them.

Which model do we select? That depends on the problem. Do we want a good model for prediction

or a parsimonious model that better reflects the “true” model?

One method of selection is called cross-validation (CV), and it works well for prediction. The criterion

is the CV function 𝑓(𝜆), an estimate of the out-of-sample prediction error, which weminimize. Themodel

for the 𝜆 that minimizes the CV function is the selected model.

To find 𝜆∗ that minimizes 𝑓(⋅), and thus find the corresponding model(𝜆∗), we need to fit models

with 𝜆’s near to 𝜆∗ to be certain that we identified the minimum. Only nearby 𝜆’s would be good enough
if your models were fit on infinite-observation datasets because this perfect 𝑓(𝜆) is globally convex.

Because your datasets will be finite, the empirically estimated function will jiggle around its Platonic

ideal, and that means that you will need to fit additional models to be reasonably certain that the one you

select is the one that corresponds to 𝜆∗.

Another method, adaptive lasso, works well when the goal is to find parsimonious models—models

with fewer variables in them—that might better reflect the true model. Adaptive lasso starts by finding

the CV solution and then, using weights on the coefficients in the penalty function, does another lasso

and selects a model that has fewer variables.

A third method is called plugin lasso. It is faster than CV or adaptive lasso. It is not just faster, it

will be approaching the finish line while the others are still working out where the finish line is. It is

faster because it does not minimize 𝑓(⋅). It uses an iterative formula to calculate the smallest 𝜆 that

is large enough to dominate the estimation error in the coefficients. Plugin will not produce as low an

out-of-sample prediction error as CV, but it will produce more parsimonious models than CV. Plugin is

the default selection method for the inferential commands because it is so fast. For prediction, CV has

better theoretical properties.

A fourth method uses the Bayesian information criterion (BIC) function to select 𝜆∗. That is, 𝑓(𝜆) is
the BIC function, and 𝜆∗ minimizes 𝑓(⋅). The number of covariates selected by minimizing BIC typically

lies between the number selected by CV and the number selected by the plugin method; however, BIC

tends to be more similar to the number selected by the plugin method. Furthermore, BIC does not require

a complex derivation as does the plugin, so like CV, it can be applied in a more general context. Typically,

selection using BIC is much faster than selection using CV, but this is not always the case.

We discuss CV, adaptive, plugin, and BIC lassos below, and we discuss a fifth selection method that

we call none. None is a do-it-yourself (DIY) method. It calculates model(𝜆) over a range of 𝜆’s and
stops. You then examine them and choose one.
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The process

Step 1. Set the grid range

Step 1 consumes virtually no time, but the total time steps 2 and 3 consume will depend on the grid

that step 1 sets. The grid that steps 2 and 3 will search and calculate over will range from 𝜆gmax to 𝜆gmin

and have 𝐺 points on it.

Large values of 𝜆 correspond to models with few or no variables in them. Small values correspond

to models with lots of variables. Given any two values of 𝜆, 𝜆1, and 𝜆2,

𝜆1 > 𝜆2 usually implies that # of variables in model 1 ≤ # of variables in model 2

Most of us think of parameters as running from smallest to largest, say, 0 to +∞, but with 𝜆, you will be
better served if you think of them as running from +∞ to 0.

The grid does not start at +∞, it starts at 𝜆gmax. The software does an excellent job of setting 𝜆gmax.

It sets 𝜆gmax to the smallest 𝜆 that puts no variables in the model. You cannot improve on this. There is

no option for resetting 𝜆gmax.

The software does a poor job of setting 𝜆gmin. There simply does not exist a scheme to set it optimally.

If we are to identify the minimum of the CV function, 𝑓(𝜆∗), 𝜆gmin must be less than 𝜆∗. That is difficult

to do because obviously we do not know the value of 𝜆∗.

Computing models for small 𝜆’s is computationally expensive because fitting a model for a small 𝜆
takes longer than fitting a model for a larger 𝜆. Our strategy is to hope we set 𝜆gmin small enough and

then stop iterating over 𝜆 as soon as we are assured that we have found the minimum of the CV function.

If we did not set 𝜆gmin small enough, the software will tell us this.

The initial grid is set to

𝜆gmax, 𝜆2, 𝜆3, . . . , 𝜆gmin (𝜆gmin too small we hope)

The software sets 𝜆gmin to ratio×𝜆gmax, where ratio defaults to 1e–4 when 𝑝 < 𝑁, where 𝑝 is the number

of potential covariates and 𝑁 the number of observations. When 𝑝 ≥ 𝑁, the default is 1e–2.

You can reset ratio with the grid(, ratio(#)) option, or you can reset 𝜆gmin directly by specifying

grid(, min(#)).

Finally, in addition to setting ratio or 𝜆gmin, you can reset the number of points on the grid. It is set to

100 by default, meaning the initial grid will be

𝜆gmin = 𝜆1, 𝜆2, 𝜆3, . . . , 𝜆99, 𝜆gmin = 𝜆100

You can reset the number of points by specifying grid(#). You can specify the number of points and a

value for ratio by typing grid(#, ratio(#)). See [LASSO] lasso.

Step 2. Fit the model for next lambda in grid

We have a grid range 𝜆gmax to 𝜆gmin and number of points on the grid, which we will simply denote

by their indices:

𝜆1, 𝜆2, 𝜆3, . . . , 𝜆99, 𝜆100

The software obtains the models

model(𝜆1), model(𝜆2), model(𝜆3), . . . , model(𝜆100)
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By “obtains”, we mean that the software chooses the variables that appear in each one. The software

proceeds from left to right. The first model, model(𝜆1), has no variables in it and was easy to find.

Once found, model(𝜆1) provides the starting point for finding model(𝜆2), and model(𝜆2) provides the

starting point for finding model(𝜆3), and so on. Working from the previous model to obtain the next

model is known as a warm start in the literature. Regardless of what the technique is called, this is why

the software does not allow you to set a different 𝜆gmax for 𝜆1. To calculate model(𝜆) for a small value

of 𝜆 , the software has to work its way there from previous model(𝜆) results.
The grid points are not equally spaced. The grid points are not

𝜆1 = 𝜆gmax

𝜆2 = 𝜆1 − Δ
𝜆3 = 𝜆2 − Δ
𝜆4 = 𝜆3 − Δ

⋮

The grid points are instead chosen so that ln𝜆 is equally spaced, which you can think of as the 𝜆’s being
closer together as they get smaller:

𝜆1 = 𝜆gmax

𝜆2 = 𝜆1 − Δ1

𝜆3 = 𝜆2 − Δ2, 0 < Δ2 < Δ1

𝜆4 = 𝜆3 − Δ3, 0 < Δ3 < Δ2

⋮

Model estimation involves not only choosing the variables that appear in the model but also estimating

their coefficients as well.

The computation will not usually be carried out all the way to 𝜆100. Because small 𝜆’s are computa-

tionally expensive, we want to stop before we get to 𝜆100. There are two criteria for stopping. The first

is when we have identified the minimum of the CV function.

After we fit model(𝜆1), we compute the value of the CV function for 𝜆1, 𝑓(𝜆1). Likewise after fitting
model(𝜆2), we compute 𝑓(𝜆2). For early 𝜆’s, typically we have 𝑓(𝜆𝑘) > 𝑓(𝜆𝑘+1). Now if we see

𝑓(𝜆𝑘−1) > 𝑓(𝜆𝑘) < 𝑓(𝜆𝑘+1)

𝜆𝑘 might give the minimum of the CV function. It is possible that the CV function is bouncing around a

bit, and it might not be the true minimum. We discuss how we declare a minimum in more detail in the

next section.

For now, assume that we have properly identified a minimum. We are done, and we need not do any

more estimations of model(𝜆).
But what if we do not find a minimum of the CV function? Sometimes, the CV function flattens out

and stays flat, barely changing and only slowly declining with each smaller 𝜆.
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As the software proceeds from the calculation of model(𝜆𝑘−1) to model(𝜆𝑘), it calculates the relative
differences in the in-sample deviances between models:

deviance{model(𝜆𝑘−1)} − deviance{model(𝜆𝑘)}
deviance{model(𝜆𝑘−1)}

This relative difference is a measure of howmuch predictive ability is added by proceeding to model(𝜆𝑘).
If it is small, that suggests the difference between the CV function values 𝑓(𝜆𝑘−1) and 𝑓(𝜆𝑘)will be small,

and changes in the function for smaller 𝜆’s smaller yet. So we think it is likely that we have gone far

enough.

If the relative difference is less than 1e–5, the software sets the selected 𝜆∗ = 𝜆stop = 𝜆𝑘 and stops

estimating models for more 𝜆’s. The output tells you that the selected 𝜆∗ was determined by this stopping

rule. This means model(𝜆∗) does not give the minimum of the CV function, but we believe something

close to it.

If you do not want this default behavior, there are three things you can do. The first is to change the

value of the stopping rule tolerance. If you want to use 1e–6 instead of 1e–5, specify

. lasso y x1 x2 ..., stop(1e-6)

With a smaller tolerance, it will iterate over more 𝜆’s, giving a greater chance that a minimum might be

identified.

The second possibility is to turn off the early stopping rule by setting the tolerance to 0. If there is a

minimum that can be identified, this will find it.

. lasso y x1 x2 ..., stop(0)

If, however, the CV function flattens out and stays flat, specifying stop(0) might mean that the software

iterates to the end of the 𝜆 grid, and this might take a long time.

A third choice is to specify

. lasso y x1 x2 ..., selection(cv, strict)

This is the same as the default behavior in this case, except that it throws an error! The suboption strict
says that if we do not find a minimum, end with an error. This is useful when using selection(cv)
with the inferential commands. It alerts us to the fact that we did not find a minimum, and it leaves the

lasso behind, so we can plot the CV function and decide what to do next.

Selection method none

If you specify selection(none) instead of selection(cv), the software stops when the stopping
rule tolerance is reached or when the end of the 𝜆 grid is reached.

You can specify selection(none) when you want to gain a feel for how the number of included

variables changes over 𝜆 or if you want to choose 𝜆∗ yourself. We provide a suite of postestimation

commands for this purpose:

• lassoknots shows you a table of the 𝜆’s and the properties of the models.

• lassocoef lists the variables in the selected model. It can compare multiple models in the

same table.
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• lassoselect lets you choose a model to be treated as the selected model(𝜆∗).
• lassogof evaluates the selected model. It can also compare multiple models in the same table.

What you do not have, however, is the CV function and other CV-based measures of fit, which allow

you to evaluate how well models predict and so make an informed choice as to which model should be

model(𝜆∗).
There is another way. Do not specify selection(none), specify selection(cv) or

selection(adaptive). The above postestimation functions will work, and you can, based on your

own criteria if you wish, select the model for yourself.

Step 3. Identifying a minimum of the CV function

The minimum is identified when there are values of 𝑓(⋅) that rise above it on both sides. For example,

consider the following case:

𝑓(𝜆1) > 𝑓(𝜆2) > · · · > 𝑓(𝜆49)
and

𝑓(𝜆49) < 𝑓(𝜆50) < 𝑓(𝜆51) < 𝑓(𝜆52)

For linear models, 𝑓(𝜆49) is an identified minimum, and the software sets 𝜆∗ = 𝜆49. Linear mod-

els require that there be three smaller 𝜆’s with larger CV function values by a relative difference of

cvtolerance(#) or more.

Because the CV functions for nonlinear models are not as smooth, lasso has a stricter criterion for

declaring that a minimum of the CV function is found than it has for linear models. lasso requires that

five smaller 𝜆’s to the right of a nominal minimum be observed with larger CV function values by a

relative difference of cvtolerance(#) or more.

If you want more assurance that you have found a minimum, you can change cvtolerance(#) to a

larger value from its default of 1e–3.

. lasso y x1 x2 ..., cvtolerance(1e-2)

Making the tolerance larger typically means that a fewmore model(𝜆)’s are estimated to find the required

three (or five) with CV function values larger than the minimum by this tolerance.
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The software provides three options that control how 𝜆∗ is set when a identifiedminimum is not found.

They work like this:

𝜆∗ is set to

Options Case 1 Case 2 Case 3

selection(cv, strict) 𝜆cvmin error error

selection(cv, stopok) 𝜆cvmin 𝜆stop error

selection(cv, gridminok) 𝜆cvmin 𝜆stop 𝜆gmin

Case 1 is an identified minimum.
Case 2 is falling over range, stopping rule tolerance reached.

Case 3 is falling over range, stopping rule tolerance not reached.

𝜆cvmin is the identified minimum of the CV function 𝑓(⋅).
𝜆stop is the 𝜆 that meant the stopping rule tolerance.

𝜆gmin is the last 𝜆 in the grid.

error indicates that 𝜆∗ is not set, and the software issues an error message.

You may specify only one of the three options. selection(cv, stopok) is the

default if you do not specify one.

We emphasize that these options affect the setting of 𝜆∗ only when an identified minimum is not

found.

selection(cv, stopok) is the default and selects 𝜆∗ = 𝜆stop when the stopping rule tolerance was

reached.

selection(cv, strict) is the purist’s option. 𝜆∗ is found only when a minimum is identified.

Otherwise, the software issues a minimum-not-found error.

selection(cv, gridminok) is an option that has an effect only when the early stopping rule toler-

ance is not reached. We have fallen off the right edge of the grid without finding an identified minimum.

𝜆∗ is set to 𝜆gmin. There is no theoretical justification for this rule. Practically, it means that 𝜆gmin was

set too large. We should make it smaller and refit the model.

Plotting the CV function

Run lasso if you have not already done so. After you do, there are two possible outcomes. The

software ended by setting a 𝜆∗, thus selecting a model, or it did not set a 𝜆∗. You will have no doubts

as to which occurred because when 𝜆∗ is not set, the software ends with an error message and a nonzero

return code. Note that even when it ends with a nonzero return code, results of the lasso are left behind.
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Regardless of how estimation ended, graph the CV function, 𝑓(⋅). It is easy to do. Type cvplot after

running a lasso. Here is one:

. lasso linear y x1 x2 ...

. cvplot
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λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

This lasso identified a minimum of the CV function. It identified the minimum and stopped iterating over

𝜆. If we want to see more of the CV function, we can set cvtolerance(#) to a larger value.

. lasso linear y x1 x2 ..., cvtolerance(0.05)

. cvplot
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λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

If we want to see more of the CV function, we can specify selection(cv, alllambdas). When the

alllambdas suboption is specified, estimation does not end when a minimum of the CV function is

found. In fact, it estimates model(𝜆) for all 𝜆’s first and then computes the CV function because this is

slightly more computationally efficient if we are not stopping after identifying a minimum.
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. lasso linear y x1 x2 ..., selection(cv, alllambdas)

. cvplot
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λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

Actually, alllambdas is a lie. In this case, it estimated only 73 𝜆’s. It ended when the stopping rule

tolerance was reached. If we really want to see all 100 𝜆’s, we need to turn off the stopping rule.
. lasso linear y x1 x2 ..., selection(cv, alllambdas) stop(0)
. cvplot
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λCV = .11 is the cross-validation minimum λ; # coefficients = 64.

Cross-validation plot

That is a plot of all 100 𝜆’s. Clearly, in this case, the default behavior worked fine to identify a minimum.
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Here is an example of a CV function for which a minimum was not identified. The stopping rule

tolerance was reached instead.

. lasso linear z w1 w2 ...

. cvplot
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λstop = .00097 is the λ where the stopping tolerance is reached; # coefficients = 16.

Cross-validation plot

To try more 𝜆’s in a search for a minimum, we turn off the stopping rule

. lasso linear z w1 w2 ..., stop(0)

. cvplot
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Cross-validation plot

It went to the end of the grid without finding a minimum. The default stopping rule tolerance usually

works fine. Setting stop(0) typically burns more computer time without identifying a minimum.

Selecting another model

Imagine that you have successfully found themodel that minimizes the CV function, 𝑓(𝜆), the estimate

of out-of-sample prediction error. If your interest is in prediction, the model that minimizes the CV

function really is best. If your interest is in model selection, however, youmaywant to look at alternatives

that are close in the out-of-sample prediction sense.
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You can use lassoknots to see a table of the 𝜆’s where variables were added or dropped. These are
called knot points.

You can then use lassoselect to choose one of the models. This command sets 𝜆∗ to the 𝜆 you

specify. Once you have selected a model, you can use all of lasso’s postestimation features on it.

And then, if you wish, you can lassoselect another model. If you use estimates store after each

lassoselect, you can compare multiple models side by side using lassogof.

See [LASSO] lassoselect for an example.

What exactly is CV?
We are done discussing using CV as a selection method, and yet we have never discussed CV itself.

CV is about using one subsample of data to fit models and another to evaluate their prediction error.

Here are the details. The 𝑓(⋅) function is an estimate of the out-of-sample prediction error, and the

function is calculated using CV. The method starts by dividing the data into 𝐾 partitions called folds.

Once that is done, for each fold 𝑘,
1. model(𝜆) is fit on all observations except those in fold 𝑘.
2. that result is used to predict the outcome in fold 𝑘.
3. steps 1 and 2 are repeated for each fold.

4. the prediction error is then averaged over all folds, which is to say, all observations. This is

𝑓(𝜆).
Option selection(cv, folds(#)) sets 𝐾, and folds(10) is used by default.

Adaptive lasso
In Plotting the CV function, we looked at a graph of the CV function for which 𝑓(𝜆) had a long flat

region and the stopping rule selected 𝜆∗. We explained that you could use the lasso DIY postestimation

commands to change the selected model to one with fewer variables in it.

Adaptive lasso is another approach for obtaining parsimonious models. It is a variation on CV, and

in fact, for each step, it uses CV. It uses the CV-selected model(𝜆∗) as a starting point and then amplifies

the important coefficients and attenuates the unimportant ones in one or more subsequent lassos that also

use CV.

For the second lasso, variables not selected in the first lasso’s model(𝜆∗) are dropped, and the penalty
term uses weights equal to the inverse of the absolute value of the coefficients from model(𝜆∗). The

justification being that important coefficients are large and unimportant ones, small. (Variables are stan-

dardized so that comparison of coefficient size makes sense.) These weights tend to drive small coeffi-

cients to zero in the second lasso. So the selected model from the second lasso almost always has fewer

variables than the selected model from the first lasso.

Plugin selection
CV selects model(𝜆∗) such that 𝑓(𝜆) is minimized. Adaptive is a variation on CV. It selects a final

model(𝜆∗) that minimizes a more restricted 𝑓(𝜆).
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Plugins—selection(plugin)—are a whole different thing. Parameter 𝜆 still plays a role, but 𝑓(⋅)
does not. Instead, the 𝜆∗ that determines model(𝜆∗) is produced by direct calculation using the plugin

function, 𝜆∗ = 𝑔(⋅). The function returns the smallest value of 𝜆 that is large enough to dominate the

estimation error in the coefficients.

No search over 𝜆 is required, nor is a grid necessary. This makes plugin the fastest of the methods

provided. It is fast, but it is not instantaneous. The plugin formula is solved iteratively, and if it is trying

to calculate a small value for 𝜆∗, it can take a little time. Those small 𝜆’s again!
Plugin’s selected model(𝜆∗) are almost always more parsimonious than the minimum-𝑓(𝜆) models

selected by CV. Plugin will not produce models with as low an out-of-sample prediction error as CV,

but it tends to select the most important variables and can be proven to do so for many data-generation

processes. Plugin is popular when the problem is model selection instead of out-of-sample prediction.

Selection using the BIC function
Selecting 𝜆∗ using the BIC function—selection(bic)—is similar to selection using CV. However,

rather than the CV function being minimized, the BIC function is minimized. The BIC function is

𝑓(𝜆) = −2 × log likelihood + 𝑘 ln𝑁

where 𝑘 is the number of coefficients in model(𝜆) and 𝑁 is the number of observations.

Just like selection using CV, selection using BIC searches for the minimum along a grid of 𝜆’s, starting
with large 𝜆’s and moving toward smaller 𝜆’s. The 𝜆 grid is set up exactly the same way as it is for CV,

and all the options to control the initialization of the grid that were described earlier work in exactly the

same manner.

The criterion for identifying the minimum with BIC is similar to that for CV. The main difference is

that a minimum 𝜆∗ will be identified when there are only two 𝜆’s on both sides of 𝜆∗ that have values of

𝑓(𝜆) that are larger than 𝑓(𝜆∗). CV requires three 𝜆’s for linear models and five for nonlinear models.

The stopping rules are the same for BIC as they are for CV, and the suboptions stopok, strict,
gridminok, and alllambdas can be specified with selection(bic), and all work the same

way. To change the tolerance for identifying the minimum, you set bictolerance(), rather than
cvtolerance(). See [LASSO] lasso.

Because the BIC function is computed analytically, there is no random component to its computation,

unlike CV. This means that BIC is typically much faster than CV. However, this is not always true. The BIC

function could have a flatter tail than the CV function and have to search more 𝜆’s in the grid. However,
simulations seem to indicate that BIC typically yields a larger 𝜆∗ than CV and so typically selects fewer

covariates than CV. In simulations, the number selected is typically close to but more than the number

selected by plugin.
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Also see
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] bicplot — Plot Bayesian information criterion function after lasso

[LASSO] cvplot — Plot cross-validation function after lasso

[LASSO] lassocoef — Display coefficients after lasso estimation results

[LASSO] lassogof — Goodness of fit after lasso for prediction

[LASSO] lassoknots — Display knot table after lasso estimation

[LASSO] lassoselect — Select lambda after lasso
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
lassogof calculates goodness of fit of predictions after lasso, sqrtlasso, and elasticnet. It

also calculates goodness of fit after regress, logit, probit, poisson, and stcox estimations for

comparison purposes. For linear models, mean squared error of the prediction and 𝑅2 are displayed. For

logit, probit, Poisson, and Cox models, deviance and deviance ratio are shown.

Quick start
See goodness of fit for current lasso result using penalized coefficient estimates

lassogof

See goodness of fit for current lasso result using postselection coefficient estimates

lassogof, postselection

See goodness of fit for four stored estimation results

lassogof mylasso mysqrtlasso myelasticnet myregress

See goodness of fit for all stored estimation results

lassogof *

Randomly split sample into two, fit a lasso on the first sample, and calculate goodness of fit separately

for both samples

splitsample, generate(sample) nsplit(2)
lasso linear y x* if sample == 1
lassogof, over(sample)

Menu
Statistics > Postestimation

235



lassogof — Goodness of fit after lasso for prediction 236

Syntax
lassogof [ namelist ] [ if ] [ in ] [ , options ]

namelist is a name of a stored estimation result, a list of names, all, or *. all and * mean the same

thing. See [R] estimates store.

options Description

Main

penalized use penalized (shrunken) coefficient estimates; the default

postselection use postselection coefficient estimates

over(varname) display goodness of fit for samples defined by varname

noweights do not use weights when calculating goodness of fit

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

penalized specifies that the penalized coefficient estimates be used to calculate goodness of fit. Penal-

ized coefficients are those estimated by lasso with shrinkage. This is the default.

postselection specifies that the postselection coefficient estimates be used to calculate goodness of

fit. Postselection coefficients are estimated by taking the covariates selected by lasso and reestimat-

ing the coefficients using an unpenalized estimator—namely, an ordinary linear regression, logistic

regression, probit model, Poisson regression, or Cox regression as appropriate.

over(varname) specifies that goodness of fit be calculated separately for groups of observations defined
by the distinct values of varname. Typically, this option would be used when the lasso is fit on one

sample and one wishes to compare the fit in that sample with the fit in another sample.

noweights specifies that any weights used to estimate the lasso be ignored in the calculation of goodness

of fit.

Remarks and examples
lassogof is intended for use on out-of-sample data. That is, on data different from the data used to

fit the lasso.

There are two ways to do this. One is to randomly split your data into two subsamples before fitting

a lasso model. The examples in this entry show how to do this using splitsample.

The other way is to load a different dataset in memory and run lassogof with the lasso results on it.

The steps for doing this are as follows.

1. Load the data on which you are going to fit your model.

. use datafile1

2. Run lasso (or sqrtlasso or elasticnet).

. lasso ...
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3. Save the results in a file.

. estimates save filename

4. Load the data for testing the prediction.

. use datafile2, clear

5. Load the saved results, making them the current (active) estimation results.

. estimates use filename

6. Run lassogof.

. lassogof

Example 1: Comparing fit in linear models
We will show how to use lassogof after lasso linear.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the vl
variable lists active.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )

We now use splitsample to generate a variable indicating the two subsamples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 ”Training” 2 ”Testing”

. label values sample svalues

We run lasso on the first subsample and set the random-number seed using the rseed() option so we

can reproduce our results.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
(output omitted )

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991

* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.
. estimates store linearcv
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After the command finished, we used estimates store to store the results in memory so we can later

compare these results with those from other lassos.

We are now going to run an adaptive lasso, which we do by specifying the option

selection(adaptive).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(4321) selection(adaptive)
(output omitted )

Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Adaptive No. of lasso steps = 2
Final adaptive step results

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

25 first lambda 48.55244 4 0.0101 17.01083
77 lambda before .3847698 46 0.3985 10.33691

* 78 selected lambda .3505879 46 0.3987 10.33306
79 lambda after .3194427 47 0.3985 10.33653

124 last lambda .0048552 59 0.3677 10.86697

* lambda selected by cross-validation in final adaptive step.
. estimates store linearadaptive

We want to see which performs better for out-of-sample prediction. We specify the over() option

with the name of our sample indicator variable, sample. We specify the postselection option because

for linear models, postselection coefficients are theoretically slightly better for prediction than the pe-

nalized coefficients (which lassogof uses by default). See the discussion in predict in [LASSO] lasso

postestimation.

. lassogof linearcv linearadaptive, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

The ordinary lasso did a little better in this case than adaptive lasso.
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Example 2: Comparing fit in logit and probit models
We fit a logit model on the same data we used in the previous example.

. lasso logit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
(output omitted )

Lasso logit model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1155342 0 -0.0004 1.384878
22 lambda before .0163767 65 0.1857 1.127315

* 23 selected lambda .0149218 69 0.1871 1.125331
24 lambda after .0135962 73 0.1864 1.126333
27 last lambda .010285 88 0.1712 1.147343

* lambda selected by cross-validation.
. estimates store logit

Let’s now fit a probit model.

. lasso probit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)

(output omitted )

Lasso probit model No. of obs = 458
No. of covariates = 277

Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1844415 0 -0.0004 1.384877
21 lambda before .0286931 61 0.1820 1.132461

* 22 selected lambda .0261441 64 0.1846 1.128895
23 lambda after .0238215 70 0.1841 1.129499
26 last lambda .0180201 87 0.1677 1.152188

* lambda selected by cross-validation.
. estimates store probit
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We look at how they did for out-of-sample prediction.

. lassogof logit probit, over(sample)
Penalized coefficients

Deviance
Name sample Deviance ratio Obs

logit
Training .8768969 0.3674 499
Testing 1.268346 0.0844 502

probit
Training .8833892 0.3627 500
Testing 1.27267 0.0812 503

They both did not do very well. The out-of-sample deviance ratios were notably worse than the in-sample

values. The deviance ratio for nonlinear models is analogous to 𝑅2 for linear models. See Methods and

formulas for the formal definition.

We did not specify the postselection option in this case because there are no theoretical grounds

for using postselection coefficients for prediction with nonlinear models.

Stored results
lassogof stores the following in r():

Macros

r(names) names of estimation results displayed

r(over var) name of the over() variable

r(over levels) levels of the over() variable

Matrices

r(table) matrix containing the values displayed

Methods and formulas
lassogof reports the mean squared error (MSE) and the 𝑅2 measures of fit for linear models. It

reports the deviance and the deviance ratio for logit, probit, poisson, and cox models. The deviance

ratio is also known as 𝐷2 in the literature.

See Wooldridge (2020, 720) for more about MSE and Wooldridge (2020, 76–77) for more about 𝑅2.

The deviance measures are described in Hastie, Tibshirani, and Wainwright (2015, 29–33) and McCul-

lagh andNelder (1989, 33–34). For the coxmodel deviance, see Simon, Friedman, Hastie, andTibshirani

(2011).

In the formulas below, we use xb𝑖 to denote the linear prediction for the 𝑖th observation. By default,
the lasso penalized coefficients β̂ are used to compute xb𝑖. Specifying the option postselection causes

the postselection estimates
̂̃
β to be used to compute xb𝑖. See predict in [LASSO] lasso postestimation

for a discussion of penalized estimates and postselection estimates.
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We also use the following notation. 𝑦𝑖 denotes the 𝑖th observation of the outcome. 𝑤𝑖 is the weight

applied to the 𝑖th observation; 𝑤𝑖 = 1 if no weights were specified in the estimation command or if

option noweights was specified in lassogof. 𝑁 is the number of observations in the sample over

which the goodness-of-fit statistics are computed. If frequency weights were specified at estimation

𝑁𝑠 = ∑𝑁
𝑖=1 𝑤𝑖; otherwise, 𝑁𝑠 = 𝑁.

The formulas for the measures reported after linear models are

𝑅2 = 1 − RSS/TSS

MSE = 1/𝑁𝑠RSS

where

RSS =
𝑁

∑
𝑖=1

𝑤𝑖(𝑦𝑖 − xb𝑖)2

TSS =
𝑁

∑
𝑖=1

𝑤𝑖(𝑦𝑖 − 𝑦)2

𝑦 = 1
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖𝑦𝑖

The deviance ratio 𝐷2 is given by

𝐷2 = 𝐷null − 𝐷
𝐷null

where 𝐷null is the deviance calculated when only a constant term is included in the model and 𝐷 is the

deviance of the full model.

The formulas for the deviance and for 𝐷null vary by model.

For logit, the deviance and the 𝐷null are

𝐷 = − 2
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖 [ ̃𝑦𝑖xb𝑖 + ln{1 + exp(xb𝑖)}]

𝐷null = − 2
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖{ ̃𝑦𝑖 ln 𝑦 + (1 − ̃𝑦𝑖) ln(1 − 𝑦)}

̃𝑦𝑖 = {1 𝑦𝑖 > 0
0 otherwise

𝑦 = 1
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖 ̃𝑦𝑖
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For probit, the deviance and the 𝐷null are

𝐷 = − 2
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖 [ ̃𝑦𝑖 ln{Φ(xb𝑖)} + (1 − ̃𝑦𝑖) ln{1 − Φ(xb𝑖)}]

𝐷null = − 2
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖{ ̃𝑦𝑖 ln 𝑦 + (1 − ̃𝑦𝑖) ln(1 − 𝑦)}

̃𝑦𝑖 = {1 𝑦𝑖 > 0
0 otherwise

𝑦 = 1
𝑁𝑠

𝑁
∑
𝑖=1

𝑠𝑖𝑤𝑖 ̃𝑦𝑖

For poisson, the deviance and the 𝐷null are

𝐷 = − 2
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖{𝑦𝑖xb𝑖 − exp(xb𝑖) − 𝑣𝑖}

𝑣𝑖 =
⎧{
⎨{⎩

0 if 𝑦𝑖 = 0

𝑦𝑖 ln 𝑦𝑖 − 𝑦𝑖 otherwise

𝐷null = − 2
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖(𝑦𝑖 ln 𝑦 − 𝑦 − 𝑣𝑖)

𝑦 = 1
𝑁𝑠

𝑁
∑
𝑖=1

𝑤𝑖𝑦𝑖
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For cox, the deviance and the 𝐷null are

𝐷 = 2 (𝑙saturated − 𝑙)

𝐷null = 2 (𝑙saturated − 𝑙null)

𝑙saturated = − 1
𝑁𝑠

𝑁𝑓

∑
𝑗=1

𝑑𝑗 log (𝑑𝑗)

𝑙 = − 1
𝑁𝑠

𝑁𝑓

∑
𝑗=1

∑
𝑖∈𝐷𝑗

[𝑤𝑖(xb𝑖) − 𝑤𝑖 log{ ∑
ℓ∈𝑅𝑗

𝑤ℓ exp(xbℓ)}]

𝑙null = − 1
𝑁𝑠

𝑁𝑓

∑
𝑗=1

𝑑𝑗 log(∑
𝑖∈𝑅𝑗

𝑤𝑖)

𝑑𝑗 = ∑
𝑖∈𝐷𝑗

𝑤𝑖

where 𝑗 indexes the ordered failure times 𝑡(𝑗), 𝑗 = 1, . . . , 𝑁𝑓; 𝐷𝑗 is the set of observations that fail at

𝑡(𝑗); 𝑅𝑗 is the set of observations 𝑘 that are at risk at time 𝑡(𝑗) (that is, all 𝑘 such that 𝑡0𝑘 < 𝑡(𝑗) ≤ 𝑡𝑘,

and 𝑡0𝑘 is the entry time for the 𝑘th observation).
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Postestimation commands predict Remarks and examples Also see

Postestimation commands
The following postestimation commands are of special interest after the ds, po, and xpo commands:

Command Description

∗ bicplot plot Bayesian information criterion function
∗ coefpath plot path of coefficients
∗ cvplot plot cross-validation function

lassocoef display selected coefficients

lassoinfo information about lasso estimation results

lassoknots knot table of coefficient selection and measures of fit
∗ lassoselect select alternative 𝜆∗ (and 𝛼∗ for elasticnet)

∗bicplot requires that the selection method of the lasso be selection(bic). cvplot requires that the selection method of
the lasso be selection(cv) or selection(adaptive). lassoselect requires that the selection method of the lasso
be selection(bic), selection(cv), or selection(adaptive). See [LASSO] lasso options.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear predictions

predictnl point estimates for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

244
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predict

Description for predict

predict creates a new variable containing the linear form Xβ̂
′
, where β̂ is the vector of estimated

coefficients of the variables of interest and does not include a constant term. This is the only type of

prediction available after the ds, po, and xpo commands.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ]

Remarks and examples
After the ds, po, and xpo estimation commands, predict computes only the linear form Xβ̂

′
. So,

for example, you need to type only

. predict xbhat

The formulation of the lasso inferential models does not lend itself to making predictions for means,

probabilities, or counts.

Also see
[LASSO] Lasso inference intro — Introduction to inferential lasso models

[LASSO] Inference examples — Examples and workflow for inference

[LASSO] dslogit — Double-selection lasso logistic regression

[LASSO] dspoisson — Double-selection lasso Poisson regression

[LASSO] dsregress — Double-selection lasso linear regression

[LASSO] poivregress — Partialing-out lasso instrumental-variables regression

[LASSO] pologit — Partialing-out lasso logistic regression

[LASSO] popoisson — Partialing-out lasso Poisson regression

[LASSO] poregress — Partialing-out lasso linear regression

[LASSO] xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

[LASSO] xpologit — Cross-fit partialing-out lasso logistic regression

[LASSO] xpopoisson — Cross-fit partialing-out lasso Poisson regression

[LASSO] xporegress — Cross-fit partialing-out lasso linear regression

[U] 20 Estimation and postestimation commands



lassoinfo — Display information about lasso estimation results

Description Quick start Menu Syntax Option
Remarks and examples Stored results Also see

Description
lassoinfo displays basic information about the lasso or lassos fit by all commands that fit lassos.

Quick start
After any command that fits lassos

lassoinfo

dsregress was run and the results stored under the name mygreatmodel using estimates store;
show information about all the lassos in mygreatmodel

lassoinfo mygreatmodel

Same as above, but three models were stored

lassoinfo mygreatmodel mygoodmodel myfairmodel

After an xpo command, show information about every single lasso fit

lassoinfo, each

Menu
Statistics > Postestimation

Syntax
For all lasso estimation results

lassoinfo [ namelist ]

For xpo estimation results

lassoinfo [ namelist ] [ , each ]

namelist is a name of a stored estimation result, a list of names, all, or *. all and * mean the same

thing. See [R] estimates store.

collect is allowed; see [U] 11.1.10 Prefix commands.

Option
each applies to xpo models only. It specifies that information be shown for each lasso for each cross-fit

fold to be displayed. If resample was specified, then information is shown for each lasso for each

cross-fit fold in each resample. By default, summary statistics are shown for the lassos.
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Remarks and examples
lassoinfo is intended for use after ds, po, xpo commands and after telasso to see basic information

about the lassos they fit. It is a good idea to always run lassoinfo after these commands to see how

many variables were selected in each lasso.

Running lassoinfo is a first step toward doing a sensitivity analysis. The lassos listed by lassoinfo
can be examined using coefpath, cvplot, lassocoef, lassoknots, and lassoselect.

Example 1: lasso
lassoinfo works after lasso, sqrtlasso, and elasticnet, but it does not display much useful

information for these commands.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the vl
variable lists active.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )

We fit the lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331
(output omitted )

Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553

* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.
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lassoinfo tells us nothing new.

. lassoinfo
Estimate: active
Command: lasso

No. of
Dependent Selection Selection selected
variable Model method criterion lambda variables

q104 linear cv CV min. .1069782 64

Replaying the command gives more information.

. lasso
Lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553

* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

Example 2: dsregress
lassoinfo gives important information after the ds, po, and xpo commands.

We load the data used in [LASSO] lasso examples. See that entry for details about the data.

. use https://www.stata-press.com/data/r19/fakesurvey_vl, clear
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )

We are going to fit a dsregress model with q104 as our dependent variable and variables of interest

q41 and q22. These variables of interest are currently in the variable lists factors and vlcontinuous,
which we will use to specify the control variables. So we need to move them out of these variable lists.

. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.
. vl move (q22) vlother
note: 1 variable specified and 1 variable moved.
(output omitted )

. vl rebuild
Rebuilding vl macros ...
(output omitted )
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After we moved the variables out of the variable lists, we typed vl rebuild to update the variable list

ifactors created from factors. See [D] vl for details.

We fit our dsregress model using cross-validation to select 𝜆∗’s in the lassos.

. dsregress q104 i.q41 q22,
> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)
Estimating lasso for q104 using cv
Estimating lasso for 1bn.q41 using cv
Estimating lasso for q22 using cv
Double-selection linear model Number of obs = 914

Number of controls = 274
Number of selected controls = 123
Wald chi2(2) = 10.96
Prob > chi2 = 0.0042

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .6003918 .2848483 2.11 0.035 .0420994 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.1281246 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

lassoinfo shows us how many variables were selected in each lasso.

. lassoinfo
Estimate: active
Command: dsregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

q104 linear cv CV min. .1116376 63
1bn.q41 linear cv CV min. .0135958 68

q22 linear cv CV min. .1624043 49
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lassoinfo also gives useful information after fitting the model using the default

selection(plugin).

. dsregress q104 i.q41 q22, controls(($idemographics) $ifactors $vlcontinuous)
Estimating lasso for q104 using plugin
Estimating lasso for 1bn.q41 using plugin
Estimating lasso for q22 using plugin
Double-selection linear model Number of obs = 914

Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. lassoinfo
Estimate: active
Command: dsregress

No. of
Selection selected

Variable Model method lambda variables

q104 linear plugin .1467287 18
1bn.q41 linear plugin .1467287 16

q22 linear plugin .1467287 15

See [LASSO] lassoselect, where we continue this example and do a sensitivity analysis to examine the

differences between the lassos fit using cross-validation and the lassos fit using the plugin estimator.
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Example 3: poivregress
Wewant to show you some differences that arise when you fit models containing endogenous variables

using poivregress and xpoivregress.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r19/mroz2, clear

set vl variable lists,

. vl create vars = (kidslt6 kidsge6 age husage city exper)
note: $vars initialized with 6 variables.
. vl substitute vars2 = c.vars c.vars#c.vars
. vl create iv = (huseduc motheduc fatheduc)
note: $iv initialized with 3 variables.
. vl substitute iv2 = c.iv c.iv#c.iv

and fit our model using poivregress.

. poivregress lwage (educ = $iv2), controls($vars2) selection(cv) rseed(12345)
Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Estimating lasso for pred(educ) using cv
Partialing-out IV linear model Number of obs = 428

Number of controls = 27
Number of instruments = 9
Number of selected controls = 16
Number of selected instruments = 4
Wald chi2(1) = 11.10
Prob > chi2 = 0.0009

Robust
lwage Coefficient std. err. z P>|z| [95% conf. interval]

educ .0765154 .0229707 3.33 0.001 .0314936 .1215371

Endogenous: educ
Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store poivregresscv



lassoinfo — Display information about lasso estimation results 252

We stored our estimation results using estimates store, and here we use lassoinfo with the name

used to store them.

. lassoinfo poivregresscv
Estimate: poivregresscv
Command: poivregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

lwage linear cv CV min. .0353704 3
educ linear cv CV min. .0530428 10

pred(educ) linear cv CV min. .013186 12

Note that we have two lassos for educ labeled by lassoinfo as educ and pred(educ).
poivregress and xpoivregress perform two lassos for each endogenous variable, one for the en-

dogenous variable and one for its prediction. lassoinfo shows us how to refer to each of these lassos

in other postestimation commands using the for() option. In this example, we would type for(educ)
and for(pred(educ)), respectively.

Example 4: xporegress
The xpo commands fit many lassos. For each lasso fit by a po command, the corresponding xpo

command fits xfolds(#) × resample(#) lassos. lassoinfo can be used to get information about

these lassos.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

set vl variable lists,

. vl set
(output omitted )

. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.
(output omitted )

. vl create mycontinuous = vlcontinuous - (react no2_class)
note: $mycontinuous initialized with 10 variables.
. vl substitute mycontrols = i.vlcategorical mycontinuous
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and fit our model using xporegress with the options xfolds(3) and resample(2).

. xporegress react no2_class, controls($mycontrols) xfolds(3) resample(2)
> selection(cv) rseed(12345)
Resample 1 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32

Number of selected controls = 27
Number of folds in cross-fit = 3
Number of resamples = 2
Wald chi2(1) = 20.99
Prob > chi2 = 0.0000

Robust
react Coefficient std. err. z P>|z| [95% conf. interval]

no2_class 2.332193 .5090902 4.58 0.000 1.334394 3.329991

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

For each cross-fit fold and each resample, xporegress fits lassos. So it fit six lassos for the dependent

variable, react, and six for the variable of interest, no2 class. lassoinfo summarizes the numbers

of variables selected across these six lassos for react and no2 class.

. lassoinfo
Estimate: active
Command: xporegress

No. of selected variables
Selection

Variable Model method min median max

no2_class linear cv 11 15 15
react linear cv 9 15 19
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Specifying the option each gives us information on each lasso.

. lassoinfo, each
Estimate: active
Command: xporegress

No. of
Dependent Selection Resample xfold Selection sel.
variable Model method number no. criterion lambda var.

no2_class linear cv 1 1 CV min. .2663004 11
no2_class linear cv 1 2 CV min. .2860957 15
no2_class linear cv 1 3 CV min. .2887414 14
no2_class linear cv 2 1 CV min. .2337636 15
no2_class linear cv 2 2 CV min. .2824076 15
no2_class linear cv 2 3 CV min. .2515777 15

react linear cv 1 1 CV min. 6.07542 9
react linear cv 1 2 CV min. 1.704323 19
react linear cv 1 3 CV min. 3.449884 15
react linear cv 2 1 CV min. 6.034922 9
react linear cv 2 2 CV min. 4.31785 16
react linear cv 2 3 CV min. 4.096779 15

See [LASSO] lassocoef for an example where we list the variables selected by each lasso.

Stored results
lassoinfo stores the following in r():

Macros

r(names) names of estimation results displayed

Matrices

r(table) matrix containing the numerical values displayed

Also see
[LASSO] lassoselect — Select lambda after lasso

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
lassoknots shows a table of knots after a lasso. Knots are the values of 𝜆 at which variables in the

model change.

lassoknots displays the names of the variables added or removed as models are fit for successive

𝜆’s. When using cross-validation (CV) to select 𝜆∗, lassoknots will display values of the CV function.

lassoknots also displays measures of fit. After viewing measures of fit, you can select an alternative

𝜆∗ using lassoselect.

When telasso, ds, po, and xpo commands fit models using selection(cv),
selection(adaptive), or selection(bic) (see [LASSO] lasso options), lassoknots can be

used to show the CV function (for cv and adaptive) or the BIC function or other measures of fit for

each of the lassos computed.

lassoknots does work after selection(plugin) but only shows measures for the single 𝜆∗ esti-

mated by the plugin formula.

Quick start
Show knot table after lasso, sqrtlasso, and elasticnet

lassoknots

Same as above, but show number of nonzero coefficients, out-of-sample 𝑅2, and variables added or

removed after a linear model

lassoknots, display(nonzero osr2 variables)

Same as above, but show in-sample 𝑅2 and CV mean-prediction error in addition to out-of-sample 𝑅2

lassoknots, display(osr2 r2 cvmpe)

After lasso logit, lasso probit, or lasso poisson, show out-of-sample mean-deviance ratio, in-

sample deviance ratio, and Bayes information criterion (BIC)

lassoknots, display(cvdevratio devratio bic)

After a lasso fit with selection(adaptive), show knot tables for all adaptive steps

lassoknots, steps

After a ds or po estimation with selection(cv) or selection(adaptive), show the knot table for

the lasso for the dependent variable y
lassoknots, for(y)

After poivregress, show the knot table for the lasso for the prediction of the endogenous variable

whatup
lassoknots, for(pred(whatup))

255
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After xporegress with option resample, show the knot table for the lasso for x for the 4th cross-fit

fold of the 9th resample

lassoknots, for(x) xfold(4) resample(9)

After telasso estimation with selection(cv) or selection(adaptive), show the knot table for the

lasso for the outcome variable y at treatment level 1

lassoknots, for(y) tlevel(1)

Menu
Statistics > Postestimation

Syntax

After lasso, sqrtlasso, and elasticnet

lassoknots [ , options ]

After ds and po

lassoknots, for(varspec) [ options ]

After xpo without resample

lassoknots, for(varspec) xfold(#) [ options ]

After xpo with resample

lassoknots, for(varspec) xfold(#) resample(#) [ options ]

After telasso for the outcome variable

lassoknots, for(varspec) tlevel(#) [ options ]

After telasso for the treatment variable

lassoknots, for(varspec) [ options ]

After telasso for the outcome variable with cross-fitting but without resample

lassoknots, for(varspec) tlevel(#) xfold(#) [ options ]

After telasso for the treatment variable with cross-fitting but without resample

lassoknots, for(varspec) xfold(#) [ options ]

After telasso for the outcome variable with cross-fitting and resample

lassoknots, for(varspec) tlevel(#) xfold(#) resample(#) [ options ]
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After telasso for the treatment variable with cross-fitting and resample

lassoknots, for(varspec) xfold(#) resample(#) [ options ]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or

pred(varname).

options Description

display(di opts) specify what to display; maximum of three di opts options

alllambdas show all 𝜆’s
steps show all adaptive steps; selection(adaptive) only

nolstretch do not stretch the width of the table to accommodate long variable names

∗ for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗ xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗ resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗ tlevel(#) lasso for the outcome model with the treatment level #;

telasso only

∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.

resample(#) is required for xpo and for telasso when the option resample(#) was specified.

tlevel(#) is required for the outcome model in telasso.
collect is allowed; see [U] 11.1.10 Prefix commands.

di opts Description

nonzero number of nonzero coefficients

variables names of variables added or removed

cvmd CV mean deviance (the CV function)

cvdevratio CV mean-deviance ratio

devratio in-sample deviance ratio

bic BIC

l1 relative ℓ1-norm of coefficients

l2 relative ℓ2-norm squared of coefficients

Linear models only

cvmpe CV mean-prediction error (the CV function)

osr2 out-of-sample 𝑅2

r2 in-sample 𝑅2
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Options
display(di opts) specifies what to display in the knot table. A maximum of three di opts op-

tions can be specified. For lassos fit using selection(cv) or selection(adaptive), the

default is display(nonzero cvmpe variables) for linear models and display(nonzero cvmd
variables) for logit, probit, Poisson, and Cox models. For lassos fit using selection(plugin)
or selection(bic), the default is display(nonzero r2 variables) for linear models and

display(nonzero devratio variables) for logit, probit, Poisson, and Cox models. The full set

of di opts is the following.

nonzero specifies that the number of nonzero coefficients be shown.

variables specifies that the names of variables added or removed at each knot be shown.

cvmd specifies that the CV mean deviance be shown. These are the values of the CV function that are

searched for a minimum. For linear models, it is the same as the CV mean-prediction error given

by cvmpe. cvmd is available only for lassos fit using selection(cv) or selection(adaptive).

cvdevratio specifies that the CV mean-deviance ratio be shown. The CV mean-deviance ratio is an

estimate of out-of-sample goodness of fit. As a measure of prediction performance, it is superior

to devratio, the in-sample deviance ratio. It is typically between 0 and 1, but in some cases, it

may be outside this range. For linear models, it is the same as out-of-sample 𝑅2 given by osr2.
cvdevratio is available only for lassos fit using selection(cv) or selection(adaptive).

devratio specifies that the in-sample deviance ratio be shown. The in-sample deviance ratio is an

indicator of in-sample goodness of fit. The in-sample deviance generalizes the in-sample 𝑅2 to

nonlinear models. As a measure of prediction performance, it is inferior to cvdevratio, the CV

mean-deviance ratio. The in-sample deviance ratio is a poor measure of prediction performance

because it does not capture the cost of including additional covariates for prediction. It is always

between 0 and 1. For linear models, it is the same as in-sample 𝑅2 given by r2.

bic specifies that the BIC be shown. Note that the BIC can be displayed for lassos fit using

selection(cv) and selection(adaptive), but the CV measures—cvmd, cvdevratio, and
cvmpe—are not available for lassos fit using selection(bic).

l1 specifies that the relative ℓ1-norm of coefficients be shown.

l2 specifies that relative ℓ2-norm squared of coefficients be shown.

Linear models only

cvmpe specifies that the CV mean-prediction error be shown. These are the values of the

CV function that are searched for a minimum. cvmpe is available only for lassos fit using

selection(cv) or selection(adaptive).

osr2 specifies that the out-of-sample 𝑅2 be shown. The out-of-sample 𝑅2 is an estimate of out-

of-sample goodness of fit. As a measure of prediction performance, it is superior to r2, the
in-sample 𝑅2. It is typically between 0 and 1, but in some cases, it may be outside this range.

r2 specifies that the in-sample deviance ratio be shown. The in-sample deviance ratio is an in-

dicator of in-sample goodness of fit. As a measure of prediction performance, it is inferior to

osr2, the out-of-sample 𝑅2. The in-sample 𝑅2 is a poor measure of prediction performance

because it does not capture the cost of including additional covariates for prediction. It is always

between 0 and 1.
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alllambdas specifies that all 𝜆’s are to be shown, not just the knots. Measures at 𝜆’s that are not knots
change slightly because the coefficient estimates change slightly. 𝜆’s that are not knots can be selected
as 𝜆∗ by lassoselect; however, this is typically not done.

steps applies to selection(adaptive) only. When specified, 𝜆’s for all adaptive steps are shown.
By default, 𝜆’s for only the last adaptive step are shown.

nolstretch specifies that the width of the table not be automatically widened to accommodate long

variable names. When nolstretch is specified, names are abbreviated to make the table width no

more than 79 characters. The default, lstretch, is to automatically widen the table up to the width

of the Results window. To change the default, use set lstretch off.

for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command fit

using the option selection(cv), selection(adaptive), or selection(bic). For all commands

except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either dep-
var, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso for
depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by

varname and pred(varname). The exogenous variables of interest each have only one lasso, and it
is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the

option xfolds(#) was specified. For each variable to be fit with a lasso, 𝐾 lassos are done, one

for each cross-fit fold, where 𝐾 is the number of folds. This option specifies which fold, where

# = 1, 2, . . . , 𝐾. xfold(#) is required after an xpo command and after telasso when the option

xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using the
option resample(#). For each variable to be fit with a lasso, 𝑅 × 𝐾 lassos are done, where 𝑅 is the

number of resamples and𝐾 is the number of cross-fitting folds. This option specifies which resample,

where # = 1, 2, . . . , 𝑅. resample(#), along with xfold(#), is required after an xpo command and

after telasso with resampling.

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Measures of fit
In-sample measures versus estimates of out-of-sample measures
BIC
Examples
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Introduction
When a lasso is fit over a grid of 𝜆’s, it starts with the smallest 𝜆 that produces a model with no

selected variables. This initial 𝜆 is the largest 𝜆 in the grid. Lasso steps to the next 𝜆 and fits a model

for it. One or more variables are selected for this second 𝜆 (if no variables were selected, it would be the

starting 𝜆). Lasso steps to the third 𝜆, and more variables may be selected, or the model may have the

same variables as the model for the second 𝜆.
In this way, lasso iterates across the grid of 𝜆 values. 𝜆’s at which the selected variables change are

called “knots”. Variables are not only added at a knot but also sometimes removed. Typically, when

a variable is removed, one or more variables are added in its place. Usually, the number of nonzero

coefficients increases monotonically as 𝜆 gets smaller but not always. Occasionally, the net number of

variables in the model goes down, rather than up, in an iteration to a smaller 𝜆.
lassoknots displays a table of the knots, showing the names of variables that enter and leave the

models. The option alllambdas can be specified to display all the 𝜆’s in the grid. To view all variables

selected at a particular 𝜆, you can use lassoselect to select that 𝜆 and then lassocoef to list the

variables and, optionally, the coefficients.

Selection methods selection(cv), selection(adaptive), selection(bic), and

selection(none) fit models for each 𝜆 in the grid. The method selection(plugin) calcu-

lates 𝜆∗ using a formula so there is only one 𝜆.

Measures of fit
lassoknots will also display other measures. The methods selection(cv) and

selection(adaptive) use CV. When CV is performed, lassoknots by default displays the

number of nonzero coefficients, the CV function, and the names of variables that enter or leave the

model.

Optionally, there are five other measures that can be displayed. For linear models, they are in-sample

𝑅2 (r2), estimates of out-of-sample 𝑅2 (osr2), the BIC (bic), relative ℓ1-norm of coefficients (l1), and
relative ℓ2-norm squared of coefficients (l2).

For nonlinear models, in place of the 𝑅2 measures, there are the analogous measures, the in-sample

deviance ratio (devratio) and estimates of out-of-sample deviance ratio (cvdevratio).

The in-sample measures, BIC, and relative norms are available regardless of whether CV was done.

The out-of-sample 𝑅2 and out-of-sample deviance ratio are not computed on out-of-sample data, but

rather they are estimates of what these measures would be on out-of-sample data. The CV procedure

provides these estimates.

In-sample measures versus estimates of out-of-sample measures
Estimates of out-of-sample measures are superior to in-sample measures.

Consider a linear lasso. The set of covariates that produces the smallest out-of-sample MSE is the

set that produces the best predictions. CV is used to estimate out-of-sample MSE and select the set that

produces the smallest estimate.

In contrast, we should not use in-sample MSE to select the set of covariates. In-sample MSE system-

atically underestimates out-of-sample prediction error. In-sample MSE can be made smaller and smaller

simply by including more covariates (as long as they are not collinear with covariates already in the

model). In-sample MSE does not capture the cost of including more covariates.
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For the same reason, estimates of out-of-sample 𝑅2 are superior to in-sample 𝑅2 for linear models.

For logit, probit, and Poissonmodels, estimates of out-of-sample deviance ratios are superior to in-sample

deviance ratios.

See Hastie, Tibshirani, and Friedman (2009, sec. 7.2) for an introduction to a comparison of in-sample

and out-of-sample measures of the predictive ability of a model.

BIC
Information criteria, like the BIC, have a term that penalizes for each additional parameter. Selecting

the set of covariates that minimizes the BIC is another way to select a set of covariates that will predict

well out of sample. Zhang, Li, and Tsai (2010) show that the 𝜆 selected by minimizing the BICwill select

a set of covariates close to the true set under the conditions described in their article.

In practice, the BIC is more informative than the in-sample measures reported by lassoknots for

selection(plugin) and selection(none).

Examples

Example 1: lasso linear
Here is an example using lasso from [LASSO] lasso examples. We load the data and make the vl

variable lists active.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )

We fit a lasso linear model.

. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331
(output omitted )

Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553

* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.
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We run lassoknots.

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

2 .8282935 2 18.24362 A 0.q19 0.q88
3 .7547102 4 17.99053 A 0.q85 3.q156
5 .6265736 7 17.26211 A 0.q48 0.q73 0.q101
6 .5709106 11 16.7744 A 4.q38 q31 q76

q139
7 .5201924 15 16.19275 A 0.q5 2.q34 0.q43

0.q50
8 .47398 16 15.58941 A q22

11 .3585485 19 14.07708 A 0.q41 0.q56 2.q84
12 .326696 22 13.69483 A 3.q16 0.q89 0.q118
13 .2976732 25 13.3281 A 0.q91 age 0.gender
14 .2712288 26 12.99274 A 3.q38
16 .2251789 32 12.48904 A 0.q3 0.q49 0.q150

2.q155 0.q160 q111
18 .1869475 34 12.15245 A 2.q6 3.q78
19 .1703396 39 12.03358 A 0.q14 0.q33 0.q126

0.q147 0.q149
20 .1552071 42 11.94361 A 0.q25 0.q82 1.q110
21 .1414189 46 11.88652 A 0.q96 q20 3.q110

1.q134
22 .1288556 50 11.84693 A 0.q32 0.q102 1.q105

0.q122
23 .1174085 58 11.82553 A 0.q4 0.q7 1.q34

0.q40 3.q84 q53
q93 2.q134

* 24 .1069782 64 11.81814 A 0.q51 0.q55 0.q75
0.q77 q63 0.q115

25 .0974746 66 11.8222 A 3.q6 0.q117
26 .0888152 70 11.84669 A 0.q59 3.q95 q21

0.q125
27 .0809251 72 11.88463 A 0.q100 4.q155
28 .0737359 80 11.92887 A 0.q13 0.q30 0.q68

q52 q70 2.q110
0.q153 0.q159

* lambda selected by cross-validation.

The table ends at the 28th 𝜆. The default grid had 100 𝜆’s. The iteration over the 𝜆 grid ended after a

minimum of the CV function was found. There are other cases in which the iteration ends before the end

of the grid is reached. See The CV function in [LASSO] lasso and [LASSO] lasso fitting for details.
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The option alllambdas shows all the 𝜆’s for which models were fit. In this case, the first 28 𝜆’s in
the grid.

. lassoknots, alllambdas

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

1 .9090511 0 18.33331 U
2 .8282935 2 18.24362 A 0.q19 0.q88
3 .7547102 4 17.99053 A 0.q85 3.q156
4 .6876638 4 17.6434 U
5 .6265736 7 17.26211 A 0.q48 0.q73 0.q101
6 .5709106 11 16.7744 A 4.q38 q31 q76

q139
7 .5201924 15 16.19275 A 0.q5 2.q34 0.q43

0.q50
8 .47398 16 15.58941 A q22
9 .4318729 16 15.01285 U

10 .3935065 16 14.50648 U
11 .3585485 19 14.07708 A 0.q41 0.q56 2.q84
12 .326696 22 13.69483 A 3.q16 0.q89 0.q118
13 .2976732 25 13.3281 A 0.q91 age 0.gender
14 .2712288 26 12.99274 A 3.q38
15 .2471336 26 12.71385 U
16 .2251789 32 12.48904 A 0.q3 0.q49 0.q150

2.q155 0.q160 q111
17 .2051746 32 12.30196 U
18 .1869475 34 12.15245 A 2.q6 3.q78
19 .1703396 39 12.03358 A 0.q14 0.q33 0.q126

0.q147 0.q149
20 .1552071 42 11.94361 A 0.q25 0.q82 1.q110
21 .1414189 46 11.88652 A 0.q96 q20 3.q110

1.q134
22 .1288556 50 11.84693 A 0.q32 0.q102 1.q105

0.q122
23 .1174085 58 11.82553 A 0.q4 0.q7 1.q34

0.q40 3.q84 q53
q93 2.q134

* 24 .1069782 64 11.81814 A 0.q51 0.q55 0.q75
0.q77 q63 0.q115

25 .0974746 66 11.8222 A 3.q6 0.q117
26 .0888152 70 11.84669 A 0.q59 3.q95 q21

0.q125
27 .0809251 72 11.88463 A 0.q100 4.q155
28 .0737359 80 11.92887 A 0.q13 0.q30 0.q68

q52 q70 2.q110
0.q153 0.q159

* lambda selected by cross-validation.

The 𝜆’s that are not knots have a U for unchanged in the variables column. At these 𝜆’s, the variables in
the model do not change, but their coefficient estimates do. In this example, the selected 𝜆∗ is a knot,

but frequently the selected 𝜆∗ will not be a knot.
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We display the number of nonzero coefficients again, but this time with estimates of out-of-sample

𝑅2 and in-sample 𝑅2.

. lassoknots, display(nonzero osr2 r2)

No. of Out-of-
nonzero sample In-sample

ID lambda coef. R-squared R-squared

2 .8282935 2 0.0039 0.0102
3 .7547102 4 0.0177 0.0278
5 .6265736 7 0.0575 0.0707
6 .5709106 11 0.0841 0.1051
7 .5201924 15 0.1159 0.1414
8 .47398 16 0.1488 0.1790

11 .3585485 19 0.2314 0.2635
12 .326696 22 0.2523 0.2861
13 .2976732 25 0.2723 0.3090
14 .2712288 26 0.2906 0.3288
16 .2251789 32 0.3181 0.3610
18 .1869475 34 0.3365 0.3870
19 .1703396 39 0.3430 0.3981
20 .1552071 42 0.3479 0.4081
21 .1414189 46 0.3510 0.4176
22 .1288556 50 0.3532 0.4263
23 .1174085 58 0.3543 0.4342

* 24 .1069782 64 0.3547 0.4418
25 .0974746 66 0.3545 0.4486
26 .0888152 70 0.3532 0.4546
27 .0809251 72 0.3511 0.4598
28 .0737359 80 0.3487 0.4647

* lambda selected by cross-validation.

In-sample 𝑅2 is significantly larger than the estimates of out-of-sample 𝑅2. As we discussed in In-

sample measures versus estimates of out-of-sample measures above, in-sample 𝑅2 should not be used

for assessing fit. It is, however, occasionally useful for exposing problemswith the specification of the set

of potential covariates. For example, suppose our dependent variable is log-income and we accidentally

include income as a potential covariate. It will no doubt be selected, and we will see an 𝑅2 of 1 or close

to it. Seeing that, we realize we made a mistake in the specification of potential variables.
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We run lassoknots again to display BIC and the relative norms of the coefficient vectors.

. lassoknots, display(l1 l2 bic)

Relative Relative
L1 L2

ID lambda BIC length length

2 .8282935 5262.546 0.0084 0.0013
3 .7547102 5259.79 0.0244 0.0060
5 .6265736 5238.991 0.0696 0.0313
6 .5709106 5231.834 0.1066 0.0544
7 .5201924 5221.257 0.1449 0.0840
8 .47398 5187.164 0.1903 0.1195

11 .3585485 5108.273 0.3092 0.2504
12 .326696 5100.274 0.3492 0.2982
13 .2976732 5090.95 0.3948 0.3487
14 .2712288 5071.186 0.4375 0.4001
16 .2251789 5067.137 0.5179 0.4999
18 .1869475 5042.754 0.5959 0.5949
19 .1703396 5060.244 0.6344 0.6398
20 .1552071 5065.277 0.6734 0.6834
21 .1414189 5077.835 0.7133 0.7259
22 .1288556 5091.401 0.7543 0.7677
23 .1174085 5133.245 0.7955 0.8091

* 24 .1069782 5161.662 0.8388 0.8503
25 .0974746 5164.198 0.8805 0.8904
26 .0888152 5181.477 0.9213 0.9286
27 .0809251 5186.25 0.9606 0.9651
28 .0737359 5232.569 1.0000 1.0000

* lambda selected by cross-validation.

The relative norms are relative to the coefficient vector for the last 𝜆. If we were using BIC to select 𝜆∗,

we would have chosen 𝜆 at ID = 18.
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Example 2: lasso logit
We fit a lasso logit model using the same data as in the previous example.

. lasso logit q106 $idemographics $ifactors $vlcontinuous, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .0886291 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.386903
(output omitted )

Grid value 27: lambda = .0078899 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 1.103886
... cross-validation complete ... minimum found
Lasso logit model No. of obs = 914

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .0886291 0 -0.0004 1.386903
23 lambda before .0114469 68 0.2102 1.094953

* 24 selected lambda .01043 76 0.2103 1.09471
25 lambda after .0095034 79 0.2091 1.096417
27 last lambda .0078899 87 0.2037 1.103886

* lambda selected by cross-validation.

The default lassoknots gives a table that is the same as that for a linear model, except that instead

of CV mean-prediction error, CV mean deviance is shown. The CV function for logit (and probit and

Poisson) is the CV mean deviance.

. lassoknots

No. of
nonzero CV mean Variables (A)dded, (R)emoved,

ID lambda coef. deviance or left (U)nchanged

2 .0807555 3 1.38295 A 0.q90 2.q134 0.q142
3 .0735814 5 1.37237 A 0.q8 q53
4 .0670447 8 1.357427 A 0.q68 0.q77 q22
5 .0610886 9 1.33969 A 0.q46
6 .0556616 12 1.319525 A 0.q13 2.q16 2.q95
7 .0507168 14 1.299571 A 1.q84 q20
8 .0462113 18 1.279802 A 0.q29 0.q133 0.q140

1.q144
(output omitted )

23 .0114469 68 1.094953 A 0.q26 0.q73 0.q118
* 24 .01043 76 1.09471 A 0.q4 q1 0.q50

2.q65 3.q65 0.q83
q24 1.q155

25 .0095034 79 1.096417 A q76 0.q108 0.q122
26 .0086591 83 1.09945 A 2.q6 0.q64 0.q100

q132
27 .0078899 87 1.103886 A 0.q58 0.q74 0.q113

q103

* lambda selected by cross-validation.
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We can look at in-sample CV deviance ratio and estimates of out-of-sample CV deviance ratio. These

are analogous to the linear in-sample 𝑅2 and out-of-sample 𝑅2. The in-sample CV deviance ratio is

always between 0 and 1. The estimates of out-of-sample CV deviance ratio are usually, but not always,

between 0 and 1.

. lassoknots, display(cvdevratio devratio bic)

Out-of- In-sample
sample deviance

ID lambda dev. ratio ratio BIC

2 .0807555 0.0024 0.0057 1287.176
3 .0735814 0.0100 0.0180 1285.111
4 .0670447 0.0208 0.0323 1287.477
5 .0610886 0.0336 0.0488 1273.364
6 .0556616 0.0482 0.0657 1272.417
7 .0507168 0.0626 0.0835 1263.5
8 .0462113 0.0768 0.1022 1267.165

(output omitted )

23 .0114469 0.2102 0.3209 1330.907
* 24 .01043 0.2103 0.3297 1374.27

25 .0095034 0.2091 0.3379 1384.306
26 .0086591 0.2069 0.3461 1401.188
27 .0078899 0.2037 0.3535 1419.149

* lambda selected by cross-validation.

Example 3: dsregress
We load the data used in [LASSO] lasso examples. See that entry for details about the data.

. use https://www.stata-press.com/data/r19/fakesurvey_vl, clear
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )

We are going to fit a dsregress model with q104 as our dependent variable and variables of interest

q41 and q22. These variables of interest are currently in the variable lists factors and vlcontinuous,
which we will use to specify the control variables. So we need to move them out of these variable lists.

. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.
. vl move (q22) vlother
note: 1 variable specified and 1 variable moved.
(output omitted )

. vl rebuild
Rebuilding vl macros ...
(output omitted )

After we moved the variables out of the variable lists, we typed vl rebuild to update the variable list

ifactors created from factors. See [D] vl for details.
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We fit our dsregress model using the default plugin selection method.

. dsregress q104 i.q41 q22, controls(($idemographics) $ifactors $vlcontinuous)
Estimating lasso for q104 using plugin
Estimating lasso for 1bn.q41 using plugin
Estimating lasso for q22 using plugin
Double-selection linear model Number of obs = 914

Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

lassoinfo shows the lassos that dsregress fit.

. lassoinfo
Estimate: active
Command: dsregress

No. of
Selection selected

Variable Model method lambda variables

q104 linear plugin .1467287 18
1bn.q41 linear plugin .1467287 16

q22 linear plugin .1467287 15

The knot table for the lasso for the dependent variable q104 can be seen using the for(q104) option.

We also show BIC and in-sample 𝑅2.

. lassoknots, display(nonzero r2 bic) for(q104)

No. of
nonzero In-sample

ID lambda coef. R-squared BIC

* 1 .1467287 14 0.1623 5191.862

* lambda selected by plugin assuming heteroskedastic errors.

A lasso fit with plugin fits only one model for one 𝜆. So that is all we get from lassoknots.

If we wanted to see the same table for the variable of interest i.q41, we would type

. lassoknots, display(nonzero r2 bic) for(1bn.q41)

In the for() option, we specify the variable name for the lasso exactly as it is shown in lassoinfo.
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We run dsregress again, this time specifying selection(cv).

. dsregress q104 i.q41 q22,
> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)
Estimating lasso for q104 using cv
Estimating lasso for 1bn.q41 using cv
Estimating lasso for q22 using cv
Double-selection linear model Number of obs = 914

Number of controls = 274
Number of selected controls = 123
Wald chi2(2) = 10.96
Prob > chi2 = 0.0042

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .6003918 .2848483 2.11 0.035 .0420994 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.1281246 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

lassoknots now shows knots up to the minimum and slightly passed it.

. lassoknots, display(nonzero cvmpe osr2) for(q104)

No. of CV mean Out-of-
nonzero pred. sample

ID lambda coef. error R-squared

1 .864369 4 17.9727 0.0187
2 .7875809 6 17.88282 0.0236
3 .7176144 7 17.64713 0.0365
4 .6538635 8 17.32777 0.0539
5 .595776 12 16.87904 0.0784
6 .5428489 14 16.3203 0.1089
7 .4946237 15 15.74852 0.1401
8 .4506827 18 15.2143 0.1693

(output omitted )

22 .1225221 52 12.02453 0.3435
* 23 .1116376 59 12.02148 0.3436

24 .10172 62 12.02571 0.3434
25 .0926835 71 12.03785 0.3427
26 .0844497 76 12.0626 0.3414
27 .0769474 80 12.09713 0.3395
27 .0769474 80 12.09713 0.3395

* lambda selected by cross-validation.

For a sensitivity analysis that uses lassoselect after lassoknots, see [LASSO] lassoselect.
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Stored results
lassoknots stores the following in r():

Matrices

r(table) matrix containing the values displayed

Methods and formulas
Methods and formulas are presented under the following headings:

Overview
Statistics that measure the size of the coefficient vector
Statistics that measure fit
CV measures of fit
Single-sample measures of fit
Deviance formulas

Saturated log likelihood
Prediction error formulas
BIC formula

Overview
All the reported statistics depend on the 𝑝-dimensional coefficient vector β̂𝜆, which is the penalized

estimate of β for given penalty value 𝜆.
We present the formulas in the context of lasso, but formulas for elasticnet and sqrtlasso are

the same, although the context would have some subtle differences that we can safely ignore.

Statistics that measure the size of the coefficient vector
Option display(nonzero) displays the number of nonzero coefficients, which is given by

nonzero =
𝑝

∑
𝑗=1

𝑑𝑗

𝑑𝑗 = {1 if ̂𝛽𝜆,𝑗 ≠ 0
0 otherwise

Option display(l1) displays the sum of the absolute values of the coefficients, which is known as

the ℓ1-norm:

l1 =
𝑝

∑
𝑗=1

| ̂𝛽𝜆,𝑗|

Option display(l2) displays the sum of the squared values of the coefficients, which is the square

of the ℓ2-norm:

l2 =
𝑝

∑
𝑗=1

̂𝛽 2
𝜆,𝑗
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Statistics that measure fit
All statistics that measure fit are functions of the observation-level contributions of either the squared

prediction error, spe𝑖, or the log likelihood, ℓ𝑖.

The contribution of observation 𝑖 to a statistic can be calculated using a single-sample calculation

or using CV. The CV version estimates the out-of-sample equivalent. The single-sample versions are

in-sample measures that do not reliably estimate their out-of-sample equivalents.

CV measures of fit
When CV is performed, CV versions of spe𝑖 and ℓ𝑖 are available. Here is how we compute these

observation-level quantities.

1. The data are partitioned into 𝐾 folds.

2. For each value of 𝜆,
a. the coefficients are estimated on the observations not in fold 𝑘 using 𝜆.
b. for each observation 𝑖 in fold 𝑘, the fit measures spe𝑖 and ℓ𝑖 are computed using the penalized

coefficient estimates.

Single-sample measures of fit
The single-sample measures of fit are computed as follows.

1. For each value of 𝜆,
a. the coefficients are estimated on all the observations using 𝜆.
b. for each observation 𝑖 the fit measures spe𝑖 and ℓ𝑖 are computed using the penalized coefficient

estimates.

Deviance formulas
The CV version of ℓ𝑖 is used in the formulas for cvmd and cvdevratio. The single-sample version

of ℓ𝑖 is used in the formula for devratio.

For all models, the deviance, 𝐷𝑖, for the 𝑖th observation is given by

𝐷𝑖 = −2(ℓ𝑖 − ℓsaturated)

where ℓ𝑖 is the value of the log-likelihood function at observation 𝑖, and ℓsaturated is the value of the

saturated log-likelihood function. Formulas for the ℓ𝑖 and for the ℓsaturated are given below. The penalized
coefficient estimates are used in these computations.

The mean deviance 𝐷 is given by

𝐷 = 1
𝑁

𝑁
∑
𝑖=1

𝐷𝑖

The formula for the deviance ratio 𝐷2 is

𝐷2 = 1 − 𝐷
𝐷null
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where the 𝐷null is the null deviance and is given by

𝐷null = 1
𝑁

𝑁
∑
𝑖=1

−2(ℓ0,𝑖 − ℓsaturated)

and ℓ0,𝑖 is the 𝑖th observation of the log likelihood from the model that includes only a constant term.

Saturated log likelihood

For linear, logit, and probit models, the log-likelihood function of the saturated model is zero. For the

Poisson model,

ℓsaturated = 1
𝑁

𝑁
∑
𝑖=1

(−𝑦𝑖 + 𝑦𝑖 ln 𝑦𝑖)

For the Cox model,

ℓsaturated = − 1
𝑁

𝑁𝑓

∑
𝑗=1

𝑑𝑗 log (𝑑𝑗)

where 𝑗 indexes the ordered failure times 𝑡(𝑗), 𝑗 = 1, . . . , 𝑁𝑓; 𝐷𝑗 is the set of observations that fail at

𝑡(𝑗); and 𝑑𝑗 is the number of observations in 𝐷𝑗.

Prediction error formulas
These formulas are used only for linear models. The squared prediction error for the 𝑖th observation

is given by

spe𝑖 = (𝑦𝑖 − x𝑖β̂𝜆)
2

where 𝑦𝑖 is the 𝑖th observation of the dependent variable and x𝑖β̂𝜆 is the predicted mean of 𝑦𝑖 conditional

on x𝑖.

For cvmpe and osr2, the CV version of spe𝑖 is used. For r2, the single-sample version of spe𝑖 is used.

𝑅2 is given by

𝑅2 = 1 − MSE

MSEnull

where the mean squared error (MSE) is given by

MSE = 1
𝑁

𝑁
∑
𝑖=1

spe𝑖

and the MSE of the null model is given by

MSEnull = 1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝑦)2

where 𝑦 is the sample average of 𝑦.
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BIC formula
BIC is given by

BIC = −2ℓ + 𝑘 ln𝑁

where ℓ = ∑𝑁
𝑖=1 ℓ𝑖, 𝑘 = nonzero + 1 is the number of coefficients in the model including the constant

term, and each ℓ𝑖 is always calculated using the single-sample methods.
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Description Syntax Options Remarks and examples Reference Also see

Description
This entry describes the options that control the lassos, either individually or globally, in the ds, po,

and xpo estimation commands.

For an introduction to lasso inferential models, see [LASSO] Lasso inference intro.

For examples of the ds, po, and xpo estimation commands and the use of these options, see

[LASSO] Inference examples.

Syntax
lasso inference cmd ...[ , ...options ]

lasso inference cmd is one of dslogit, dspoisson, dsregress, poivregress, pologit,
popoisson, poregress, xpoivregress, xpologit, xpopoisson, or xporegress.

options Description

Model

selection(plugin) select 𝜆∗ using a plugin iterative formula for all lassos;
the default

selection(cv) select 𝜆∗ using cross-validation (CV) for all lassos

selection(adaptive) select 𝜆∗ using adaptive lasso for all lassos

selection(bic) select 𝜆∗ using Bayesian information criterion (BIC) for all
lassos

sqrtlasso fit square-root lassos instead of regular lassos

Advanced

lasso(varlist, lasso options) specify options for lassos for variables in varlist

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist

lasso options Description

selection(sel method) selection method to select an optimal value of the lasso
penalty parameter 𝜆∗ from the set of possible 𝜆’s

grid(#g [ , ratio(#) min(#) ]) specify the set of possible 𝜆’s using a logarithmic grid with
#g grid points

stop(#) tolerance for stopping the iteration over the 𝜆 grid early

cvtolerance(#) tolerance for identification of the CV function minimum

bictolerance(#) tolerance for identification of the BIC function minimum

tolerance(#) convergence tolerance for coefficients based on their values

dtolerance(#) convergence tolerance for coefficients based on deviance

274
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sel method Description

plugin[ , plugin opts ] select 𝜆∗ using a plugin iterative formula; the default

cv[ , cv opts ] select 𝜆∗ using CV

adaptive[ , adapt opts cv opts ] select 𝜆∗ using an adaptive lasso; only available for lasso()

bic[ , bic opts ] select 𝜆∗ using BIC

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default

homoskedastic assume model errors are homoskedastic

cv opts Description

folds(#) use # folds for CV

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the CV function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select 𝜆∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was reached at 𝜆stop, set the selected 𝜆∗ to be
𝜆stop; the default

strict do not select 𝜆∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was not reached, set the selected 𝜆∗ to be the
minimum of the 𝜆 grid, 𝜆gmin; this is a looser alternative to the default
stopok and is rarely used

adapt opts Description

steps(#) use # adaptive steps (counting the initial lasso as step 1)

unpenalized use the unpenalized estimator to construct initial weights

ridge use the ridge estimator to construct initial weights

power(#) raise weights to the # th power
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bic opts Description

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was reached at 𝜆stop, set the selected 𝜆∗ to be
𝜆stop; the default

strict do not select 𝜆∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was not reached, set the selected 𝜆∗ to be the
minimum of the 𝜆 grid, 𝜆gmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

Options

� � �
Model �

selection(plugin | cv | adaptive | bic) is a global option that specifies that all lassos use the given

selection method. It is the same as specifying lasso(*, selection(plugin | cv | adaptive |
bic)). The default is selection(plugin). That is, not specifying this option implies a global

selection(plugin) for all lassos. This global form of the option does not allow suboptions. To

specify suboptions, use the lasso() or sqrtlasso() option described below.

sqrtlasso is a global option that specifies that all lassos be square-root lassos. It is the same as spec-

ifying sqrtlasso(*), except for logit and Poisson models. For logit and Poisson models, it is the

same as sqrtlasso(varsofinterest), where varsofinterest are all the variables that have lassos ex-

cluding the dependent variable. This global form of the option does not allow suboptions. To specify

suboptions, use the sqrtlasso() option described below.

� � �
Advanced �

lasso(varlist, lasso options) and sqrtlasso(varlist, lasso options) let you set different options for

different lassos and square-root lassos. These options also let you specify advanced options for

all lassos and all square-root lassos. The lasso() and sqrtlasso() options override the global

options selection(plugin | cv | adaptive) and sqrtlasso for the lassos for the specified vari-

ables. If lasso(varlist, lasso options) or sqrtlasso(varlist, lasso options) does not contain a

selection() specification as part of lasso options, then the global option for selection() is as-

sumed.

lasso(varlist, lasso options) specifies that the variables in varlist be fit using lasso with the selec-

tion method, set of possible 𝜆’s, and convergence criteria determined by lasso options.

sqrtlasso(varlist, lasso options) specifies that the variables in varlist be fit using square-root

lasso with the selection method, set of possible 𝜆’s, and convergence criteria determined by

lasso options.

For lasso() and sqrtlasso(), varlist consists of one or more variables from depvar, the de-

pendent variable, or varsofinterest, the variables of interest. To specify options for all lassos, you

may use * or all to specify depvar and all varsofinterest.
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For models with endogeneity, namely, poivregress and xpoivregress models, lassos are done

for depvar, the exogenous variables, exovars, and the endogenous variables, endovars. Any of

these variables can be specified in the lasso() option. All of them can be specified using * or

all.

The lasso() and sqrtlasso() options are repeatable as long as different variables are given in

each specification of lasso() and sqrtlasso(). The type of lasso for any depvar or varsofinter-

est (or exovars or endovars) not specified in any lasso() or sqrtlasso() option is determined

by the global lasso options described above.

For all lasso inferential commands, linear lassos are done for each of the varsofinterest (or exovars

and endovars). For linear models, linear lassos are also done for depvar. For logit models, how-

ever, logit lassos are done for depvar. For Poisson models, Poisson lassos are done for depvar.

Square-root lassos are linear models, so sqrtlasso(depvar, ...) cannot be specified for the

dependent variable in logit and Poisson models. For the same reason, sqrtlasso(*, ...) and

sqrtlasso( all, ...) cannot be specified for logit and Poisson models. For logit and Poisson

models, you must specify sqrtlasso(varsofinterest, ...) to set options for square-root lassos

and specify lasso(depvar, ...) to set options for the logit or Poisson lasso for depvar.

Suboptions for lasso( ) and sqrtlasso( )
selection(plugin [ , heteroskedastic homoskedastic ]) selects 𝜆∗ based on a “plugin” iterative

formula dependent on the data. The plugin estimator calculates a value for 𝜆∗ that dominates the noise

in the estimating equations, which ensures that the variables selected belong to the true model with

high probability. See Methods and formulas in [LASSO] lasso.

selection(plugin) does not estimate coefficients for any other values of 𝜆, so it does not require a
𝜆 grid, and none of the grid options apply. It is much faster than the other selection methods because

estimation is done only for a single value of 𝜆. It is an iterative procedure, however, and if the plugin
is computing estimates for a small 𝜆 (which means many nonzero coefficients), the estimation can

still be time consuming.

heteroskedastic assumes model errors are heteroskedastic. It is the default. Specifying

selection(plugin) for linear lassos is equivalent to specifying selection(plugin,
heteroskedastic). This suboption can be specified only for linear lassos. Hence, this sub-

option cannot be specified for depvar for logit and Poisson models, where depvar is the dependent

variable. For these models, specify lasso(depvar, selection(plugin)) to have the logit or

Poisson plugin formula used for the lasso for depvar. See Methods and formulas in [LASSO] lasso.

homoskedastic assumes model errors are homoskedastic. This suboption can be specified only for

linear lassos. Hence, this suboption cannot be specified for depvar for logit and Poisson models,

where depvar is the dependent variable.

selection(cv [ , folds(#) alllambdas serule stopok strict gridminok ]) selects 𝜆∗ to be the

𝜆 that gives the minimum of the CV function.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies thatmodels be fit for all𝜆’s in the grid or until the stop(#) tolerance is reached.
By default, models are calculated sequentially from largest to smallest 𝜆, and the CV function is

calculated after each model is fit. If a minimum of the CV function is found, the computation ends

at that point without evaluating additional smaller 𝜆’s.
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alllambdas computes models for these additional smaller 𝜆’s. Because computation time is

greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold. Specify-

ing alllambdas is typically done only when a full plot of the CV function is wanted for assurance

that a true minimum has been found. Regardless of whether alllambdas is specified, the selected

𝜆∗ will be the same.

serule selects 𝜆∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani, and

Wainwright (2015, 13–14) instead of the 𝜆 that minimizes the CV function. The one-standard-error

rule selects the largest 𝜆 for which the CV function is within a standard error of the minimum of

the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have an identified

minimum. Aminimum is identified at 𝜆∗ when the CV function at both larger and smaller adjacent

𝜆 is greater than it is at 𝜆∗. When the CV function has an identified minimum, stopok, strict,
and gridminok all do the same thing: the selected 𝜆∗ is the 𝜆 that gives the minimum.

In some cases, however, the CV function declines monotonically as 𝜆 gets smaller and never rises

to identify a minimum. When the CV function does not have an identified minimum, stopok and

gridminok make alternative selections for 𝜆∗, and strict makes no selection. You may specify

only one of stopok, strict, or gridminok; stopok is the default if you do not specify one.

With each of these suboptions, estimation results are always left in place, and alternative 𝜆∗ can

be selected and evaluated.

stopok specifies that when the CV function does not have an identifiedminimum and the stop(#)
stopping tolerance for 𝜆 was reached, the selected 𝜆∗ is 𝜆stop, the 𝜆 that met the stopping cri-

terion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is assumed that 𝜆stop

has a CV function value close to the true minimum. When no minimum is identified and the

stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum. If it does not, an error is issued.

gridminok is a rarely used suboption that specifies that when the CV function has no identified

minimum and the stop(#) stopping criterion was not met, 𝜆gmin, the minimum of the 𝜆 grid,

is the selected 𝜆∗.

The gridminok selection criterion is looser than the default stopok, which is looser than strict.
With strict, only an identifiedminimum is selected. With stopok, either the identifiedminimum

or 𝜆stop is selected. With gridminok, either the identified minimum or 𝜆stop or 𝜆gmin is selected,

in this order.

selection(adaptive [ , steps(#) unpenalized ridge power(#) cv options ]) can be specified

only as a suboption for lasso(). It cannot be specified as a suboption for sqrtlasso(). It se-

lects 𝜆∗ using the adaptive lasso selection method. It consists of multiple lassos with each lasso step

using CV. Variables with zero coefficients are discarded after each successive lasso, and variables with

nonzero coefficients are given penalty weights designed to drive small coefficient estimates to zero

in the next step. Hence, the final model typically has fewer nonzero coefficients than a single lasso.

selection(bic [ , bic opts ]) selects 𝜆∗ to be the 𝜆 that gives the minimum of the BIC function.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all 𝜆’s in the grid or until the stop(#) tolerance is

reached. By default, models are calculated sequentially from largest to smallest 𝜆, and the BIC

function is calculated after each model is fit. If a minimum of the BIC function is found, the

computation ends at that point without evaluating additional smaller 𝜆’s.
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alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the BIC function is wanted

for assurance that a true minimum has been found. Regardless of whether alllambdas is

specified, the selected 𝜆∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have an

identified minimum. A minimum is identified at 𝜆∗ when the BIC function at both larger and

smaller adjacent 𝜆’s is greater than it is at 𝜆∗. When the BIC function has an identifiedminimum,

these options all do the same thing: the selected 𝜆∗ is the 𝜆 that gives the minimum. In some

cases, however, the BIC function declines monotonically as 𝜆 gets smaller and never rises to

identify a minimum. When the BIC function does not have an identified minimum, stopok
and gridminok make alternative selections for 𝜆∗, and strict makes no selection. You may

specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative 𝜆∗

can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the

stop(#) stopping tolerance for 𝜆 was reached, the selected 𝜆∗ is 𝜆stop, the 𝜆 that met the

stopping criterion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is

assumed that 𝜆stop has a BIC function value close to the true minimum. When no minimum

is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified

minimum and the stop(#) stopping criterion was not met, then 𝜆gmin, the minimum of the

𝜆 grid, is the selected 𝜆∗.

The gridminok selection criterion is looser than the default stopok, which is looser than

strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or 𝜆stop is selected. With gridminok, either the identified minimum or 𝜆stop or

𝜆gmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function. By

default, the penalized coefficients are used.

steps(#) specifies that adaptive lasso with # lassos be done. By default, # = 2. That is, two

lassos are run. After the first lasso estimation, terms with nonzero coefficients 𝛽𝑖 are given penalty

weights equal to 1/|𝛽𝑖|, terms with zero coefficients are omitted, and a second lasso is estimated.

Terms with small coefficients are given large weights, making it more likely that small coefficients

become zero in the second lasso. Setting # > 2 can produce more parsimonious models. See

Methods and formulas in [LASSO] lasso

unpenalized specifies that the adaptive lasso use the unpenalized estimator to construct the initial

weights in the first lasso. unpenalized is useful when CV cannot find a minimum. unpenalized
cannot be specified with ridge.

ridge specifies that the adaptive lasso use the ridge estimator to construct the initial weights in the

first lasso. ridge cannot be specified with unpenalized.

power(#) specifies that the adaptive lasso raise the weights to the # th power. The default power is 1.

The specified power must be in the interval [ 0.25, 2 ].
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cv options are all the suboptions that can be specified for selection(cv), namely, folds(#),
alllambdas, serule, stopok, strict, and gridminok. The suboptions alllambdas, strict,
and gridminok apply only to the first lasso estimated. For second and subsequent lassos,

gridminok is the default. When ridge is specified, gridminok is automatically used for the

first lasso.

grid(#𝑔 [ , ratio(#) min(#) ]) specifies the set of possible 𝜆’s using a logarithmic grid with #𝑔 grid

points.

#𝑔 is the number of grid points for 𝜆. The default is #𝑔 = 100. The grid is logarithmic with the 𝑖th grid
point (𝑖 = 1, . . . , 𝑛 = #𝑔) given by ln𝜆𝑖 = [(𝑖 − 1)/(𝑛 − 1)] ln 𝑟 + ln𝜆gmax, where 𝜆gmax = 𝜆1
is the maximum, 𝜆gmin = 𝜆𝑛 = min(#) is the minimum, and 𝑟 = 𝜆gmin/𝜆gmax = ratio(#) is the

ratio of the minimum to the maximum.

ratio(#) specifies 𝜆gmin/𝜆gmax. The maximum of the grid, 𝜆gmax, is set to the smallest 𝜆 for which

all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).

𝜆gmin is then set based on ratio(#). When 𝑝 < 𝑁, where 𝑝 is the total number of othervars

and alwaysvars (not including the constant term) and 𝑁 is the number of observations, the default

value of ratio(#) is 1e−4. When 𝑝 ≥ 𝑁, the default is 1e−2.

min(#) sets 𝜆gmin. By default, 𝜆gmin is based on ratio(#) and 𝜆gmax, which is computed from the

data.

stop(#) specifies a tolerance that is the stopping criterion for the 𝜆 iterations. The default is 1e−5. This

suboption does not apply when the selection method is selection(plugin). Estimation starts with

the maximum grid value, 𝜆gmax, and iterates toward the minimum grid value, 𝜆gmin. When the relative

difference in the deviance produced by two adjacent 𝜆 grid values is less than stop(#), the iteration
stops and no smaller 𝜆’s are evaluated. The value of 𝜆 that meets this tolerance is denoted by 𝜆stop.

Typically, this stopping criterion is met before the iteration reaches 𝜆gmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger 𝜆stop. To pro-

duce coefficient estimates for all values of the 𝜆 grid, stop(0) can be specified. Note, however,

that computations for small 𝜆’s can be extremely time consuming. In terms of time, when using

selection(cv), selection(adaptive), or selection(bic), the optimal value of stop(#) is

the largest value that allows estimates for just enough 𝜆’s to be computed to identify the minimum of

the CV or BIC function. When setting stop(#) to larger values, be aware of the consequences of the

default 𝜆∗ selection procedure given by the default stopok. You may want to override the stopok
behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV

function. For linear models, a minimum is identified when the CV function rises above a nominal

minimum for at least three smaller 𝜆’s with a relative difference in the CV function greater than #. For

nonlinear models, at least five smaller 𝜆’s are required. The default is 1e−3. Setting # to a bigger

value makes a stricter criterion for identifying a minimum and brings more assurance that a declared

minimum is a true minimum, but it also means that models may need to be fit for additional smaller

𝜆, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information

about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum BIC

function. Aminimum is identified when the BIC function rises above a nominal minimum for at least

two smaller 𝜆’s with a relative difference in the BIC function greater than #. The default is 1e−2.

Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more
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assurance that a declared minimum is a true minimum, but it also means that models may need to be

fit for additional smaller 𝜆, which can be time consuming. SeeMethods and formulas in [LASSO] lasso

for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-

vergence is achieved when the relative change in each coefficient is less than this tolerance. The

default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients. When

dtolerance(#) is specified, the convergence criterion is based on the change in deviance instead of

the change in the values of coefficient estimates. Convergence is declared when the relative change

in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-

ifying this option and instead using the default tolerance(1e-7) criterion or specifying a smaller

value for tolerance(#).

Remarks and examples
All the options shown here may seem overwhelming. However, you will likely never need to use

many of them.

You would typically use the global options to change the selection method for each of the lassos

performed by one of the lasso inference commands. For example, you can specify selection(cv),
selection(adaptive), or selection(bic) to change the selection method globally from the default

selection(plugin).

Sometimes, CV fails to identify a minimum of the CV function and so fails to select 𝜆∗; thus, the in-

ferential command fails. Lasso inference postestimation commands provide tools to see what happened.

Then it may be possible to set options so that an acceptable 𝜆∗ is selected. Of course, in many cases, the

issue is not with the computation but rather with model specification or simply not having enough data.

To understand the selection(cv), selection(adaptive), and selection(bic) selection meth-

ods and how to set options to control them, you should first become familiar with lasso for prediction

and model selection.

Notice, however, that options for the lasso and sqrtlasso commands are specified slightly differ-

ently than they are when used as suboptions for lasso inference commands. For instance, with lasso,
you might specify selection(cv, folds(20)). With dsregress or one of the other inference com-

mands, you would specify lasso(*, selection(cv, folds(20))) to specify that CV with 20 folds

be used to select 𝜆∗ for each lasso.

Read [LASSO] lasso and [LASSO] lasso fitting to learn about the lasso options in greater detail.

Reference
Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations.

Boca Raton, FL: CRC Press. https://doi.org/10.1201/b18401.

Also see
[LASSO] Lasso intro — Introduction to lasso

[LASSO] Lasso inference intro — Introduction to inferential lasso models

[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso fitting — The process (in a nutshell) of fitting lasso models

https://doi.org/10.1201/b18401
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see

Description
lassoselect allows the user to select a different 𝜆∗ after lasso and sqrtlasso when the selection

method was selection(cv), selection(adaptive), selection(bic), or selection(none).

After elasticnet, the user can select a different (𝛼∗, 𝜆∗) pair.
When the telasso, ds, po, and xpo commands fit models using selection(cv),

selection(adaptive), or selection(bic) ([LASSO] lasso options), lassoselect can be

used to select a different 𝜆∗ for a particular lasso.

Quick start
After lasso with selection(cv), change the selected 𝜆∗ to that with ID = 52

lassoselect id = 52

Same as above, but change the selected 𝜆∗ to the 𝜆 closest to 0.01

lassoselect lambda = 0.01

After elasticnet, change the selected (𝛼∗, 𝜆∗) to (0.5, 0.267345)
lassoselect alpha = 0.5 lambda = 0.267345

After dsregress with selection(adaptive), change the selected 𝜆∗ to 1.65278 for the adaptive lasso

for the variable y
lassoselect lambda = 1.65278, for(y)

After poivregress with selection(bic), change the selected 𝜆∗ to the 𝜆 closest to 0.7 for the lasso

for the prediction of the variable income
lassoselect lambda = 0.7, for(pred(income))

After xporegress with selection(cv) and resample, change the selected 𝜆∗ to 0.234189 for the

lasso for the variable x26 for the 5th cross-fit fold in the 9th resample

lassoselect lambda = 0.234189, for(x26) xfold(5) resample(9)

After telasso with selection(cv), change the selected 𝜆∗ to the 𝜆 closest to 0.7 for the lasso for the

outcome variable y at treatment level 1

lassoselect lambda = 0.7, for(y) tlevel(1)

Menu
Statistics > Postestimation

282
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Syntax
After lasso, sqrtlasso, and elasticnet

lassoselect id = #

After lasso and sqrtlasso

lassoselect lambda = #

After elasticnet

lassoselect alpha = # lambda = #

After ds and po with selection(cv) or selection(adaptive)

lassoselect { id | lambda } = # , for(varspec)

After xpo without resample and with selection(cv) or selection(adaptive)

lassoselect { id | lambda } = # , for(varspec) xfold(#)

After xpo with resample and selection(cv) or selection(adaptive)

lassoselect { id | lambda } = # , for(varspec) xfold(#) resample(#)

After telasso for the outcome variable and with selection(cv) or selection(adaptive)

lassoselect { id | lambda } = #, for(varspec) tlevel(#)

After telasso for the treatment variable and with selection(cv) or selection(adaptive)

lassoselect { id | lambda } = #, for(varspec)

After telasso for the outcome variable with cross-fitting but without resample and with

selection(cv) or selection(adaptive)

lassoselect { id | lambda } = #, for(varspec) tlevel(#) xfold(#)

After telasso for the treatment variable with cross-fitting but without resample

lassoselect { id | lambda } = #, for(varspec) xfold(#)

After telasso for the outcome variable with cross-fitting and resample and with selection(cv) or

selection(adaptive)

lassoselect { id | lambda } = #, for(varspec) tlevel(#) xfold(#) resample(#)

After telasso for the treatment variable with cross-fitting and resample and with selection(cv) or

selection(adaptive)

lassoselect { id | lambda } = #, for(varspec) xfold(#) resample(#)
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varspec is varname, except after poivregress and xpoivregress, when it is either varname or

pred(varname).

options Description

∗ for(varspec) lasso for varspec; telasso, ds, po, and xpo commands only
∗ xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso

with xfolds only
∗ resample(#) lasso for the #th resample; xpo commands and telasso

with resample only
∗ tlevel(#) lasso for the outcome model with the treatment level #;

telasso only

∗for(varspec) is required for all ds, po, and xpo commands and for telasso.
xfold(#) is required for all xpo commands and for telasso when the option xfolds(#) was specified.

resample(#) is required for xpo and for telasso when the option resample(#) was specified.

tlevel(#) is required for the outcome model in telasso.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options
for(varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command fit

using the option selection(cv), selection(adaptive), or selection(bic). For all commands

except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either dep-
var, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred(varname). The lasso for
depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by

varname and pred(varname). The exogenous variables of interest each have only one lasso, and it
is specified by pred(varname).

For telasso, varspec is either the outcome variable or the treatment variable.

This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the

option xfolds(#) was specified. For each variable to be fit with a lasso, 𝐾 lassos are done, one

for each cross-fit fold, where 𝐾 is the number of folds. This option specifies which fold, where

# = 1, 2, . . . , 𝐾. xfold(#) is required after an xpo command and after telasso when the option

xfolds(#) was specified.

resample(#) specifies a particular lasso after an xpo estimation command or after telasso fit using the
option resample(#). For each variable to be fit with a lasso, 𝑅 × 𝐾 lassos are done, where 𝑅 is the

number of resamples and𝐾 is the number of cross-fitting folds. This option specifies which resample,

where # = 1, 2, . . . , 𝑅. resample(#), along with xfold(#), is required after an xpo command and

after telasso with resampling.

tlevel(#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.
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Remarks and examples

Example 1: lasso linear
Here is an example using lasso from [LASSO] lasso examples. We load the data and make the vl

variable lists active.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )

We want to evaluate our lasso predictions on a sample that we did not use to fit the lasso. So we

randomly split our data into two samples of equal sizes. We will fit models on one, and we will use the

other to test their predictions. We use splitsample to generate a variable indicating the two subsamples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 ”Training” 2 ”Testing”

. label values sample svalues

We fit a lasso linear model on the first subsample.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93341
(output omitted )

Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10 CVF = 12.17933
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991

* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.

We store the results because we want to compare these results with other results later.

. estimates store lassocv
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We run lassoknots with options to show the number of nonzero coefficients, estimates of out-of-

sample 𝑅2, and the Bayes information criterion (BIC).

. lassoknots, display(nonzero osr2 bic)

No. of Out-of-
nonzero sample

ID lambda coef. R-squared BIC

1 .8978025 4 0.0147 2618.642
2 .8180442 7 0.0236 2630.961
3 .7453714 8 0.0421 2626.254
4 .6791547 9 0.0635 2619.727
5 .6188205 10 0.0857 2611.577
6 .5638462 13 0.1110 2614.155
8 .468115 14 0.1581 2588.189
9 .4265289 16 0.1785 2584.638

10 .3886373 18 0.1980 2580.891
11 .3541118 22 0.2170 2588.984
12 .3226535 26 0.2340 2596.792
13 .2939899 27 0.2517 2586.521
14 .2678726 28 0.2669 2578.211
15 .2440755 32 0.2784 2589.632
16 .2223925 35 0.2865 2593.753
17 .2026358 37 0.2919 2592.923
18 .1846342 42 0.2953 2609.975

* 19 .1682318 49 0.2968 2639.437
20 .1532866 55 0.2964 2663.451
21 .139669 62 0.2952 2693.929
22 .1272612 66 0.2934 2707.174
23 .1159557 74 0.2913 2744.508

* lambda selected by cross-validation.

Research indicates that under certain conditions, selecting the 𝜆 that minimizes the BIC gives good pre-

dictions. See BIC in [LASSO] lassoknots.

Here the 𝜆 with ID = 14 gives the minimum value of the BIC. Let’s select it.

. lassoselect id = 14
ID = 14 lambda = .2678726 selected

When lassoselect runs, it changes the current estimation results to correspond with the selected

lambda. It is almost the same as running another estimation command and wiping out the old estimation

results. We say “almost” because it is easy to change 𝜆∗ back to what it was originally. We stored our

earlier results knowing lassoselect was going to do this.

Let’s store the new results from lassoselect.

. estimates store lassosel
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We plot the CV function with the new selected 𝜆∗ marked along with the 𝜆 selected by cross-

validation—the 𝜆 that gives the minimum of the CV function.

. cvplot
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λCV = .17 is the cross-validation minimum λ; # coefficients = 49.
λLS = .27 is the lassoselect specified λ; # coefficients = 28.

Cross-validation plot

The CV function is curving upward at the value of the new selected 𝜆∗. Alternative 𝜆∗’s in a region

where the CV function is still relatively flat are sometimes selected, but that is not the case here.

The real test is to see how well it does for out-of-sample prediction compared with the original 𝜆∗.

We run lassogof to do this.

. lassogof lassocv lassosel, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

lassocv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

lassosel
Training 9.740229 0.4421 508
Testing 13.44496 0.3168 503

The model for 𝜆∗ that minimized the BIC did considerably better on out-of-sample prediction than the

model for 𝜆∗ that minimized the CV function. In-sample prediction was better for the 𝜆∗ that minimized

the CV function. That is expected because that model contains more variables. But it appears these extra

variables were mostly fitting noise, and that hurt the model’s out-of-sample predictive ability.

Example 2: dsregress
lassoselect can be used after the ds, po, and xpo commands when they are fit using

selection(cv) or selection(adaptive). See [LASSO] lasso options.
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We load the data used in [LASSO] lasso examples. See that entry for details about the data.

. use https://www.stata-press.com/data/r19/fakesurvey_vl, clear
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
(output omitted )

We are going to fit a dsregress model with q104 as our dependent variable and variables of interest

q41 and q22. These variables of interest are currently in the variable lists factors and vlcontinuous,
which we will use to specify the control variables. So we need to move them out of these variable lists.

. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.
. vl move (q22) vlother
note: 1 variable specified and 1 variable moved.
(output omitted )

. vl rebuild
Rebuilding vl macros ...
(output omitted )

After we moved the variables out of the variable lists, we typed vl rebuild to update the variable list

ifactors created from factors. See [D] vl for details.

Before we fit our dsregress model using cross-validation, let’s fit it using the default

selection(plugin).

. dsregress q104 i.q41 q22, controls(($idemographics) $ifactors $vlcontinuous)
Estimating lasso for q104 using plugin
Estimating lasso for 1bn.q41 using plugin
Estimating lasso for q22 using plugin
Double-selection linear model Number of obs = 914

Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.
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We run lassoinfo to see how many nonzero coefficients were in each lasso fit by dsregress. It is
a good idea to always run lassoinfo after any ds, po, or xpo command.

. lassoinfo
Estimate: active
Command: dsregress

No. of
Selection selected

Variable Model method lambda variables

q104 linear plugin .1467287 18
1bn.q41 linear plugin .1467287 16

q22 linear plugin .1467287 15

We now run dsregress with selection(cv),

. dsregress q104 i.q41 q22,
> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)
Estimating lasso for q104 using cv
Estimating lasso for 1bn.q41 using cv
Estimating lasso for q22 using cv
Double-selection linear model Number of obs = 914

Number of controls = 274
Number of selected controls = 123
Wald chi2(2) = 10.96
Prob > chi2 = 0.0042

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .6003918 .2848483 2.11 0.035 .0420994 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.1281246 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

and then run lassoinfo.

. lassoinfo
Estimate: active
Command: dsregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

q104 linear cv CV min. .1116376 63
1bn.q41 linear cv CV min. .0135958 68

q22 linear cv CV min. .1624043 49

The selection(cv) lassos selected considerably more variables than the selection(plugin) las-

sos. The CV lassos selected 63, 68, and 49 variables for the lassos, whereas the plugin lassos selected 18,

16, and 15 variables.



lassoselect — Select lambda after lasso 290

We are going to use lassoselect to change the selected 𝜆∗ for CV lassos to match the number of

selected variables in the plugin lassos.

. lassoknots, display(nonzero cvmpe osr2) for(q104)

No. of CV mean Out-of-
nonzero pred. sample

ID lambda coef. error R-squared

1 .864369 4 17.9727 0.0187
2 .7875809 6 17.88282 0.0236
3 .7176144 7 17.64713 0.0365
4 .6538635 8 17.32777 0.0539
5 .595776 12 16.87904 0.0784
6 .5428489 14 16.3203 0.1089
7 .4946237 15 15.74852 0.1401
8 .4506827 18 15.2143 0.1693

(output omitted )

22 .1225221 52 12.02453 0.3435
* 23 .1116376 59 12.02148 0.3436

24 .10172 62 12.02571 0.3434
25 .0926835 71 12.03785 0.3427
26 .0844497 76 12.0626 0.3414
27 .0769474 80 12.09713 0.3395
27 .0769474 80 12.09713 0.3395

* lambda selected by cross-validation.
. lassoknots, display(nonzero cvmpe osr2) for(1bn.q41)

No. of CV mean Out-of-
nonzero pred. sample

ID lambda coef. error R-squared

1 .1155307 4 .2509624 -0.0044
2 .1052673 5 .248763 0.0044
3 .0959156 8 .2442525 0.0224
4 .0873947 9 .2388787 0.0439
5 .0796308 11 .2328436 0.0681
6 .0725566 12 .2262371 0.0945

10 .0500105 15 .2076117 0.1691
12 .0415196 16 .2020617 0.1913

(output omitted )

23 .0149214 61 .1898068 0.2403
* 24 .0135958 64 .1895992 0.2412

25 .012388 68 .1896789 0.2408
26 .0112875 76 .1900733 0.2393
27 .0102847 87 .190537 0.2374
28 .0093711 94 .190995 0.2356

* lambda selected by cross-validation.
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. lassoknots, display(nonzero cvmpe osr2) for(q22)

No. of CV mean Out-of-
nonzero pred. sample

ID lambda coef. error R-squared

1 1.380036 4 22.19516 0.0403
2 1.257437 6 21.66035 0.0634
3 1.14573 7 21.01623 0.0913
5 .9512051 8 19.70951 0.1478
9 .6556288 9 18.04511 0.2197

10 .5973845 10 17.74092 0.2329
11 .5443145 11 17.41052 0.2472
12 .4959591 13 17.09005 0.2610
13 .4518995 15 16.78501 0.2742

(output omitted )

23 .1782385 39 14.93049 0.3544
* 24 .1624043 45 14.92344 0.3547

25 .1479767 55 14.93826 0.3541
26 .1348309 67 14.94057 0.3540
27 .1228529 70 14.93962 0.3540
28 .111939 75 14.95101 0.3535

* lambda selected by cross-validation.

When we look at the lassoinfo output for the plugin lassos, we see that the value of 𝜆∗ for each

lasso was the same, namely, 0.1467287. This value does not match up with the same numbers of nonzero

coefficients for the CV lassos in these knot tables.

The plugin estimator for 𝜆∗ uses estimated coefficient-level weights in its lassos. In theoretical terms,

these coefficient-level weights put 𝜆∗ on the correct scale for covariate selection by normalizing the

scores of the unpenalized estimator. In practical terms, these weights cause the effective scale of 𝜆 for

selection(plugin) and selection(cv) to differ.

We select the 𝜆∗’s for each CV lasso to match the number of nonzero coefficients of the plugin lassos.

. lassoselect id = 6, for(q104)
ID = 6 lambda = .5428489 selected
. lassoselect id = 6, for(1bn.q41)
ID = 6 lambda = .0725566 selected
. lassoselect id = 11, for(q22)
ID = 11 lambda = .5443145 selected
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To update our dsregress model with these new 𝜆∗’s, we rerun the command with the reestimate
option. Then, we run lassoinfo to confirm that the lassos produced the same number of nonzero

coefficients.

. dsregress, reestimate

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001

Robust
q104 Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. lassoinfo
Estimate: active
Command: dsregress

No. of
Selection Selection selected

Variable Model method criterion lambda variables

q104 linear user user .5428489 18
1bn.q41 linear user user .0725566 16

q22 linear user user .5443145 15

These new dsregress results are exactly the same as the dsregress results producedwith plugin lassos.
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We can plot the CV function and see where the new 𝜆∗ falls. We do so for the lasso for the dependent

variable q104.

. cvplot, for(q104)
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λCV = .11 is the cross-validation minimum λ; # coefficients = 59.
λLS = .54 is the lassoselect specified λ; # coefficients = 14.

Cross-validation plot for q104

It may be that the plugin lassos underselected controls for this problem. Or it may be that the plu-

gin lassos actually did fine and the CV lassos overselected controls. We might want to continue these

sensitivity analyses and pick some 𝜆∗’s intermediate between the plugin values and the CV values. Plu-

gin selection and CV selection are not just two different numerical techniques, they are two different

modeling techniques, each with a different set of assumptions. See [LASSO] Inference requirements.

Stored results
lassoselect stores the following in r():

Macros

r(varlist) selected variables

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[CAUSAL] telasso postestimation — Postestimation tools for telasso
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
poviregress fits a lasso instrumental-variables linear regression model and reports coefficients

along with standard errors, test statistics, and confidence intervals for specified covariates of interest.

The covariates of interest may be endogenous or exogenous. The partialing-out method is used to es-

timate effects for these variables and to select from potential control variables and instruments to be

included in the model.

Quick start
Estimate a coefficient for endogenous d1 in a linear regression of y on d1, and include x1 to x100 as

potential control variables and z1 to z100 as potential instruments to be selected by lassos

poivregress y (d1 = z1-z100), controls(x1-x100)

Same as above, and estimate the coefficient for the exogenous d2
poivregress y d2 (d1 = z1-z100), controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

poivregress y d2 (d1 = z1-z100), controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

poivregress y d2 (d1 = z1-z100), controls(x1-x100) selection(cv) ///
rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

poivregress y d2 (d1 = z1-z100), controls(x1-x100) ///
lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d2, and d1
poivregress y d2 (d1 = z1-z100), controls(x1-x100) ///

lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

poivregress y d2 (d1 = z1-z100), controls(x1-x100) ///
lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Partialing-out IV model

294
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Syntax
poivregress depvar [ exovars ] (endovars = instrumvars) [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

Coefficients and standard errors are estimated for the exogenous variables, exovars, and the endogenous

variables, endovars. The set of instrumental variables, instrumvars, may be high dimensional.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars are control variables for depvar,

exovars, and endovars; instrumvars are an additional set
of control variables that apply only to the endovars;
alwaysvars are always included; lassos choose
whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos

missingok after fitting lassos, ignore missing values in any instrumvars
or othervars not selected, and include these observations
in the final model

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics
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∗controls() is required.

exovars, endovars, instrumvars, alwaysvars, and othervars may contain factor variables. Base levels of factor variables
cannot be set for instrumvars, alwaysvars, and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. alwaysvars are variables that

are always to be included in lassos. alwaysvars are optional. othervars are variables that lassos will

choose to include or exclude. The instrumental variables, instrumvars, are an additional set of control

variables, but they apply only to the endovars. controls() is required.

poivregress fits lassos for depvar and each one of the exovars and endovars. The control variables

for the lassos for depvar and exovars are alwaysvars (always included) and othervars (lasso will

include or exclude). The control variables for lassos for endovars are exovars (always included),

alwaysvars (always included), instrumvars (lasso will include or exclude), and othervars (lasso will

include or exclude).

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding the

global sqrtlasso setting for these variables. See [LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, exovars, endovars, instrumvars, alwaysvars, and othervars is omitted from the estimation

sample for the lassos. By default, the same sample is used for calculation of the coefficients of the

exovars and endovars and their standard errors.
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When missingok is specified, the initial estimation sample is the same as the default, but the sam-

ple used for the calculation of the coefficients of the exovars and endovars can be larger. Now ob-

servations with missing values for any instrumvars and othervars not selected will be added to the

estimation sample (provided there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selectionmethods. That is, when instrumvars and othervars contain

missing values, the estimation sample for a model fit using the default selection(plugin) will

likely differ from the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls() or many instrumvars.

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running

poivregress. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced op-

tions for all lassos. You specify a varlist followed by the options you want to apply to the las-

sos for these variables, where varlist consists of one or more variables from depvar, exovars, or

endovars. all or * may be used to specify depvar and all exovars and endovars. This op-

tion is repeatable as long as different variables are given in each specification. lasso options are

selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
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When lasso(varlist, selection(. . .)) is specified, it overrides any global selection() option

for the variables in varlist. It also overrides the global sqrtlasso option for these variables. See

[LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables

from depvar, exovars, or endovars. This option is repeatable as long as different variables are given

in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified,

it overrides any global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with poivregress but are not shown in the dialog box:

reestimate is an advanced option that refits the poivregress model based on changes made to the

underlying lassos using lassoselect. After running poivregress, you can select a different 𝜆∗ for

one or more of the lassos estimated by poivregress. After selecting 𝜆∗, you type poivregress,
reestimate to refit the poivregress model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
poivregress performs partialing-out lasso instrumental-variables linear regression. This command

estimates coefficients, standard errors, and confidence intervals and performs tests for variables of inter-

est, both exogenous and endogenous, while using lassos to select from among potential control variables

and instruments.

The instrumental-variables linear regression model is

𝑦 = dα′
𝑑 + fα′

𝑓 + xβ′ + 𝜖

where d are the endogenous variables, f are the exogenous variables for which we wish to make infer-

ences, and x are the potential control variables from which the lassos select. In addition, lassos select

from potential instrumental variables, z. poivregress reports estimated coefficients for α𝑑 and α𝑓.

However, partialing-out does not provide estimates of the coefficients on the control variables or their

standard errors. No estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection

and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use poivregress and the other lasso inference commands are

presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an

introduction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for comparisons of the different methods of fitting inferential models that are available in Stata.

See 6 Fitting an inferential model with endogenous covariates for examples and discussion specific to

models that account for endogenous covariates.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.
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Stored results
poivregress stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(k inst) number of potential instruments

e(k inst sel) number of selected instruments

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(rank) rank of e(V)

Macros

e(cmd) poivregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(exog) exogenous variables

e(endog) endogenous variables

e(inst) potential instruments

e(inst sel) selected instruments

e(model) linear
e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
poivregress implements partialing-out lasso instrumental-variables regression described in Cher-

nozhukov, Hansen, and Spindler (2015). The model is

𝑦 = dα′
𝑑 + fα′

𝑓 + xβ′ + 𝜖

where d contains the 𝐽𝑑 endogenous covariates of interest, f contains the 𝐽𝑓 exogenous covariates of

interest, and x contains the 𝑝𝑥 controls. We also have 𝑝𝑧 outside instrumental variables, denoted by z,

that are correlated with d but not with 𝜖. The number of controls in x and the number of instruments in z

can be large and, in theory, can grow with the sample size; however, the number of nonzero elements in

β and nonzero coefficients of zmust not be too large, which is to say that the model must be sparse. See

Stata commands for inference in [LASSO] Lasso intro for a discussion on what it means for the model to

be sparse.

In the following algorithm, each lasso can choose the lasso penalty parameter (𝜆∗) using the plugin

estimator, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

Partialing-out lasso instrumental-variables regression algorithm

1. Perform a linear lasso of 𝑦 on x, and denote the selected controls by x̃𝑦.

Fit a linear regression of 𝑦 on x̃𝑦, and denote the residual for the 𝑖th observation from this regression

by ̃𝜌𝑖.

2. For 𝑗 = 1, . . . , 𝐽𝑑, perform a linear lasso of 𝑑𝑗 on f, x, and z, denote the selected controls by x̃𝑑,𝑗,

and denote the selected instruments by ̃z𝑗.

Fit a linear regression of 𝑑𝑗 on f, x̃𝑑,𝑗, and ̃z𝑗, and denote the linear prediction from this regression

by ̂𝑑𝑗.

Perform a linear lasso of ̂𝑑𝑗 on the controls x, and denote the selected controls by x̌𝑑,𝑗.

Fit a linear regression of ̂𝑑𝑗 on x̌𝑑,𝑗, let β̌𝑗 be the estimated coefficients, and denote the residuals

from this regression by ̌𝑑𝑗, with its 𝑖th observation denoted by ̌𝑑𝑗,𝑖.

Also compute the “residuals” for the levels

̃𝑑𝑗 = 𝑑𝑗 − x̌𝑗β̌𝑗

and denote its 𝑖th observation by ̃𝑑𝑗,𝑖.

3. For 𝑗 = 1, . . . , 𝐽𝑓, perform a linear lasso of 𝑓𝑗 on the controls x, and denote the selected controls

by x̃𝑓,𝑗.

Fit a linear regression of 𝑓𝑗 on x̃𝑓,𝑗, and denote the residual for the 𝑖th observation by ̃𝑓𝑗,𝑖.

4. Form the vector of instruments

w𝑖 = ( ̌𝑑1,𝑖, . . . , ̌𝑑𝐽𝑑,𝑖, ̃𝑓1,𝑖, . . . , ̃𝑓𝐽𝑓,𝑖)

5. Form the vector of partialed-out covariates

p𝑖 = ( ̃𝑑1,𝑖, . . . , ̃𝑑𝐽𝑑,𝑖, ̃𝑓1,𝑖, . . . , ̃𝑓𝐽𝑓,𝑖)
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6. Compute α̂ by solving the following 𝐽𝑑 + 𝐽𝑓 sample-moment equations.

1
𝑛

𝑛
∑
𝑖=1

w′
𝑖( ̃𝜌𝑖 − p𝑖α̂

′) = 0

7. The variance for α̂ is estimated by

V̂ar(α̂) = 1
𝑛

(Ĵ−1
0 ) 𝚿̂ ( ̂J−1

0 )
′

where

Ĵ0 = 1
𝑛

𝑛
∑
𝑖=1

w′
𝑖p𝑖

𝚿̂ = 1
𝑛

𝑛
∑
𝑖=1
ψ̂𝑖ψ̂

′
𝑖

ψ̂𝑖 = w′
𝑖( ̃𝜌𝑖 − p𝑖α̂

′)

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1, 2, and 3 choose

their penalty parameters (𝜆∗).

Reference
Chernozhukov, V., C. B. Hansen, and M. Spindler. 2015. Valid post-selection and post-regularization inference: An

elementary, general approach.Annual Review of Economics 7: 649–688. https://doi.org/10.1146/annurev-economics-

012315-015826.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

[R] ivregress — Single-equation instrumental-variables regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1146/annurev-economics-012315-015826
https://doi.org/10.1146/annurev-economics-012315-015826
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
pologit fits a lasso logistic regression model and reports odds ratios along with standard errors, test

statistics, and confidence intervals for specified covariates of interest. The partialing-out method is used

to estimate effects for these variables and to select from potential control variables to be included in the

model.

Quick start
Report an odds ratio from a logistic regression of y on d1, and include x1 to x100 as potential control

variables to be selected by lassos

pologit y d1, controls(x1-x100)

Same as above, and estimate odds ratios for the levels of categorical d2
pologit y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

pologit y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

pologit y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

pologit y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
pologit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

pologit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Binary outcomes > Partialing-out logit model

302
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Syntax
pologit depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

offset(varname) include varname in the lasso and model for depvar with
its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
or report odds ratios; the default

coef report estimated coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated
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reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. pologit fits lassos for depvar

and each of the varsofinterest. alwaysvars are variables that are always to be included in these lassos.

alwaysvars are optional. othervars are variables that each lasso will choose to include or exclude.

That is, each lasso will select a subset of othervars. The selected subset of othervars may differ

across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.

This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar

is always a logit lasso. The option lasso() can be used with sqrtlasso to specify that regular

lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See

[LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.
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When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

offset(varname) specifies that varname be included in the lasso and model for depvar with its coeffi-

cient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, 𝑒𝛼. Standard errors and confi-

dence intervals are similarly transformed. or is the default.

coef reports the estimated coefficients 𝛼 rather than the odds ratios (𝑒𝛼). This option affects how results

are displayed, not how they are estimated. coef may be specified at estimation or when replaying

previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running

pologit. See [R] set seed.
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� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables from

varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This

option is repeatable as long as different variables are given in each specification. lasso options are

selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any global selection() op-

tion for the variables in varlist. See [LASSO] lasso options.

The following options are available with pologit but are not shown in the dialog box:

reestimate is an advanced option that refits the pologit model based on changes made to the underly-

ing lassos using lassoselect. After running pologit, you can select a different 𝜆∗ for one or more

of the lassos estimated by pologit. After selecting 𝜆∗, you type pologit, reestimate to refit the

pologit model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
pologit performs partialing-out lasso logistic regression. This command estimates odds ratios, stan-

dard errors, and confidence intervals and performs tests for variables of interest while using lassos to

select from among potential control variables.

The logistic regression model is

Pr(𝑦 = 1|d, x) = exp(dα′ + xβ′)
1 + exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables

from which the lassos select. pologit estimates the α coefficients and reports the corresponding odds

ratios, 𝑒𝛼. However, partialing-out does not provide estimates of the coefficients on the control variables

(β) or their standard errors. No estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection

and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use pologit and the other lasso inference commands are presented

in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an introduction to

the examples and to the vl command, which provides tools for working with the large lists of variables
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that are often included when using lasso methods. See 2 Fitting and interpreting inferential models for

comparisons of the different methods of fitting inferential models that are available in Stata. Everything

we say there about methods of selection is applicable to both linear and nonlinear models. See 3 Fitting

logit inferential models to binary outcomes. What is different? for examples and discussion specific to

logistic regression models. The primary difference from linear models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.

Stored results
pologit stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(rank) rank of e(V)

Macros

e(cmd) pologit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) logit
e(title) title in estimation output

e(offset) linear offset variable

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals
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Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
pologit implements partialing-out lasso logit regression (POLLR) as described in Belloni, Cher-

nozhukov, and Wei (2016, table 1 and sec. 2.1). The regression model is

E[𝑦|d, x] = 𝐺(dα′ + 𝛽0 + xβ′)

where 𝐺(𝑎) = exp(𝑎)/{1 + exp(𝑎)}, d contains the 𝐽 covariates of interest, and x contains the 𝑝
controls. The number of covariates in d must be small and fixed. The number of controls in x can be

large and, in theory, can grow with the sample size; however, the number of nonzero elements in βmust

not be too large, which is to say that the model must be sparse.

POLLR algorithm

1. Perform a logit lasso of 𝑦 on d and x, and denote the selected controls by x̃.

This logit lasso can choose the lasso penalty parameter (𝜆∗) using the plugin estimator, adaptive

lasso, or CV. The plugin value is the default.

2. Fit a logit regression of 𝑦 on d and x̃, denoting the estimated coefficient vectors by α̃ and β̃,
respectively.

3. Let ̃𝑠𝑖 = x̃𝑖β̃
′
be the 𝑖th observation of the predicted value of xβ′ and 𝑤𝑖 = 𝐺′(d𝑖α̃

′ + ̃𝑠𝑖) be the
𝑖th observation of the predicted value of the derivative of 𝐺(⋅).

4. For 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x using observation-level weights 𝑤𝑖, and denote

the selected controls by x̌𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin estimators

for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso

is the default.

5. For 𝑗 = 1, . . . , 𝐽, fit a linear regression of 𝑑𝑗 on the selected controls x̌𝑗 using observation-level

weights 𝑤𝑖, denote the unweighted residuals by ̃𝑑𝑗, with
̃𝑑𝑗,𝑖 its 𝑖th observation, and create the

instrument 𝑧𝑗 with 𝑖th observation given by 𝑧𝑗,𝑖 = ̃𝑑𝑗,𝑖.

Collect the 𝐽 instruments for the 𝑖th observation into the vector z𝑖 = (𝑧1,𝑖, . . . , 𝑧𝐽,𝑖).
6. Compute α̂ by solving the following 𝐽 sample-moment equations

1
𝑛

𝑛
∑
𝑖=1

{𝑦𝑖 − 𝐺(d𝑖α
′ + ̃𝑠𝑖)} z′

𝑖 = 0

7. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

The VCE is estimated by the robust estimator for method of moments.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose their

penalty parameter (𝜆∗).

Reference
Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-

trols. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

https://doi.org/10.1080/07350015.2016.1166116
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Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dslogit — Double-selection lasso logistic regression

[LASSO] xpologit — Cross-fit partialing-out lasso logistic regression

[R] logit — Logistic regression, reporting coefficients

[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
popoisson fits a lasso Poisson regression model and reports incidence-rate ratios along with standard

errors, test statistics, and confidence intervals for specified covariates of interest. The partialing-out

method is used to estimate effects for these variables and to select from potential control variables to be

included in the model.

Quick start
Report an incidence-rate ratio from a Poisson regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos

popoisson y d1, controls(x1-x100)

Same as above, and estimate incidence-rate ratios for the levels of categorical d2
popoisson y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

popoisson y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

popoisson y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

popoisson y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
popoisson y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

popoisson y d1 i.d2, controls(x1-x100) ///
lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Count outcomes > Partialing-out Poisson model

310
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Syntax
popoisson depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

offset(varname𝑜) include varname𝑜 in the lasso and model for depvar with
its coefficient constrained to be 1

exposure(varname𝑒) include ln(varname𝑒) in the lasso and model for depvar
with its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios; the default

coef report estimated coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated
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reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. popoisson fits lassos for

depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these

lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or

exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars may

differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.

This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar

is always a Poisson lasso. The option lasso() can be used with sqrtlasso to specify that regular

lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See

[LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.
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When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

offset(varname𝑜) specifies that varname𝑜 be included in the lasso and model for depvar with its co-

efficient constrained to be 1.

exposure(varname𝑒) specifies that ln(varname𝑒) be included in the lasso and model for depvar with

its coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛼. Standard errors and

confidence intervals are similarly transformed. irr is the default.

coef reports the estimated coefficients 𝛼 rather than the incidence-rate ratios, 𝑒𝛼. This option affects

how results are displayed, not how they are estimated. coef may be specified at estimation or when

replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().
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rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running

popoisson. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables from

varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This

option is repeatable as long as different variables are given in each specification. lasso options are

selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any global selection() op-

tion for the variables in varlist. See [LASSO] lasso options.

The following options are available with popoisson but are not shown in the dialog box:

reestimate is an advanced option that refits the popoissonmodel based on changes made to the under-

lying lassos using lassoselect. After running popoisson, you can select a different 𝜆∗ for one or

more of the lassos estimated by popoisson. After selecting 𝜆∗, you type popoisson, reestimate
to refit the popoisson model based on the newly selected 𝜆∗’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
popoisson performs partialing-out lasso Poisson regression. This command estimates incidence-rate

ratios, standard errors, and confidence intervals and performs tests for variables of interest while using

lassos to select from among potential control variables.

The Poisson regression model is

E[𝑦|d, x] = exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables

from which the lassos select. popoisson estimates the α coefficients and reports the corresponding

incidence-rate ratios, 𝑒𝛼. However, partialing-out does not provide estimates of the coefficients on the

control variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection

and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.
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Examples that demonstrate how to use popoisson and the other lasso inference commands are pre-

sented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an intro-

duction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for comparisons of the different methods of fitting inferential models that are available in Stata.

Everything we say there about methods of selection is applicable to both linear and nonlinear models.

See 4 Fitting inferential models to count outcomes. What is different? for examples and discussion spe-

cific to Poisson regression models. The primary difference from linear models involves interpreting the

results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.

Stored results
popoisson stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(rank) rank of e(V)

Macros

e(cmd) popoisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) poisson
e(title) title in estimation output

e(offset) linear offset variable

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
popoisson implements partialing-out lasso Poisson regression (POLPR) as described in Belloni, Cher-

nozhukov, and Wei (2016, table 1 and sec. 2.1). The regression model is

E[𝑦|d, x] = 𝐺(dα′ + 𝛽0 + xβ′)

where 𝐺(𝑎) = exp(𝑎), d contains the 𝐽 covariates of interest, and x contains the 𝑝 controls. The number

of covariates in d must be small and fixed. The number of controls in x can be large and, in theory, can

grow with the sample size; however, the number of nonzero elements in β must not be too large, which

is to say that the model must be sparse.

POLPR algorithm

1. Perform a Poisson lasso of 𝑦 on d and x, and denote the selected controls by x̃.

This Poisson lasso can choose the lasso penalty parameter (𝜆∗) using the plugin estimator, adaptive

lasso, or CV. The plugin value is the default.

2. Fit a Poisson regression of 𝑦 on d and x̃, denoting the estimated coefficient vectors by α̃ and β̃,
respectively.

3. Let ̃𝑠𝑖 = x̃𝑖β̃
′
be the 𝑖th observation of the predicted value of xβ′ and 𝑤𝑖 = 𝐺′(d𝑖α̃

′ + ̃𝑠𝑖) be the
𝑖th observation of the predicted value of the derivative of 𝐺(⋅).

4. For 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x using observation-level weights 𝑤𝑖, and denote

the selected controls by x̌𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin estimators

for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso

is the default.

5. For 𝑗 = 1, . . . , 𝐽, fit a linear regression of 𝑑𝑗 on the selected controls x̌𝑗 using observation-level

weights 𝑤𝑖, denote the unweighted residuals by ̃𝑑𝑗, with
̃𝑑𝑗,𝑖 its 𝑖th observation, and create the

instrument 𝑧𝑗 with 𝑖th observation given by 𝑧𝑗,𝑖 = ̃𝑑𝑗,𝑖.

Collect the 𝐽 instruments for the 𝑖th observation into the vector z𝑖 = (𝑧1,𝑖, . . . , 𝑧𝐽,𝑖).
6. Compute α̂ by solving the following 𝐽 sample-moment equations

1
𝑛

𝑛
∑
𝑖=1

{𝑦𝑖 − 𝐺(d𝑖α
′ + ̃𝑠𝑖)} z′

𝑖 = 0

7. Store the point estimates α̂ in e(b) and their variance estimates (VCE) in e(V).

The VCE is estimated by the robust estimator for method of moments.
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See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose their

penalty parameter (𝜆∗).

Reference
Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-

trols. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dspoisson — Double-selection lasso Poisson regression

[LASSO] xpopoisson — Cross-fit partialing-out lasso Poisson regression

[R] poisson — Poisson regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1080/07350015.2016.1166116
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
poregress fits a lasso linear regression model and reports coefficients along with standard errors,

test statistics, and confidence intervals for specified covariates of interest. The partialing-out method is

used to estimate effects for these variables and to select from potential control variables to be included

in the model.

Quick start
Estimate a coefficient for d1 in a linear regression of y on d1, and include x1 to x100 as potential control

variables to be selected by lassos

poregress y d1, controls(x1-x100)

Same as above, and estimate coefficients for the levels of categorical d2
poregress y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

poregress y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

poregress y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

poregress y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
poregress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

poregress y d1 i.d2, controls(x1-x100) ///
lasso(*, selection(cv, alllambdas))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Partialing-out model

318



poregress — Partialing-out lasso linear regression 319

Syntax
poregress depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos

semi use semipartialing-out lasso regression estimator

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics
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∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. poregress fits lassos for

depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these

lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or

exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars may

differ across lassos. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding the

global sqrtlasso setting for these variables. See [LASSO] lasso options.

semi specifies that the semipartialing-out lasso regression estimator be used instead of the fully

partialing-out lasso estimator, which is the default. See Methods and formulas in [LASSO] poregress.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).
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missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running

poregress. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.
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sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables

from depvar or varsofinterest. This option is repeatable as long as different variables are given

in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified,

it overrides any global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with poregress but are not shown in the dialog box:

reestimate is an advanced option that refits the poregressmodel based on changes made to the under-

lying lassos using lassoselect. After running poregress, you can select a different 𝜆∗ for one or

more of the lassos estimated by poregress. After selecting 𝜆∗, you type poregress, reestimate
to refit the poregress model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
poregress performs partialing-out lasso linear regression. This command estimates coefficients,

standard errors, and confidence intervals and performs tests for variables of interest while using lassos

to select from among potential control variables.

The linear regression model is

E[𝑦|d, x] = dα′ + xβ′

where d are the variables for which we wish to make inferences and x are the potential control variables

from which the lassos select. poregress reports estimated coefficients for α. However, partialing-out
does not provide estimates of the coefficients on the control variables (β) or their standard errors. No

estimation results can be reported for β.

For an introduction to the partialing-out lasso method for inference, as well as the double-selection

and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use poregress and the other lasso inference commands are pre-

sented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an intro-

duction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for examples of fitting inferential lasso linear models and comparisons of the different methods

available in Stata.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.
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Stored results
poregress stores the following in e():
Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(rank) rank of e(V)

Macros

e(cmd) poregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) linear
e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
poregress implements two methods for the partialing-out lasso regression. We call the default

method partialing-out lasso regression (POLR). We call the optional method, obtained by specifying

option semi, a semipartialing-out lasso regression (SPOLR). We refer to these methods as versions of

partialing-out regression because they reduce to the classic method of partialing-out regression in a spe-

cial case discussed below.
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The POLR was derived by Belloni et al. (2012) and Chernozhukov, Hansen, and Spindler (2015a,

2015b). The SPOLR was derived by Belloni et al. (2012), Belloni, Chernozhukov, and Hansen (2014),

Belloni, Chernozhukov, and Kato (2015), and Belloni, Chernozhukov, and Wei (2016).

The authors referred to their methods as “instrumental-variable methods”. We refer to these meth-

ods as partialing-out regression methods because the idea of partialing-out regression is more cross-

disciplinary and because these methods do not need outside instrumental variables when the covariates

are exogenous.

Mechanically, the POLR and the SPOLR methods are method of moments estimators in which the

moment conditions are the score equations from an ordinary least-squares (OLS) estimator of a partial

outcome on one or more partial covariates. The partial outcome is the residual from a regression of the

outcome on the controls selected by a lasso. Each of the partial covariates is a residual from a regression

of the covariate on the controls selected by a lasso.

The POLR method is limited to a linear model for the outcome. This method follows from Cher-

nozhukov, Hansen, and Spindler (2015a; 2015b, sec. 5) and Chernozhukov et al. (2018, C18). The

algorithm described in Chernozhukov, Hansen, and Spindler (2015a, 2015b) is for endogenous variables

with many outside instruments and many controls. As they note, imposing an exogeneity assumption and

assuming that there are no outside instruments reduces their algorithm to one for exogenous covariates

with many controls.

The SPOLR method extends naturally to nonlinear models for the outcome and has two sources. It

is implied by Belloni, Chernozhukov, and Kato (2015, algorithm 1), which is for a median regression

of 𝑦 on x. Replacing median regression with mean regression in their step (i) and replacing the median

moment condition with the mean moment condition in step (iii) produces the SPOLR algorithm detailed

below. This algorithm is also implied by Belloni, Chernozhukov, and Wei (2016, table 1 and sec. 2.1)

for a linear model.

The regression model is

E[𝑦|d, x] = dα′ + 𝛽0 + xβ′

where d contains the 𝐽 covariates of interest and x contains the 𝑝 controls. The number of covariates in

d must be small and fixed. The number of controls in x can be large and, in theory, can grow with the

sample size; however, the number of nonzero elements in β must not be too large, which is to say that

the model must be sparse.

POLR algorithm

1. For 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x, and denote the selected controls by x̃𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using the plugin estimator, adap-

tive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

2. For 𝑗 = 1, . . . , 𝐽, fit a linear regression of 𝑑𝑗 on x̃𝑗, denote the estimated coefficients by 𝛄̂𝑗, and

define the partial-covariate variable 𝑧𝑗 = 𝑑𝑗 − x̃𝑗𝛄̂𝑗, with its 𝑖th observation denoted by 𝑧𝑗,𝑖.

Collect the 𝐽 partial covariates for the 𝑖th observation into the vector z𝑖 = (𝑧1,𝑖, . . . , 𝑧𝐽,𝑖).
3. Perform a linear lasso of 𝑦 on x to select covariates x̃𝑦.

This lasso can choose the lasso penalty parameter (𝜆∗) using the plugin estimator, adaptive lasso,

or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

4. Fit a linear regression of 𝑦 on x̃𝑦, denote the estimated coefficients by β̃𝑦, and define the partial

outcome for the 𝑖th observation by ̃𝑦𝑖 = 𝑦𝑖 − x̃𝑦,𝑖β̃𝑦.
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5. Compute α̂ by solving the following 𝐽 sample-moment equations.

1
𝑛

𝑛
∑
𝑖=1

( ̃𝑦𝑖 − z𝑖α
′)z′

𝑖 = 0

The VCE is estimated by the robust estimator for method of moments.

SPOLR algorithm

1. For 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x, and denote the selected controls by x̃𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using the plugin estimator, adap-

tive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

2. For 𝑗 = 1, . . . , 𝐽, fit a linear regression of 𝑑𝑗 on x̃𝑗, denote the estimated coefficients by 𝛄̂𝑗, and

define the partial-covariate variable 𝑧𝑗 = 𝑑𝑗 − x̃𝑗𝛄̂𝑗, with its 𝑖th observation denoted by 𝑧𝑗,𝑖.

Collect the 𝐽 partial covariates for the 𝑖th observation into the vector z𝑖 = (𝑧1,𝑖, . . . , 𝑧𝐽,𝑖).
3. Perform a linear lasso of 𝑦 on d and x to select covariates x̌𝑦.

This lasso can choose the lasso penalty parameter (𝜆∗) using the plugin estimator, adaptive lasso,

or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

4. Fit a linear regression of 𝑦 on d and ̌x𝑦, let β̌ be the estimated coefficients on x̌𝑦, and define the

partial outcome for the 𝑖th observation by ̌𝑦𝑖 = 𝑦𝑖 − x̌𝑦,𝑖β̌
′
.

5. Compute α̂ by solving the following 𝐽 sample-moment equations.

1
𝑛

𝑛
∑
𝑖=1

( ̌𝑦𝑖 − d𝑖α
′)z′

𝑖 = 0

The VCE is estimated by the robust estimator for method of moments.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 3 of both

algorithms choose their penalty parameter (𝜆∗).
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sqrtlasso — Square-root lasso for prediction and model selection

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
sqrtlasso selects covariates and fits linear models using square-root lasso. Results from sqrtlasso

can be used for prediction and model selection. Results from sqrtlasso are typically similar to results

from lasso.

sqrtlasso saves but does not display estimated coefficients. The [LASSO] lasso postestimation

commands can be used to generate predictions, report coefficients, and display measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

sqrtlasso y x1-x100

Same as above, but force x1 and x2 to be in the model while square-root lasso selects from x3 to x100
sqrtlasso y (x1 x2) x3-x100

Set a random-number seed for reproducibility

sqrtlasso y x1-x100, rseed(1234)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.

sqrtlasso y x1-x100, selection(cv, alllambdas)

Menu
Statistics > Lasso > Square-root lasso

Syntax
sqrtlasso depvar [ (alwaysvars) ] othervars [ if ] [ in ] [weight ] [ , options ]

alwaysvars are variables that are always included in the model.

othervars are variables that sqrtlasso will choose to include in or exclude from the model.

327
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options Description

Model

noconstant suppress constant term

selection(sel method) selection method to select a value of the square-root
lasso penalty parameter 𝜆∗ from the set of possible 𝜆’s

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

cluster(clustvar) specify cluster variable clustvar

Optimization

[ no ]log display or suppress an iteration log

rseed(#) set random-number seed

grid(#g [ , ratio(#) min(#) ]) specify the set of possible 𝜆’s using a logarithmic grid with
#g grid points

stop(#) tolerance for stopping the iteration over the 𝜆 grid early

cvtolerance(#) tolerance for identification of the CV function minimum

bictolerance(#) tolerance for identification of the BIC function minimum

tolerance(#) convergence tolerance for coefficients based on their values

dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

sel method Description

cv [ , cv opts ] select 𝜆∗ using CV; the default

plugin [ , plugin opts ] select 𝜆∗ using a plugin iterative formula

bic [ , bic opts ] select 𝜆∗ using BIC function

none do not select 𝜆∗

cv opts Description

folds(#) use # folds for CV

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the CV function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select 𝜆∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was reached at 𝜆stop, set the selected 𝜆∗ to be
𝜆stop; the default

strict do not select 𝜆∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was not reached, set the selected 𝜆∗ to be the
minimum of the 𝜆 grid, 𝜆gmin; this is a looser alternative to the default
stopok and is rarely used

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default

homoskedastic assume model errors are homoskedastic
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bic opts Description

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was reached at 𝜆stop, set the selected 𝜆∗ to be
𝜆stop; the default

strict do not select 𝜆∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was not reached, set the selected 𝜆∗ to be the
minimum of the 𝜆 grid, 𝜆gmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed with all sel method options. See [U] 11.1.6 weight.

penaltywt(matname) does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
See [LASSO] lasso fitting for an overview of the lasso estimation procedure and a detailed description of

how to set options to control it.

� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the other-

vars, sqrtlasso can potentially create the equivalent of the constant term by including all levels of

a factor variable. This option is likely best used only when all the othervars are continuous variables

and there is a conceptual reason why there should be no constant term.

selection(cv), selection(plugin), selection(bic), and selection(none) specify the selec-

tion method used to select 𝜆∗. These options also allow suboptions for controlling the specified se-

lection method.

selection(cv [ , cv opts ]) is the default. It selects 𝜆∗ to be the 𝜆 that gives the minimum of the CV

function. lasso postestimation commands can be used after selection(cv) to assess alternative

𝜆∗ values.

cv opts are folds(#), alllambdas, serule, stopok, strict, and gridminok.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that models be fit for all 𝜆’s in the grid or until the stop(#) tolerance is

reached. By default, models are calculated sequentially from largest to smallest 𝜆, and the CV

function is calculated after each model is fit. If a minimum of the CV function is found, the

computation ends at that point without evaluating additional smaller 𝜆’s.
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alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the CV function is wanted for

assurance that a trueminimum has been found. Regardless of whether alllambdas is specified,
the selected 𝜆∗ will be the same.

serule selects 𝜆∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani,

and Wainwright (2015, 13–14) instead of the 𝜆 that minimizes the CV function. The one-

standard-error rule selects the largest 𝜆 for which the CV function is within a standard error

of the minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have an

identified minimum. A minimum is identified at 𝜆∗ when the CV function at both larger and

smaller adjacent 𝜆’s is greater than it is at 𝜆∗. When the CV function has an identified minimum,

these options all do the same thing: the selected 𝜆∗ is the 𝜆 that gives the minimum. In some

cases, however, the CV function declines monotonically as 𝜆 gets smaller and never rises to

identify a minimum. When the CV function does not have an identified minimum, stopok
and gridminok make alternative selections for 𝜆∗, and strict makes no selection. You may

specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative 𝜆∗

can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the

stop(#) stopping tolerance for 𝜆 was reached, the selected 𝜆∗ is 𝜆stop, the 𝜆 that met the

stopping criterion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is as-

sumed that 𝜆stop has a CV function value close to the true minimum. When no minimum is

identified and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the CV function has no identified

minimum and the stop(#) stopping criterion was not met, 𝜆gmin, the minimum of the 𝜆
grid, is the selected 𝜆∗.

The gridminok selection criterion is looser than the default stopok, which is looser than

strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or 𝜆stop is selected. With gridminok, either the identified minimum or 𝜆stop or

𝜆gmin is selected, in this order.

selection(plugin [ , plugin opts ]) selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. The plugin method was designed for lasso inference methods and is useful when using

sqrtlasso to manually implement inference methods, such as double-selection lasso. The plugin

estimator calculates a value for 𝜆∗ that dominates the noise in the estimating equations, which

makes it less likely to include variables that are not in the true model. See Methods and formulas.

selection(plugin) does not estimate coefficients for any other values of 𝜆, so it does not re-

quire a 𝜆 grid, and none of the grid options apply. It is much faster than selection(cv) because

estimation is done only for a single value of 𝜆. It is an iterative procedure, however, and if the

plugin is computing estimates for a small 𝜆 (which means many nonzero coefficients), the estima-

tion can still be time consuming. Because estimation is done only for one 𝜆, you cannot assess

alternative 𝜆∗ as the other selection methods allow.

plugin opts are heteroskedastic and homoskedastic.
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heteroskedastic assumes model errors are heteroskedastic. It is the default. Specifying

selection(plugin) is equivalent to specifying selection(plugin, heteroskedastic).

homoskedastic assumes model errors are homoskedastic. See Methods and formulas.

selection(bic [ , bic opts ]) selects 𝜆∗ by using the Bayesian information criterion function. It

selects the 𝜆∗ with the minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all 𝜆’s in the grid or until the stop(#) tolerance is

reached. By default, models are calculated sequentially from largest to smallest 𝜆, and the BIC

function is calculated after each model is fit. If a minimum of the BIC function is found, the

computation ends at that point without evaluating additional smaller 𝜆’s.
alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the BIC function is wanted

for assurance that a true minimum has been found. Regardless of whether alllambdas is

specified, the selected 𝜆∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have an

identified minimum. A minimum is identified at 𝜆∗ when the BIC function at both larger and

smaller adjacent 𝜆’s is greater than it is at 𝜆∗. When the BIC function has an identifiedminimum,

these options all do the same thing: the selected 𝜆∗ is the 𝜆 that gives the minimum. In some

cases, however, the BIC function declines monotonically as 𝜆 gets smaller and never rises to

identify a minimum. When the BIC function does not have an identified minimum, stopok
and gridminok make alternative selections for 𝜆∗, and strict makes no selection. You may

specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative 𝜆∗

can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the

stop(#) stopping tolerance for 𝜆 was reached, the selected 𝜆∗ is 𝜆stop, the 𝜆 that met the

stopping criterion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is

assumed that 𝜆stop has a BIC function value close to the true minimum. When no minimum

is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified

minimum and the stop(#) stopping criterion was not met, then 𝜆gmin, the minimum of the

𝜆 grid, is the selected 𝜆∗.

The gridminok selection criterion is looser than the default stopok, which is looser than

strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or 𝜆stop is selected. With gridminok, either the identified minimum or 𝜆stop or

𝜆gmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function. By

default, the penalized coefficients are used.
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selection(none) does not select a 𝜆∗. Square-root lasso is estimated for the grid of values for

𝜆, but no attempt is made to determine which 𝜆 should be selected. The postestimation command

lassoknots can be run to view a table of 𝜆’s that define the knots (the sets of nonzero coefficients)
for the estimation. The lassoselect command can be used to select a value for 𝜆∗, and lassogof
can be run to evaluate the prediction performance of 𝜆∗.

When selection(none) is specified, the CV function is not computed. If you want to view

the knot table with values of the CV function shown and then select 𝜆∗, you must specify

selection(cv). There are no suboptions for selection(none).

offset(varname𝑜) specifies that varname𝑜 be included in the model with its coefficient constrained to

be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how

the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood

function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the sub-

sample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are kept

together in the same subsample.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv). The other selection methods, selection(plugin) and selection(none), do
not use random numbers. rseed(#) is equivalent to typing set seed # prior to running sqrtlasso.
See [R] set seed.

grid(#𝑔 [ , ratio(#) min(#) ]) specifies the set of possible 𝜆’s using a logarithmic grid with #𝑔 grid

points.

#𝑔 is the number of grid points for 𝜆. The default is #𝑔 = 100. The grid is logarithmic with the 𝑖th grid
point (𝑖 = 1, . . . , 𝑛 = #𝑔) given by ln𝜆𝑖 = [(𝑖 − 1)/(𝑛 − 1)] ln 𝑟 + ln𝜆gmax, where 𝜆gmax = 𝜆1
is the maximum, 𝜆gmin = 𝜆𝑛 = min(#) is the minimum, and 𝑟 = 𝜆gmin/𝜆gmax = ratio(#) is the

ratio of the minimum to the maximum.

ratio(#) specifies 𝜆gmin/𝜆gmax. The maximum of the grid, 𝜆gmax, is set to the smallest 𝜆 for which

all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).

𝜆gmin is then set based on ratio(#). When 𝑝 < 𝑁, where 𝑝 is the total number of othervars

and alwaysvars (not including the constant term) and 𝑁 is the number of observations, the default

value of ratio(#) is 1e−4. When 𝑝 ≥ 𝑁, the default is 1e−2.

min(#) sets 𝜆gmin. By default, 𝜆gmin is based on ratio(#) and 𝜆gmax, which is computed from the

data.

stop(#) specifies a tolerance that is the stopping criterion for the 𝜆 iterations. The default is 1e−5. This

option does not apply when the selection method is selection(plugin). Estimation starts with the

maximum grid value, 𝜆gmax, and iterates toward the minimum grid value, 𝜆gmin. When the relative

difference in the deviance produced by two adjacent 𝜆 grid values is less than stop(#), the iteration
stops and no smaller 𝜆’s are evaluated. The value of 𝜆 that meets this tolerance is denoted by 𝜆stop.

Typically, this stopping criterion is met before the iteration reaches 𝜆gmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger 𝜆stop. To pro-

duce coefficient estimates for all values of the 𝜆 grid, you can specify stop(0). Note, however,

that computations for small 𝜆’s can be extremely time consuming. In terms of time, when you use
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selection(cv), the optimal value of stop(#) is the largest value that allows estimates for just

enough 𝜆’s to be computed to identify the minimum of the CV function. When setting stop(#) to

larger values, be aware of the consequences of the default 𝜆∗ selection procedure given by the default

stopok. You may want to override the stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV

function. For linear models, a minimum is identified when the CV function rises above a nominal

minimum for at least three smaller 𝜆’s with a relative difference in the CV function greater than #. For

nonlinear models, at least five smaller 𝜆’s are required. The default is 1e−3. Setting # to a bigger

value makes a stricter criterion for identifying a minimum and brings more assurance that a declared

minimum is a true minimum, but it also means that models may need to be fit for additional smaller

𝜆, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information

about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum BIC

function. Aminimum is identified when the BIC function rises above a nominal minimum for at least

two smaller 𝜆’s with a relative difference in the BIC function greater than #. The default is 1e−2.

Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more

assurance that a declared minimum is a true minimum, but it also means that models may need to be

fit for additional smaller 𝜆, which can be time consuming. SeeMethods and formulas in [LASSO] lasso

for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-

vergence is achieved when the relative change in each coefficient is less than this tolerance. The

default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients. When

dtolerance(#) is specified, the convergence criterion is based on the change in deviance instead of

the change in the values of coefficient estimates. Convergence is declared when the relative change

in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-

ifying this option and instead using the default tolerance(1e-7) criterion or specifying a smaller

value for tolerance(#).

The following option is available with sqrtlasso but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients

in the penalty term. The contribution of each coefficient to the square-root lasso penalty term is

multiplied by its corresponding weight. Weights must be nonnegative. By default, each coefficient’s

penalty weight is 1.

Remarks and examples
We assume you have read the lasso introduction [LASSO] Lasso intro.

The square-root lasso is an alternative version of lasso. Lasso minimizes

1
2𝑁

(y − Xβ′)′(y − Xβ′) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|

whereas square-root lasso minimizes

√ 1
𝑁

(y − Xβ′)′(y − Xβ′) + 𝜆
𝑁

𝑝

∑
𝑗=1

|𝛽𝑗|
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In the square-root formulation, the standard deviation of the error term becomes a multiplicative con-

stant that drops out of the minimization. This lack of dependence facilitates the derivation of plugin

estimators for the lasso penalty parameter 𝜆∗ because there is no need to estimate the standard deviation

of the error term as part of the plugin formula.

Square-root lasso is primarily used in combination with a plugin estimator for 𝜆∗. The resulting

square-root lasso estimation can be used with the double-selection or partialing-out methods described

in [LASSO] Lasso inference intro.

Square-root lasso can also be used on its own for prediction or model selection. To be consistent

with lasso, the default selection method for 𝜆∗ is CV. To use the plugin estimator, specify the option

selection(plugin).

Square-root lasso was formulated by Belloni, Chernozhukov, and Wang (2011), who also derived the

square-root lasso plugin estimator for 𝜆, which is implemented here.

Example 1: Square-root lasso and lasso
Let’s compare square-root lasso with an ordinary lasso to illustrate that their results are numerically

similar when used with CV.

We load the example dataset we used in [LASSO] lasso examples. It has stored variable lists created

by vl. See [D] vl for a complete description of the vl system and how to use it to manage large variable

lists.

After we load the dataset, we type vl rebuild to make the saved variable lists active again.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We randomly split our data into two samples of equal sizes. One we will fit lassos on, and the other

we will use to test their predictions. We use splitsample to generate a variable indicating the samples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 ”Training” 2 ”Testing”

. label values sample svalues
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We have four user-defined variable lists, demographics, factors, idemographics, and ifactors.
The variable lists idemographics and ifactors contain factor-variable versions of the categori-

cal variables in demographics and factors. That is, a variable q3 in demographics is i.q3 in

idemographics. See the examples in [LASSO] lasso examples to see how we created these variable

lists.

We are going to use idemographics and ifactors along with the system-defined variable list

vlcontinuous as arguments to sqrtlasso. Together they contain the potential variables we want to

specify. Variable lists are actually global macros, and when we use them as arguments in commands, we

put a $ in front of them.

We also set the random-number seed using the rseed() option so we can reproduce our results.

. sqrtlasso q104 $idemographics $ifactors $vlcontinuous if sample == 1,
> rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 104.6235 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 17.2848
(output omitted )

Grid value 23: lambda = 13.51264 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 12.35321
... cross-validation complete ... minimum found
Square-root lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 104.6235 0 -0.0058 17.2848
17 lambda before 23.61373 53 0.2890 12.21892

* 18 selected lambda 21.51595 61 0.2901 12.19933
19 lambda after 19.60453 67 0.2899 12.20295
23 last lambda 13.51264 87 0.2812 12.35321

* lambda selected by cross-validation.
. estimates store sqrtcv

The square-root lasso with the default CV selection method selected a model with 61 variables in it.
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Let’s run lasso with the same potential variables.

. lasso linear q104 $idemographics $ifactors $vlcontinuous if sample == 1,
> rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9469819 no. of nonzero coef. = 0
(output omitted )

Grid value 25: lambda = .1015418 no. of nonzero coef. = 78
Folds: 1...5....10 CVF = 12.26768
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9469819 0 -0.0046 17.26383
19 lambda before .1774471 47 0.2899 12.20399

* 20 selected lambda .1616832 51 0.2912 12.18122
21 lambda after .1473197 60 0.2908 12.18739
25 last lambda .1015418 78 0.2862 12.26768

* lambda selected by cross-validation.
. estimates store lassocv

Lasso selected a model with 51 variables in it.

After we ran sqrtlasso and lasso, we used estimates store to keep the results in memory. This

lets us compare the models. We can use lassocoef to view the coefficient estimates. We display the

standardized coefficients and sort them so that the biggest in absolute values are shown first.

. lassocoef sqrtcv lassocv, display(coef, standardized) sort(coef, standardized)

sqrtcv lassocv

q19
No -.8446332 -.8119414

q85
No -.7089993 -.6940387

3.q156 -.6843823 -.6727969

q101
No .5981556 .5785246

q48
No -.5867942 -.5502145

q88
No .5793049 .553872

q38
4 -.5275709 -.5089004

q5
No -.4795077 -.467305
q22 -.4610605 -.4410858
q31 .4556527 .4047143
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q56
No -.4482692 -.4026312

q139 -.4189969 -.4118033

q73
No -.3565698 -.3368294

q96
No -.3149921 -.2950566

3.q16 -.263147 -.2278278

q43
No -.2605833 -.2355772

q50
No .2455526 .2307073

q149
No -.2407299 -.2070948

2.q84 -.2321074 -.2150944

q109
No .1965246 .1530308

q49
No .1937052 .1626059

q159
No .1870743 .1771646

q115
No .153256 .1272736

3.q134 .1525998 .1418469

q108
No -.1491124 -.1469051

q91
No -.1475877 -.1252736

q140
No -.142592 -.1192079

2.q34 .1397604 .1155922
q93 -.1379424 -.0964044

q14
No -.1377481 -.0964684

gender
Female -.1296337 -.1047897

q153
No .1238655 .0835772
q53 .1123144 .0813566

q65
3 .1035524 .084643

q38
3 .0922535 .086774



sqrtlasso — Square-root lasso for prediction and model selection 338

q160
No -.0901901 -.0763008

q3
No -.082771 -.0574645
age -.0707354 -.0590426

q102
No -.0578734 -.0427812

q44
No .0561402 .0301015

1.q110 -.0556488 -.0268615

q154
No .0492342 .0188979

q130
No -.0453674 -.0288351
q18 -.0428028 -.018666

q97
No .0427896 .021222

q142
No -.0427358 -.0188524

q75
No -.0341663 -.0011199

q111 -.0333302 -.0294021
3.q95 -.0214817

q65
4 -.0213682

q38
2 .0197855

0.q74 .0165583
0.q33 -.016441

q20 .0147089

q94
No .0136563 .013323
q52 .0132519

0.q138 -.0125278
0.q71 .012269

q13
No .0094304 .0027091

q105
Fair .0052163 .00026
0.q59 .0036381
_cons 0 0

Legend:
b - base level
e - empty cell
o - omitted
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Numerically, the coefficients are similar. The six variables that square-root lasso selected—but lasso did

not—are among the variables with the smallest coefficients.

We split the sample in half so we could look at the out-of-sample prediction. We use lassogof to do

this using postselection coefficients.

. lassogof sqrtcv lassocv, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

sqrtcv
Training 8.419174 0.5184 503
Testing 15.09863 0.2402 487

lassocv
Training 8.595046 0.5083 503
Testing 14.66581 0.2600 491

Both square-root lasso and lasso did significantly worse predicting out of sample than they did in sample.

This is typical in many cases when there are many variables with small coefficients in the models.

Let’s compare the plugin estimators for both square-root lasso and lasso.

. sqrtlasso q104 $idemographics $ifactors $vlcontinuous, selection(plugin)
Computing plugin lambda ...
Iteration 1: lambda = 134.4262 no. of nonzero coef. = 5
Iteration 2: lambda = 134.4262 no. of nonzero coef. = 8
Iteration 3: lambda = 134.4262 no. of nonzero coef. = 8
Square-root lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda 134.4262 8 0.0835 5233.117

* lambda selected by plugin formula assuming heteroskedastic errors.
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Square-root lasso with plugin selected only 8 variables. Let’s see what lasso does.

. lasso linear q104 $idemographics $ifactors $vlcontinuous,
> selection(plugin) rseed(1234)
Computing plugin lambda ...
Iteration 1: lambda = .1470747 no. of nonzero coef. = 8
Iteration 2: lambda = .1470747 no. of nonzero coef. = 11
Iteration 3: lambda = .1470747 no. of nonzero coef. = 13
Iteration 4: lambda = .1470747 no. of nonzero coef. = 15
Iteration 5: lambda = .1470747 no. of nonzero coef. = 15
Lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda .1470747 15 0.1549 5206.721

* lambda selected by plugin formula assuming heteroskedastic errors.

Lasso with plugin selected a few more—15 variables in total. We can see from the in-sample 𝑅2 that

the predictive capabilities of models using plugin are much lower than those using CV. We expect this

because plugin estimators were designed as a tool for inferential models, not for prediction.

Stored results
sqrtlasso stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k allvars) number of potential variables

e(k nonzero sel) number of nonzero coefficients for selected model

e(k nonzero cv) number of nonzero coefficients at CV mean function minimum

e(k nonzero serule) number of nonzero coefficients for one-standard-error rule

e(k nonzero min) minimum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero max) maximum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum

e(lambda sel) value of selected 𝜆∗

e(lambda gmin) value of 𝜆 at grid minimum

e(lambda gmax) value of 𝜆 at grid maximum

e(lambda last) value of last 𝜆 computed

e(lambda cv) value of 𝜆 at CV mean function minimum

e(lambda serule) value of 𝜆 for one-standard-error rule

e(lambda bic) value of 𝜆 at BIC function minimum

e(ID sel) ID of selected 𝜆∗

e(ID cv) ID of 𝜆 at CV mean function minimum

e(ID serule) ID of 𝜆 for one-standard-error rule

e(ID bic) ID of 𝜆 at BIC function minimum

e(cvm min) minimum CV mean function value

e(cvm serule) CV mean function value at one-standard-error rule

e(devratio min) minimum deviance ratio

e(devratio max) maximum deviance ratio

e(L1 min) minimum value of ℓ1-norm of penalized unstandardized coefficients

e(L1 max) maximum value of ℓ1-norm of penalized unstandardized coefficients
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e(L2 min) minimum value of ℓ2-norm of penalized unstandardized coefficients

e(L2 max) maximum value of ℓ2-norm of penalized unstandardized coefficients

e(ll sel) log-likelihood value of selected model

e(n lambda) number of 𝜆’s
e(n fold) number of CV folds

e(stop) stopping rule tolerance

Macros

e(cmd) sqrtlasso
e(cmdline) command as typed

e(depvar) name of dependent variable

e(allvars) names of all potential variables

e(allvars sel) names of all selected variables

e(alwaysvars) names of always-included variables

e(othervars sel) names of other selected variables

e(post sel vars) all variables needed for post-square-root lasso

e(clustvar) name of cluster variable

e(lasso selection) selection method

e(sel criterion) criterion used to select 𝜆∗

e(plugin type) type of plugin 𝜆
e(model) linear, logit, poisson, or probit
e(title) title in estimation output

e(rngstate) random-number state used

e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) penalized unstandardized coefficient vector

e(b standardized) penalized standardized coefficient vector

e(b postselection) postselection coefficient vector

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
This section provides the methods and formulas for the methods implemented in sqrtlasso. The

square-root lasso was derived by Belloni and Chernozhukov (2011).

Methods and formulas are presented under the following headings:

Notation
Plugin estimators

Notation
sqrtlasso estimates the parameters by finding the minimum of a penalized objective function. The

penalized objective function is

𝑄 = √ 1
𝑁

𝑁
∑
𝑖=1

𝑤𝑖(𝑦𝑖 − 𝛽0 − x𝑖β
′)2 + 𝜆

𝑁

𝑝

∑
𝑗=1

𝜅𝑗|𝛽𝑗| (1)
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where 𝑁 is the number of observations, 𝑤𝑖 are observation-level weights, 𝛽0 is the intercept, x𝑖 is the

1× 𝑝 vector of covariates, β is the 1× 𝑝 vector of coefficients, 𝜆 is the lasso penalty parameter that must

be ≥ 0, and 𝜅𝑗 are coefficient-level weights.

When 𝜆 = 0, there is no penalty term, and 𝑄 is the objective function for a version of the reweighted

least-squares estimator.

By default, the coefficient-level weights 𝜅𝑗 are 1. The heteroskedastic plugin estimator uses

coefficient-level weights that differ from 1. In addition, they may be set to other values using option

penaltywt().

sqrtlasso uses the coordinate descent algorithm to minimize𝑄 for a given value of 𝜆. See Friedman

et al. (2007) for an introduction to the coordinate descent algorithm.

The numerical problem is made much easier and more stable by standardizing all the covariates to

have mean 0 and standard deviation 1. The standardization also removes 𝛽0 from the problem.

The grid of values for 𝜆 is specified as described in Methods and formulas in [LASSO] lasso.

As with lasso and elastic net, we need to select a value of 𝜆∗. The available selection methods are

selection(cv) (CV, the default), selection(plugin), selection(bic), and selection(none).
The square-root lasso was designed to facilitate the derivation of the plugin estimator for 𝜆∗ discussed

below. CV and BIC for the square-root lasso use the same algorithm as the regular lasso; see Methods and

formulas in [LASSO] lasso for details.

If option cluster() is specified, the penalized objective function with clusters is

𝑄 =
√√√
⎷

1
𝑁clust

𝑁clust

∑
𝑖=1

{ 1
𝑇𝑖

𝑇𝑖

∑
𝑡=1

𝑤𝑖𝑡(𝑦𝑖𝑡 − 𝛽0 − x𝑖𝑡β
′)2} + 𝜆

𝑁clust

𝑝

∑
𝑗=1

𝜅𝑗|𝛽𝑗|

where 𝑁clust is the total number of clusters and 𝑇𝑖 is the number of observations in cluster 𝑖. For the 𝑡th
observation in cluster 𝑖, 𝑤𝑖𝑡 is its observational level weight, 𝑦𝑖𝑡 is the dependent variable, and x𝑖𝑡 are

the covariates.

Plugin estimators
The same formula for the plugin estimator is used for the homoskedastic and the heteroskedastic cases

with the square-root lasso. This result is essentially why the square-root lasso was derived; see Belloni,

Chernozhukov, and Wang (2011). In the homoskedastic case, the coefficient-level weights are all 1

because the variables have been normalized. In the heteroskedastic case, the coefficient-level weights

are estimated using algorithm 1, which comes from Belloni, Chernozhukov, and Wang (2011, 769).

The formula for 𝜆∗ is

𝜆sqrt = 2𝑐
√

𝑁 Φ−1 (1 − 𝛾
2𝑝

)

where 𝑐 = 1.1 per the recommendation of Belloni and Chernozhukov (2011), 𝑁 is the sample size, 𝛾
is the probability of not removing variable 𝑥𝑗 when it has a coefficient of 0, and 𝑝 is the number of

candidate covariates in the model. Also, per the recommendation of Belloni and Chernozhukov (2011),

we set 𝛾 = 0.1/ ln[max{𝑝, 𝑁}].
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Algorithm 1: Estimate coefficient-level weights for the heteroskedastic case

1. Remove the mean and standardize each of the covariates 𝑥𝑗 to have variance one. Remove the

mean from 𝑦.
2. Initialize the maximum number of iterations 𝐾 = 15, initialize the iteration counter 𝑘 = 0, and

initialize each of the coefficient-level weights,

𝜅𝑗,0 = max1≤𝑖≤𝑁|𝑥𝑖𝑗| for 𝑗 ∈ {1, . . . , 𝑝}

3. Update 𝑘 = 𝑘 + 1, and estimate the square-root lasso coefficients β̂ using the coefficient-level

weights 𝜅𝑗,𝑘−1 and the above formula for 𝜆sqrt.

4. Update the coefficient-level weights,

𝜅𝑗,𝑘 = max

⎧{
⎨{⎩

1,
√ 1

𝑁 ∑𝑁
𝑖=1(𝑥𝑖𝑗𝑟𝑖)2

√ 1
𝑁 ∑𝑁

𝑖=1 𝑟2
𝑖

⎫}
⎬}⎭

where 𝑟𝑖 = 𝑦𝑖 − x𝑖β̂
′
.
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xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Also see

Description
xpoivregress fits a lasso instrumental-variables linear regression model and reports coefficients

along with standard errors, test statistics, and confidence intervals for specified covariates of interest.

The covariates of interest may be endogenous or exogenous. The cross-fit partialing-out method is used

to estimate effects for these variables and to select from potential control variables and instruments to be

included in the model.

Quick start
Estimate a coefficient for endogenous d1 in a linear regression of y on d1, and include x1 to x100 as

potential control variables and z1 to z100 as potential instruments to be selected by lassos

xpoivregress y (d1 = z1-z100), controls(x1-x100)

Same as above, and estimate the coefficient for the exogenous d2
xpoivregress y d2 (d1 = z1-z100), controls(x1-x100)

Same as above, but use 20 folds instead of 10 for cross-fitting

xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) xfolds(20)

Same as above, but repeat the cross-fitting procedure 15 times, and average the results

xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) xfolds(20) ///
resample(15)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) selection(cv) ///
rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) ///
lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d2, and d1
xpoivregress y d2 (d1 = z1-z100), controls(x1-x100) ///

lasso(*, selection(cv), stop(0))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Cross-fit partialing-out IV model

344



xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression 345

Syntax
xpoivregress depvar [ exovars ] (endovars = instrumvars) [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

Coefficients and standard errors are estimated for the exogenous variables, exovars, and the endogenous

variables, endovars. The set of instrumental variables, instrumvars, may be high dimensional.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars are control variables for depvar,

exovars, and endovars; instrumvars are an additional set
of control variables that apply only to the endovars;
alwaysvars are always included; lassos choose
whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos

xfolds(#) use # folds for cross-fitting

resample[(#)] repeat sample splitting # times and average results

technique(dml1 | dml2) use either double machine learning 1 (dml1) or double
machine learning 2 (dml2) estimation technique;
dml2 is the default

missingok after fitting lassos, ignore missing values in any instrumvars
or othervars not selected, and include these observations
in the final model

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated
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reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

∗controls() is required.

exovars, endovars, instrumvars, alwaysvars, and othervars may contain factor variables. Base levels of factor variables
cannot be set for instrumvars, alwaysvars, and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. alwaysvars are variables that

are always to be included in lassos. alwaysvars are optional. othervars are variables that lassos will

choose to include or exclude. The instrumental variables, instrumvars, are an additional set of control

variables, but they apply only to the endovars. controls() is required.

xpoivregress fits lassos for depvar and each one of the exovars and endovars. The control variables

for the lassos for depvar and exovars are alwaysvars (always included) and othervars (lasso will

include or exclude). The control variables for lassos for endovars are exovars (always included),

alwaysvars (always included), instrumvars (lasso will include or exclude), and othervars (lasso will

include or exclude).

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding the

global sqrtlasso setting for these variables. See [LASSO] lasso options.

xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10).
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resample[(#)] specifies that sample splitting be repeated and results averaged. This reduces the effects

of the randomness of sample splitting on the estimated coefficients. Not specifying resample or

resample(#) is equivalent to specifying resample(1). In other words, by default no resampling

is done. Specifying resample alone is equivalent to specifying resample(10). That is, sample

splitting is repeated 10 times. For each sample split, lassos are computed. So when this option is

not specified, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos are

repeated xfolds(#)×resample(#) times. Thus, while we recommend using resample to get final

results, note that it can be an extremely time-consuming procedure.

technique(dml1 | dml2) specifies which cross-fitting technique is used, either double machine learning

1 (dml1) or double machine learning 2 (dml2). For both techniques, the initial estimation steps are the

same. The sample is split into𝐾 = xfolds(#) folds. Then, coefficients on the controls are estimated

using only the observations not in the 𝑘th fold, for 𝑘 = 1, 2, . . . , 𝐾. Moment conditions for the

coefficients on the varsofinterest are formed using the observations in fold 𝑘. The default technique,
dml2, solves the moment conditions jointly across all the observations. The optional technique, dml1,
solves the moment conditions in each fold 𝑘 to produce𝐾 different estimates, which are then averaged

to form a single vector of estimates. See Methods and formulas.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, exovars, endovars, instrumvars, alwaysvars, and othervars is omitted from the estimation

sample for the lassos. By default, the same sample is used for calculation of the coefficients of the

exovars and endovars and their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sam-

ple used for the calculation of the coefficients of the exovars and endovars can be larger. Now ob-

servations with missing values for any instrumvars and othervars not selected will be added to the

estimation sample (provided there are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selectionmethods. That is, when instrumvars and othervars contain

missing values, the estimation sample for a model fit using the default selection(plugin) will

likely differ from the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls() or many instrumvars.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running xpoivregress. Random numbers are used to

produce split samples for cross-fitting. So for all selection() options, if you want to reproduce

your results, you must either use this option or use set seed. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced op-

tions for all lassos. You specify a varlist followed by the options you want to apply to the las-

sos for these variables, where varlist consists of one or more variables from depvar, exovars, or

endovars. all or * may be used to specify depvar and all exovars and endovars. This op-

tion is repeatable as long as different variables are given in each specification. lasso options are

selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
When lasso(varlist, selection(. . .)) is specified, it overrides any global selection() option

for the variables in varlist. It also overrides the global sqrtlasso option for these variables. See

[LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables

from depvar, exovars, or endovars. This option is repeatable as long as different variables are given

in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified,

it overrides any global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with xpoivregress but are not shown in the dialog box:

reestimate is an advanced option that refits the xpoivregress model based on changes made to the

underlying lassos using lassoselect. After running xpoivregress, you can select a different 𝜆∗ for

one or more of the lassos estimated by xpoivregress. After selecting 𝜆∗, you type xpoivregress,
reestimate to refit the xpoivregress model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
xpoivregress performs cross-fit partialing-out lasso instrumental-variables linear regression. This

command estimates coefficients, standard errors, and confidence intervals and performs tests for vari-

ables of interest, both exogenous and endogenous, while using lassos to select from among potential

control variables and instruments.
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The instrumental-variables linear regression model is

𝑦 = dα′
𝑑 + fα′

𝑓 + xβ′ + 𝜖

where d are the endogenous variables, f are the exogenous variables for which we wish to make infer-

ences, and x are the potential control variables from which the lassos select. In addition, lassos select

from potential instrumental variables, z. xpoivregress reports estimated coefficients for α𝑑 and α𝑓.

However, cross-fit partialing-out does not provide estimates of the coefficients on the control variables

or their standard errors. No estimation results can be reported for β.

For an introduction to the cross-fit partialing-out lasso method for inference, as well as the double-

selection and partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use xpoivregress and the other lasso inference commands are

presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an

introduction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for comparisons of the different methods of fitting inferential models that are available in Stata.

See 6 Fitting an inferential model with endogenous covariates for examples and discussion specific to

models that account for endogenous covariates.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.

Stored results
xpoivregress stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(k inst) number of potential instruments

e(k inst sel) number of selected instruments

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(n xfolds) number of folds for cross-fitting

e(n resample) number of resamples

e(rank) rank of e(V)
Macros

e(cmd) xpoivregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(exog) exogenous variables

e(endog) endogenous variables

e(inst) potential instruments

e(inst sel) selected instruments

e(model) linear
e(title) title in estimation output
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e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
xpoivregress implements cross-fit partialing-out lasso instrumental-variables regression. See

Methods and formulas in [LASSO] xporegress for details about cross-fitting methods DML1 and DML2 and

resampling the partitions. SeeMethods and formulas in [LASSO] poivregress for details about partialing-

out lasso instrumental-variables regression. The model is

𝑦 = dα′
𝑑 + fα′

𝑓 + xβ′ + 𝜖

where d contains the 𝐽𝑑 endogenous covariates of interest, f contains the 𝐽𝑓 exogenous covariates of

interest, and x contains the 𝑝𝑥 controls. We also have 𝑝𝑧 outside instrumental variables, denoted by z,

that are correlated with d but not with 𝜖. The number of controls in x and the number of instruments in z

can be large and, in theory, can grow with the sample size; however, the number of nonzero elements in

β and nonzero coefficients of zmust not be too large, which is to say that the model must be sparse. See

Stata commands for inference in [LASSO] Lasso intro for a discussion on what it means for the model to

be sparse.

Cross-fit partialing-out lasso instrumental-variables regression algorithm

1. Randomly partition the sample into 𝐾 subsamples called folds.

2. Define 𝐼𝑘 to be the observations in fold 𝑘, and define 𝐼𝐶𝑘 to be the sample observations not in

fold 𝑘.
3. For each 𝑘 = 1, . . . , 𝐾, fill in the observations of 𝑖 ∈ 𝐼𝑘 for the 𝐽𝑑 + 𝐽𝑓 moment conditions

that identify α. These moment conditions use out-of-sample estimates of the high-dimensional

components estimated using the observations 𝑖 ∈ 𝐼𝐶𝑘.
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a. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, perform a linear lasso of 𝑦 on x to select controls x̃𝑘,𝑦.

This lasso can choose the lasso penalty parameter (𝜆∗) using one of the plugin estimators

for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear

lasso is the default.

b. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, fit a linear regression of 𝑦 on x̃𝑘,𝑦, and let ̂δ𝑘 be the esti-

mated coefficients on x̃𝑘,𝑦.

c. For the observations 𝑖 ∈ 𝐼𝑘, fill in the residual.

̃𝜌𝑖 = 𝑦𝑖 − x̃𝑘,𝑦,𝑖
̂δ
′
𝑘

d. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for each 𝑗 = 1, . . . , 𝐽𝑑, perform a linear lasso of 𝑑𝑗 on f,

x, and z to select the controls x̃𝑑,𝑘,𝑗 and the instruments ̃z𝑘,𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin

estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for

the linear lasso is the default.

e. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for each 𝑗 = 1, . . . , 𝐽𝑑, fit a linear regression of 𝑑𝑗 on f,

x̃𝑑,𝑘,𝑗 and ̃z𝑘,𝑗, and denote their coefficient estimates by π̂𝑘, 𝛄̂𝑘,𝑗, and θ̂𝑘,𝑗.

f. For the observations 𝑖 ∈ 𝐼𝑘, for each 𝑗 = 1, . . . , 𝐽𝑑, fill in the prediction for 𝑑𝑗,𝑖,

̂𝑑𝑗,𝑖 = f𝑖π̂
′
𝑘 + x̃𝑑,𝑘,𝑗,𝑖𝛄̂

′
𝑘,𝑗 + ̃z𝑘,𝑗,𝑖θ̂

′
𝑘,𝑗

g. Using observations 𝑖 ∈ 𝐼𝐶𝑘, for each 𝑗 = 1, . . . , 𝐽𝑑, perform a linear lasso of ̂𝑑𝑗 on x, and

let x̌𝑗 be the selected controls.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin

estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for

the linear lasso is the default.

h. Using observations 𝑖 ∈ 𝐼𝐶𝑘, for each 𝑗 = 1, . . . , 𝐽𝑑, fit a linear regression of
̂𝑑𝑗 on x̌𝑗, and

let 𝛄̌𝑗 denote the coefficient estimates.

i. For the observations 𝑖 ∈ 𝐼𝑘, for each 𝑗 = 1, . . . , 𝐽𝑑, fill in

̌𝑑𝑗,𝑖 = ̂𝑑𝑗,𝑖 − x̌𝑗,𝑖𝛄̌
′
𝑗

j. For the observations 𝑖 ∈ 𝐼𝑘, for each 𝑗 = 1, . . . , 𝐽𝑑, fill in

̃𝑑𝑗,𝑖 = 𝑑𝑗,𝑖 − x̌𝑗,𝑖𝛄̌
′
𝑗

k. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for each 𝑗 = 1, . . . , 𝐽𝑓, perform a linear lasso of 𝑓𝑗 on x to

select the controls x̃𝑓,𝑘,𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin

estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for

the linear lasso is the default.

l. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for each 𝑗 = 1, . . . , 𝐽𝑓, fit a linear regression of 𝑓𝑗 on

x̃𝑓,𝑘,𝑗, and let 𝛄̂𝑓,𝑘,𝑗 denote the coefficient estimates.
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m. For the observations 𝑖 ∈ 𝐼𝑘, for each 𝑗 = 1, . . . , 𝐽𝑓, fill in the residuals

̃𝑓𝑗,𝑖 = 𝑓𝑗,𝑖 − x̃𝑓,𝑘,𝑗𝛄̂
′
𝑓,𝑘,𝑗

n. For the observations 𝑖 ∈ 𝐼𝑘, form the vector of instruments

w𝑖 = ( ̌𝑑1,𝑖, . . . , ̌𝑑𝐽𝑑,𝑖, ̃𝑓1,𝑖, . . . , ̃𝑓𝐽𝑓,𝑖)

o. For the observations 𝑖 ∈ 𝐼𝑘, form the vector of partialed-out covariates

p𝑖 = ( ̃𝑑1,𝑖, . . . , ̃𝑑𝐽𝑑,𝑖, ̃𝑓1,𝑖, . . . , ̃𝑓𝐽𝑓,𝑖)

4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1
𝑛

𝑛
∑
𝑖=1

w′
𝑖( ̃𝜌𝑖 − p𝑖α

′) = 0

For DML1, α̂ is given by

α̂ = 1
𝐾

𝐾
∑
𝑘=1

α̂𝑘

where α̂𝑘 is computed by solving the sample-moment equations

1
𝑛𝑘

∑
𝑖∈𝐼𝑘

w′
𝑖( ̃𝜌𝑖 − p𝑖α

′
𝑘) = 0

and 𝑛𝑘 is the number of observations in 𝐼𝑘.

5. The VCE is estimated by

V̂ar(α̂) = 1
𝑛
Ĵ−1

0 𝚿̂ (Ĵ−1
0 )

′

where

𝚿̂ = 1
𝐾

𝐾
∑
𝑘=1

𝚿̂𝑘

𝚿̂𝑘 = 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂𝑖ψ̂
′
𝑖

ψ̂𝑖 = w′
𝑖( ̃𝜌𝑖 − p𝑖α̂

′)

Ĵ0 = 1
𝐾

𝐾
∑
𝑘=1

( 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂
𝑎
𝑖 )

and

ψ̂
𝑎
𝑖 = w′

𝑖p𝑖

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 3a, 3d, 3g, and 3k

choose their penalty parameters (𝜆∗).
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Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] poivregress — Partialing-out lasso instrumental-variables regression

[R] ivregress — Single-equation instrumental-variables regression

[U] 20 Estimation and postestimation commands



xpologit — Cross-fit partialing-out lasso logistic regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
xpologit fits a lasso logistic regression model and reports odds ratios along with standard errors,

test statistics, and confidence intervals for specified covariates of interest. The cross-fit partialing-out

method is used to estimate effects for these variables and to select from potential control variables to be

included in the model.

Quick start
Report an odds ratio from a logistic regression of y on d1, and include x1 to x100 as potential control

variables to be selected by lassos

xpologit y d1, controls(x1-x100)

Same as above, and estimate odds ratios for the levels of categorical d2
xpologit y d1 i.d2, controls(x1-x100)

Same as above, but use 20 folds instead of 10 for cross-fitting

xpologit y d1 i.d2, controls(x1-x100) xfolds(20)

Same as above, but repeat the cross-fitting procedure 15 times, and average the results

xpologit y d1 i.d2, controls(x1-x100) xfolds(20) resample(15)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

xpologit y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

xpologit y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

xpologit y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
xpologit y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Menu
Statistics > Lasso > Lasso inferential models > Binary outcomes > Cross-fit partialing-out logit model

354
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Syntax
xpologit depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos

xfolds(#) use # folds for cross-fitting

resample[(#)] repeat sample splitting # times and average results

technique(dml1 | dml2) use either double machine learning 1 (dml1) or double
machine learning 2 (dml2) estimation technique;
dml2 is the default

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

offset(varname) include varname in the lasso and model for depvar with
its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
or report odds ratios; the default

coef report estimated coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed
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Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. xpologit fits lassos for depvar
and each of the varsofinterest. alwaysvars are variables that are always to be included in these lassos.

alwaysvars are optional. othervars are variables that each lasso will choose to include or exclude.

That is, each lasso will select a subset of othervars and other lassos will potentially select different

subsets of othervars. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.

This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar

is always a logit lasso. The option lasso() can be used with sqrtlasso to specify that regular

lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See

[LASSO] lasso options.

xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10).
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resample[(#)] specifies that sample splitting be repeated and results averaged. This reduces the effects

of the randomness of sample splitting on the estimated coefficients. Not specifying resample or

resample(#) is equivalent to specifying resample(1). In other words, by default no resampling

is done. Specifying resample alone is equivalent to specifying resample(10). That is, sample

splitting is repeated 10 times. For each sample split, lassos are computed. So when this option is

not specified, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos are

repeated xfolds(#)×resample(#) times. Thus, while we recommend using resample to get final

results, note that it can be an extremely time-consuming procedure.

technique(dml1 | dml2) specifies which cross-fitting technique is used, either double machine learning

1 (dml1) or double machine learning 2 (dml2). For both techniques, the initial estimation steps are the

same. The sample is split into𝐾 = xfolds(#) folds. Then, coefficients on the controls are estimated

using only the observations not in the 𝑘th fold, for 𝑘 = 1, 2, . . . , 𝐾. Moment conditions for the

coefficients on the varsofinterest are formed using the observations in fold 𝑘. The default technique,
dml2, solves the moment conditions jointly across all the observations. The optional technique, dml1,
solves the moment conditions in each fold 𝑘 to produce𝐾 different estimates, which are then averaged

to form a single vector of estimates. See Methods and formulas.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

offset(varname) specifies that varname be included in the lasso and model for depvar with its coeffi-

cient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.
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or reports the estimated coefficients transformed to odds ratios, that is, 𝑒𝛼. Standard errors and confi-

dence intervals are similarly transformed. or is the default.

coef reports the estimated coefficients 𝛼 rather than the odds ratios (𝑒𝛼). This option affects how results

are displayed, not how they are estimated. coef may be specified at estimation or when replaying

previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running xpologit. Random numbers are used to produce

split samples for cross-fitting. So for all selection() options, if you want to reproduce your results,

you must either use this option or use set seed. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables from

varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This

option is repeatable as long as different variables are given in each specification. lasso options are

selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any global selection() op-

tion for the variables in varlist. See [LASSO] lasso options.

The following options are available with xpologit but are not shown in the dialog box:

reestimate is an advanced option that refits the xpologit model based on changes made to the under-

lying lassos using lassoselect. After running xpologit, you can select a different 𝜆∗ for one or

more of the lassos estimated by xpologit. After selecting 𝜆∗, you type xpologit, reestimate to

refit the xpologit model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.
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noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
xpologit performs cross-fit partialing-out lasso logistic regression. This command estimates odds

ratios, standard errors, and confidence intervals and performs tests for variables of interest while using

lassos to select from among potential control variables.

The logistic regression model is

Pr(𝑦 = 1|d, x) = exp(dα′ + xβ′)
1 + exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables

from which the lassos select. xpologit estimates the α coefficients and reports the corresponding odds

ratios, 𝑒𝛼. However, cross-fit partialing-out does not provide estimates of the coefficients on the control

variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the cross-fit partialing-out lasso method for inference, as well as the double-

selection and partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use xpologit and the other lasso inference commands are pre-

sented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an intro-

duction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for comparisons of the different methods of fitting inferential models that are available in Stata.

Everything we say there about methods of selection is applicable to both linear and nonlinear models.

See 3 Fitting logit inferential models to binary outcomes. What is different? for examples and discussion

specific to logistic regression models. The primary difference from linear models involves interpreting

the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.

Stored results
xpologit stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(n xfolds) number of folds for cross-fitting

e(n resample) number of resamples

e(rank) rank of e(V)



xpologit — Cross-fit partialing-out lasso logistic regression 360

Macros

e(cmd) xpologit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) logit
e(title) title in estimation output

e(offset) linear offset variable

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
xpologit implements cross-fit partialing-out lasso logit regression (XPOLLR) as described in Cher-

nozhukov et al. (2018), where they derived two versions of cross fitting that are known as double machine

learning 1 (DML1) and double machine learning 2 (DML2). DML2 is the default method and corresponds

with option technique(dml2). Specify option technique(dml1) to get DML1 instead.

Methods DML1 and DML2 have a similar structure. Each does the following.

1. Partitions the sample into 𝐾 folds.

2. Uses the postlasso estimates computed using the observations not in a specific fold to fill in the

moment conditions for the observations in that fold.

DML1 solves the moment conditions using the observations in each fold to produce 𝐾 different esti-

mates and then averages these 𝐾 estimates to produce the final estimate for the coefficients of interest.

DML2 uses all the observations to solve the moment conditions to produce a single final estimate for the

coefficients of interest.
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The 𝐾 folds are chosen once by default. Specify option resample(#) to have the 𝐾 folds randomly

selected # times. This resampling removes the dependence of the estimator on any specifically selected

folds, at the cost of more computer time. See Methods and formulas in [LASSO] xporegress for details

about resampling.

The regression model is

E[𝑦|d, x] = 𝐺(dα′ + 𝛽0 + xβ′)

where 𝐺(𝑎) = exp(𝑎)/{1 + exp(𝑎)}, d contains the 𝐽 covariates of interest, and x contains the 𝑝
controls. The number of covariates in d must be small and fixed. The number of controls in x can be

large and, in theory, can grow with the sample size; however, the number of nonzero elements in βmust

not be too large, which is to say that the model must be sparse.

XPOLLR algorithm

1. Randomly partition the sample into 𝐾 subsamples called folds.

2. Define 𝐼𝑘 to be the observations in fold 𝑘, and define 𝐼𝐶𝑘 to be the sample observations not in

fold 𝑘.
3. For each 𝑘 = 1, . . . , 𝐾, fill in the observations of 𝑖 ∈ 𝐼𝑘 for the 𝐽 moment conditions that identify

α. These moment conditions use out-of-sample estimates of the high-dimensional components

estimated using the observations 𝑖 ∈ 𝐼𝐶𝑘.

a. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, perform a logit lasso of 𝑦 on d and x to select controls x̃𝑘,𝑦.

This logit lasso can choose the lasso penalty parameter (𝜆∗
𝑘) using the plugin estimator,

adaptive lasso, or CV. The plugin value is the default.

b. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, fit a logit regression of 𝑦 on d and x̃𝑘,𝑦, let α̃𝑘 be the

estimated coefficients on d, and let ̃δ𝑘 be the estimated coefficients on x̃𝑘,𝑦.

c. For the observations 𝑖 ∈ 𝐼𝑘, fill in the prediction for the high-dimensional component using

the out-of-sample estimate ̃δ𝑘.

̃𝑠𝑖 = x̃𝑘,𝑦,𝑖
̃δ
′
𝑘

d. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x using

observation-level weights

𝑤𝑖 = 𝐺′(d𝑖α̃
′
𝑘 + ̃𝑠𝑖)

where 𝐺′() is the derivative of 𝐺(), and denote the selected controls by x̃𝑘,𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin

estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for

the linear lasso is the default.

e. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for 𝑗 = 1, . . . , 𝐽, fit a linear regression of 𝑑𝑗 on x̃𝑘,𝑗, and

denote the coefficient estimates by 𝛄̂𝑘,𝑗.

f. For each observation 𝑖 ∈ 𝐼𝑘, and for 𝑗 = 1, . . . , 𝐽, fill in the instrument

𝑧𝑗,𝑖 = 𝑑𝑗,𝑖 − x̃𝑘,𝑗,𝑖𝛄̂
′
𝑘,𝑗

g. For each observation 𝑖 ∈ 𝐼𝑘, collect the instruments into a vector z𝑖 = (𝑧1,𝑖, 𝑧2,𝑖, . . . , 𝑧𝐽,𝑖).
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4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1
𝑛

𝑛
∑
𝑖=1

{𝑦𝑖 − 𝐺(d𝑖α
′ + ̃𝑠𝑖)} z′

𝑖 = 0

For DML1, α̂ is given by

α̂ = 1
𝐾

𝐾
∑
𝑘=1

α̂𝑘

where α̂𝑘 is computed by solving the sample-moment equations

1
𝑛𝑘

∑
𝑖∈𝐼𝑘

{𝑦𝑖 − 𝐺(d𝑖α
′
𝑘 + ̃𝑠𝑖)} z′

𝑖 = 0

and 𝑛𝑘 is the number of observations in 𝐼𝑘.

5. The VCE is estimated by

V̂ar( ̂𝛼) = 1
𝑛
Ĵ−1

0 𝚿̂ (Ĵ−1
0 )

′

where

𝚿̂ = 1
𝐾

𝐾
∑
𝑘=1

𝚿̂𝑘

𝚿̂𝑘 = 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂𝑖ψ̂
′
𝑖

ψ̂𝑖 = {𝑦𝑖 − 𝐺(d𝑖α̂
′ + ̃𝑠𝑖)} z′

𝑖

Ĵ0 = 1
𝐾

𝐾
∑
𝑘=1

( 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂
𝑎
𝑖 )

and

ψ̂
𝑎
𝑖 =

𝜕ψ̂𝑖
𝜕α̂

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 3a and 3d choose

their penalty parameters (𝜆∗).

Reference
Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018. Dou-

ble/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68. https:

//doi.org/10.1111/ectj.12097.

https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097
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Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dslogit — Double-selection lasso logistic regression

[LASSO] pologit — Partialing-out lasso logistic regression

[R] logit — Logistic regression, reporting coefficients

[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
xpopoisson fits a lasso Poisson regression model and reports incidence-rate ratios along with stan-

dard errors, test statistics, and confidence intervals for specified covariates of interest. The cross-fit

partialing-out method is used to estimate effects for these variables and to select from potential control

variables to be included in the model.

Quick start
Report an incidence-rate ratio from a Poisson regression of y on d1, and include x1 to x100 as potential

control variables to be selected by lassos

xpopoisson y d1, controls(x1-x100)

Same as above, and estimate incidence-rate ratios for the levels of categorical d2
xpopoisson y d1 i.d2, controls(x1-x100)

Same as above, but use 20 folds instead of 10 for cross-fitting

xpopoisson y d1 i.d2, controls(x1-x100) xfolds(20)

Same as above, but repeat the cross-fitting procedure 15 times, and average the results

xpopoisson y d1 i.d2, controls(x1-x100) xfolds(20) resample(15)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

xpopoisson y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

xpopoisson y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

xpopoisson y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
xpopoisson y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Menu
Statistics > Lasso > Lasso inferential models > Count outcomes > Cross-fit partialing-out Poisson model

364
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Syntax
xpopoisson depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos for varsofinterest

xfolds(#) use # folds for cross-fitting

resample[(#)] repeat sample splitting # times and average results

technique(dml1 | dml2) use either double machine learning 1 (dml1) or double
machine learning 2 (dml2) estimation technique;
dml2 is the default

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

offset(varname𝑜) include varname𝑜 in the lasso and model for depvar with
its coefficient constrained to be 1

exposure(varname𝑒) include ln(varname𝑒) in the lasso and model for depvar
with its coefficient constrained to be 1

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios; the default

coef report estimated coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed
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Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated

reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. xpopoisson fits lassos for

depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these

lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or

exclude. That is, each lasso will select a subset of othervars and other lassos will potentially select

different subsets of othervars. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.

This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar

is always a Poisson lasso. The option lasso() can be used with sqrtlasso to specify that regular

lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See

[LASSO] lasso options.

xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10).
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resample[(#)] specifies that sample splitting be repeated and results averaged. This reduces the effects

of the randomness of sample splitting on the estimated coefficients. Not specifying resample or

resample(#) is equivalent to specifying resample(1). In other words, by default no resampling

is done. Specifying resample alone is equivalent to specifying resample(10). That is, sample

splitting is repeated 10 times. For each sample split, lassos are computed. So when this option is

not specified, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos are

repeated xfolds(#)×resample(#) times. Thus, while we recommend using resample to get final

results, note that it can be an extremely time-consuming procedure.

technique(dml1 | dml2) specifies which cross-fitting technique is used, either double machine learning

1 (dml1) or double machine learning 2 (dml2). For both techniques, the initial estimation steps are the

same. The sample is split into𝐾 = xfolds(#) folds. Then, coefficients on the controls are estimated

using only the observations not in the 𝑘th fold, for 𝑘 = 1, 2, . . . , 𝐾. Moment conditions for the

coefficients on the varsofinterest are formed using the observations in fold 𝑘. The default technique,
dml2, solves the moment conditions jointly across all the observations. The optional technique, dml1,
solves the moment conditions in each fold 𝑘 to produce𝐾 different estimates, which are then averaged

to form a single vector of estimates. See Methods and formulas.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

offset(varname𝑜) specifies that varname𝑜 be included in the lasso and model for depvar with its co-

efficient constrained to be 1.

exposure(varname𝑒) specifies that ln(varname𝑒) be included in the lasso and model for depvar with

its coefficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.
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� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛼. Standard errors and

confidence intervals are similarly transformed. irr is the default.

coef reports the estimated coefficients 𝛼 rather than the incidence-rate ratios, 𝑒𝛼. This option affects

how results are displayed, not how they are estimated. coef may be specified at estimation or when

replaying previously estimated results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running xpopoisson. Random numbers are used to produce

split samples for cross-fitting. So for all selection() options, if you want to reproduce your results,

you must either use this option or use set seed. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables from

varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This

option is repeatable as long as different variables are given in each specification. lasso options are

selection(. . .), grid(. . .), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
When sqrtlasso(varlist, selection(. . .)) is specified, it overrides any global selection() op-

tion for the variables in varlist. See [LASSO] lasso options.
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The following options are available with xpopoisson but are not shown in the dialog box:

reestimate is an advanced option that refits the xpopoisson model based on changes made to the

underlying lassos using lassoselect. After running xpopoisson, you can select a different 𝜆∗ for

one or more of the lassos estimated by xpopoisson. After selecting 𝜆∗, you type xpopoisson,
reestimate to refit the xpopoisson model based on the newly selected 𝜆∗’s.

reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples
xpopoisson performs cross-fit partialing-out lasso Poisson regression. This command estimates

incidence-rate ratios, standard errors, and confidence intervals and performs tests for variables of in-

terest while using lassos to select from among potential control variables.

The Poisson regression model is

E[𝑦|d, x] = exp(dα′ + xβ′)

where d are the variables for which we wish to make inferences and x are the potential control variables

from which the lassos select. xpopoisson estimates the α coefficients and reports the corresponding

incidence-rate ratios, 𝑒𝛼. However, cross-fit partialing-out does not provide estimates of the coefficients

on the control variables (β) or their standard errors. No estimation results can be reported for β.

For an introduction to the cross-fit partialing-out lasso method for inference, as well as the double-

selection and partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use xpopoisson and the other lasso inference commands are

presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an

introduction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for comparisons of the different methods of fitting inferential models that are available in Stata.

Everything we say there about methods of selection is applicable to both linear and nonlinear models.

See 4 Fitting inferential models to count outcomes. What is different? for examples and discussion

specific to Poisson regression models. The primary difference from linear models involves interpreting

the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.

Stored results
xpopoisson stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest
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e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(n xfolds) number of folds for cross-fitting

e(n resample) number of resamples

e(rank) rank of e(V)

Macros

e(cmd) xpopoisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) poisson
e(title) title in estimation output

e(offset) linear offset variable

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
xpopoisson implements cross-fit partialing-out lasso Poisson regression (XPOLPR) as described in

Chernozhukov et al. (2018), where they derived two versions of cross-fitting that are known as double

machine learning 1 (DML1) and double machine learning 2 (DML2). DML2 is the default method and

corresponds with option technique(dml2). Specify option technique(dml1) to get DML1 instead.

Methods DML1 and DML2 have a similar structure. Each does the following:

1. Partitions the sample into 𝐾 folds.

2. Uses the postlasso estimates computed using the observations not in a specific fold to fill in the

moment conditions for the observations in that fold.
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DML1 solves the moment conditions using the observations in each fold to produce 𝐾 different esti-

mates and then averages these 𝐾 estimates to produce the final estimate for the coefficients of interest.

DML2 uses all the observations to solve the moment conditions to produce a single final estimate for the

coefficients of interest.

The 𝐾 folds are chosen once by default. Specify option resample(#) to have the 𝐾 folds randomly

selected # times. This resampling removes the dependence of the estimator on any specifically selected

folds, at the cost of more computer time. See Methods and formulas in [LASSO] xporegress for details

about resampling.

The regression model is

E[𝑦|d, x] = 𝐺(dα′ + 𝛽0 + xβ′)
where 𝐺(𝑎) = exp(𝑎), d contains the 𝐽 covariates of interest, and x contains the 𝑝 controls. The number

of covariates in d must be small and fixed. The number of controls in x can be large and, in theory, can

grow with the sample size; however, the number of nonzero elements in β must not be too large, which

is to say that the model must be sparse.

XPOLPR algorithm

1. Randomly partition the sample into 𝐾 subsamples called folds.

2. Define 𝐼𝑘 to be the observations in fold 𝑘, and define 𝐼𝐶𝑘 to be the sample observations not in

fold 𝑘.
3. For each 𝑘 = 1, . . . , 𝐾, fill in the observations of 𝑖 ∈ 𝐼𝑘 for the 𝐽 moment conditions that identify

α. These moment conditions use out-of-sample estimates of the high-dimensional components

estimated using the observations 𝑖 ∈ 𝐼𝐶𝑘.

a. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, perform a Poisson lasso of 𝑦 on d and x to select controls

x̃𝑘,𝑦.

This Poisson lasso can choose the lasso penalty parameter (𝜆∗
𝑘) using the plugin estimator,

adaptive lasso, or CV. The plugin value is the default.

b. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, fit a Poisson regression of 𝑦 on d and x̃𝑘,𝑦, let α̃𝑘 be the

estimated coefficients on d, and let ̃δ𝑘 be the estimated coefficients on x̃𝑘,𝑦.

c. For the observations 𝑖 ∈ 𝐼𝑘, fill in the prediction for the high-dimensional component using

the out-of-sample estimate ̃δ𝑘.

̃𝑠𝑖 = x̃𝑘,𝑦,𝑖
̃δ
′
𝑘

d. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x using

observation-level weights

𝑤𝑖 = 𝐺′(d𝑖α̃
′
𝑘 + ̃𝑠𝑖)

where 𝐺′(⋅) is the derivative of 𝐺(⋅), and denote the selected controls by x̃𝑘,𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin

estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for

the linear lasso is the default.

e. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for 𝑗 = 1, . . . , 𝐽, fit a linear regression of 𝑑𝑗 on x̃𝑘,𝑗, and

denote the coefficient estimates by 𝛄̂𝑘,𝑗.

f. For each observation 𝑖 ∈ 𝐼𝑘, and for 𝑗 = 1, . . . , 𝐽, fill in the instrument

𝑧𝑗,𝑖 = 𝑑𝑗,𝑖 − x̃𝑘,𝑗,𝑖𝛄̂
′
𝑘,𝑗
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g. For each observation 𝑖 ∈ 𝐼𝑘, collect the instruments into a vector z𝑖 = (𝑧1,𝑖, 𝑧2,𝑖, . . . , 𝑧𝐽,𝑖).
4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1
𝑛

𝑛
∑
𝑖=1

{𝑦𝑖 − 𝐺(d𝑖α
′ + ̃𝑠𝑖)} z′

𝑖 = 0

For DML1, α̂ is given by

α̂ = 1
𝐾

𝐾
∑
𝑘=1

α̂𝑘

where α̂𝑘 is computed by solving the sample-moment equations

1
𝑛𝑘

∑
𝑖∈𝐼𝑘

{𝑦𝑖 − 𝐺(d𝑖α
′
𝑘 + ̃𝑠𝑖)} z′

𝑖 = 0

and 𝑛𝑘 is the number of observations in 𝐼𝑘.

5. The VCE is estimated by

V̂ar( ̂𝛼) = 1
𝑛
Ĵ−1

0 𝚿̂ (Ĵ−1
0 )

′

where

𝚿̂ = 1
𝐾

𝐾
∑
𝑘=1

𝚿̂𝑘

𝚿̂𝑘 = 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂𝑖ψ̂
′
𝑖

ψ̂𝑖 = {𝑦𝑖 − 𝐺(d𝑖α̂
′ + ̃𝑠𝑖)} z′

𝑖

Ĵ0 = 1
𝐾

𝐾
∑
𝑘=1

( 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂
𝑎
𝑖 )

and

ψ̂
𝑎
𝑖 =

𝜕ψ̂𝑖
𝜕α̂

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 3a and 3d choose

their penalty parameters (𝜆∗).

Reference
Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018. Dou-

ble/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68. https:

//doi.org/10.1111/ectj.12097.

https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097
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Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dspoisson — Double-selection lasso Poisson regression

[LASSO] popoisson — Partialing-out lasso Poisson regression

[R] poisson — Poisson regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see

Description
xporegress fits a lasso linear regression model and reports coefficients along with standard errors,

test statistics, and confidence intervals for specified covariates of interest. The cross-fit partialing-out

method is used to estimate effects for these variables and to select from potential control variables to be

included in the model.

Quick start
Estimate a coefficient for d1 in a linear regression of y on d1, and include x1 to x100 as potential control

variables to be selected by lassos

xporegress y d1, controls(x1-x100)

Same as above, and estimate coefficients for the levels of categorical d2
xporegress y d1 i.d2, controls(x1-x100)

Same as above, but use 20 folds instead of 10 for cross-fitting

xporegress y d1 i.d2, controls(x1-x100) xfolds(20)

Same as above, but repeat the cross-fitting procedure 15 times, and average the results

xporegress y d1 i.d2, controls(x1-x100) xfolds(20) resample(15)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

xporegress y d1 i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

xporegress y d1 i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

xporegress y d1 i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
xporegress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Menu
Statistics > Lasso > Lasso inferential models > Continuous outcomes > Cross-fit partialing-out model

374
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Syntax
xporegress depvar varsofinterest [ if ] [ in ],

controls([(alwaysvars)] othervars) [ options ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model
∗ controls([(alwaysvars)] othervars) alwaysvars and othervars make up the set of control

variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

sqrtlasso use square-root lassos

xfolds(#) use # folds for cross-fitting

resample[(#)] repeat sample splitting # times and average results

technique(dml1 | dml2) use either double machine learning 1 (dml1) or double
machine learning 2 (dml2) estimation technique;
dml2 is the default

semi use semipartialing-out lasso regression estimator

missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

SE/Robust

vce(vcetype) vcetype may be robust (the default) or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log display or suppress an iteration log

verbose display a verbose iteration log

rseed(#) set random-number seed

Advanced

lasso(varlist, lasso options) specify options for the lassos for variables in varlist; may be
repeated

sqrtlasso(varlist, lasso options) specify options for square-root lassos for variables in varlist;
may be repeated
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reestimate refit the model after using lassoselect to select a different
𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

∗controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted

variables. Control variables are also known as confounding variables. xporegress fits lassos for

depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these

lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or

exclude. That is, each lasso will select a subset of othervars and other lassos will potentially select

different subsets of othervars. controls() is required.

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos

are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the

selection method for all of these lassos. You can specify different selection methods for different

lassos using the option lasso() or sqrtlasso(). When lasso() or sqrtlasso() is used to specify
a different selection method for the lassos of some variables, they override the global setting made

using selection() for the specified variables.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding the

global sqrtlasso setting for these variables. See [LASSO] lasso options.

xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10).

resample[(#)] specifies that sample splitting be repeated and results averaged. This reduces the effects

of the randomness of sample splitting on the estimated coefficients. Not specifying resample or

resample(#) is equivalent to specifying resample(1). In other words, by default no resampling

is done. Specifying resample alone is equivalent to specifying resample(10). That is, sample

splitting is repeated 10 times. For each sample split, lassos are computed. So when this option is
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not specified, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos are

repeated xfolds(#)×resample(#) times. Thus, while we recommend using resample to get final

results, note that it can be an extremely time-consuming procedure.

technique(dml1 | dml2) specifies which cross-fitting technique is used, either double machine learning

1 (dml1) or double machine learning 2 (dml2). For both techniques, the initial estimation steps are the

same. The sample is split into𝐾 = xfolds(#) folds. Then, coefficients on the controls are estimated

using only the observations not in the 𝑘th fold, for 𝑘 = 1, 2, . . . , 𝐾. Moment conditions for the

coefficients on the varsofinterest are formed using the observations in fold 𝑘. The default technique,
dml2, solves the moment conditions jointly across all the observations. The optional technique, dml1,
solves the moment conditions in each fold 𝑘 to produce𝐾 different estimates, which are then averaged

to form a single vector of estimates. See Methods and formulas.

semi specifies that the semipartialing-out lasso regression estimator be used instead of the fully

partialing-out lasso estimator, which is the default. See Methods and formulas.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-

missing observations of variables in the final model. In all cases, any observation with missing values

for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the

lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and

their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample

used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with

missing values for any othervars not selected will be added to the estimation sample (provided there

are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It

does, however, have the consequence that estimation samples can change when selected variables

differ in models fit using different selection methods. That is, when othervars contain missing values,

the estimation sample for a model fit using the default selection(plugin) will likely differ from

the estimation sample for a model fit using, for example, selection(cv).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

When vce(cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this

affects how the log-likelihood function is computed and how the sample is split in cross-validation;

seeMethods and formulas in [LASSO] lasso. Specifying vce(cluster clustvar)may lead to different

selected controls and therefore to different point estimates for your variable of interest when compared

to the estimation that ignores clustering.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Optimization �

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of

the lasso estimations for these selection methods, which can be time consuming when there are many

othervars specified in controls().

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running xporegress. Random numbers are used to produce

split samples for cross-fitting. So for all selection() options, if you want to reproduce your results,

you must either use this option or use set seed. See [R] set seed.

� � �
Advanced �

lasso(varlist, lasso options) lets you set different options for different lassos, or advanced options

for all lassos. You specify a varlist followed by the options you want to apply to the lassos for

these variables. varlist consists of one or more variables from depvar or varsofinterest. all or

* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different

variables are given in each specification. lasso options are selection(. . .), grid(. . .), stop(#),
tolerance(#), dtolerance(#), and cvtolerance(#). When lasso(varlist, selection(. . .))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides

the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso(varlist, lasso options) works like the option lasso(), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables

from depvar or varsofinterest. This option is repeatable as long as different variables are given

in each specification. lasso options are selection(. . .), grid(. . .), stop(#), tolerance(#),
dtolerance(#), and cvtolerance(#). When sqrtlasso(varlist, selection(. . .)) is specified,

it overrides any global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with xporegress but are not shown in the dialog box:

reestimate is an advanced option that refits the xporegress model based on changes made to the

underlying lassos using lassoselect. After running xporegress, you can select a different 𝜆∗ for

one or more of the lassos estimated by xporegress. After selecting 𝜆∗, you type xporegress,
reestimate to refit the xporegress model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.
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Remarks and examples
xporegress performs cross-fit partialing-out lasso linear regression. This command estimates coef-

ficients, standard errors, and confidence intervals and performs tests for variables of interest while using

lassos to select from among potential control variables.

The linear regression model is

E[𝑦|d, x] = dα′ + xβ′

where d are the variables for which we wish to make inferences and x are the potential control variables

from which the lassos select. xporegress reports estimated coefficients for α. However, cross-fit

partialing-out does not provide estimates of the coefficients on the control variables (β) or their standard
errors. No estimation results can be reported for β.

For an introduction to the cross-fit partialing-out lasso method for inference, as well as the double-

selection and partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use xporegress and the other lasso inference commands are

presented in [LASSO] Inference examples. In particular, we recommend reading 1 Overview for an

introduction to the examples and to the vl command, which provides tools for working with the large lists

of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential

models for examples of fitting inferential lasso linear models and comparisons of the different methods

available in Stata.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring

inferential model lassos in [LASSO] Inference examples.

Stored results
xporegress stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k varsofinterest) number of variables of interest

e(k controls) number of potential control variables

e(k controls sel) number of selected control variables

e(df) degrees of freedom for test of variables of interest

e(chi2) 𝜒2

e(p) 𝑝-value for test of variables of interest
e(n xfolds) number of folds for cross-fitting

e(n resample) number of resamples

e(rank) rank of e(V)

Macros

e(cmd) xporegress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(lasso depvars) names of dependent variables for all lassos

e(varsofinterest) variables of interest

e(controls) potential control variables

e(controls sel) selected control variables

e(model) linear
e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald; type of 𝜒2 test

e(vce) vcetype specified in vce()



xporegress — Cross-fit partialing-out lasso linear regression 380

e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
xporegress implements cross-fit partialing-out lasso linear regression as described in Chernozhukov

et al. (2018), where they derived two versions of cross-fitting that are known as double machine learning

1 (DML1) and double machine learning 2 (DML2). DML2 is the default method and corresponds with

option technique(dml2). Specify option technique(dml1) to get DML1 instead.

Methods DML1 and DML2 have a similar structure. Each does the following.

1. Partitions the sample into 𝐾 folds.

2. Uses the postlasso estimates computed using the observations not in a specific fold to fill in the

moment conditions for the observations in that fold.

DML1 solves the moment conditions using the observations in each fold to produce 𝐾 different esti-

mates and then averages these 𝐾 estimates to produce the final estimate for the coefficients of interest.

DML2 uses all the observations to solve the moment conditions to produce a single final estimate for the

coefficients of interest.

xporegress implements two methods for the partialing-out lasso regression. We call the de-

fault method partialing-out lasso regression (POLR). We call the optional method, obtained by spec-

ifying option semi, a semipartialing-out lasso regression (SPOLR). See Methods and formulas in

[LASSO] poregress for a brief literature review of POLR and SPOLR.

The regression model is

E[𝑦|d, x] = dα′ + 𝛽0 + xβ′

where d contains the 𝐽 covariates of interest and x contains the 𝑝 controls. The number of covariates in

d must be small and fixed. The number of controls in x can be large and, in theory, can grow with the

sample size; however, the number of nonzero elements in β must not be too large, which is to say that

the model must be sparse.
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Cross-fit POLR algorithm

1. Randomly partition the sample into 𝐾 subsamples called folds.

2. Define 𝐼𝑘 to be the observations in fold 𝑘, and define 𝐼𝐶𝑘 to be the sample observations not in

fold 𝑘.
3. For each 𝑘 = 1, . . . , 𝐾, fill in the observations of 𝑖 ∈ 𝐼𝑘 for the 𝐽 moment conditions that identify

α. These moment conditions use out-of-sample estimates of the high-dimensional components

estimated using the observations 𝑖 ∈ 𝐼𝐶𝑘.

a. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, perform a linear lasso of 𝑦 on x to select covariates x̃𝑘,𝑦.

This lasso can choose the lasso penalty parameter (𝜆∗) using one of the plugin estimators

for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear

lasso is the default.

b. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, fit a linear regression of 𝑦 on x̃𝑘,𝑦, and let ̂δ𝑘 be the esti-

mated coefficients on x̃𝑘,𝑦.

c. For the observations 𝑖 ∈ 𝐼𝑘, fill in the partial outcome.

̃𝑦𝑖 = 𝑦𝑖 − x̃𝑘,𝑦,𝑖
̂δ
′
𝑘

d. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for each 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x to

select covariates x̃𝑘,𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin

estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for

the linear lasso is the default.

e. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for 𝑗 = 1, . . . , 𝐽, fit a linear regression of 𝑑𝑗 on x̃𝑘,𝑗, and

denote the coefficient estimates by 𝛄̂𝑘,𝑗.

f. For each observation 𝑖 ∈ 𝐼𝑘, and for 𝑗 = 1, . . . , 𝐽, fill in the instrument

𝑧𝑗,𝑖 = 𝑑𝑗,𝑖 − x̃𝑘,𝑗,𝑖𝛄̂
′
𝑘,𝑗

g. For each observation 𝑖 ∈ 𝐼𝑘, collect the instruments into a vector z𝑖 = (𝑧1,𝑖, 𝑧2,𝑖, . . . , 𝑧𝐽,𝑖).
4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1
𝑛

𝑛
∑
𝑖=1

z′
𝑖( ̃𝑦𝑖 − z𝑖α

′) = 0

For DML1, α̂ is given by

α̂ = 1
𝐾

𝐾
∑
𝑘=1

α̂𝑘

where α̂𝑘 is computed by solving the sample-moment equations

1
𝑛𝑘

∑
𝑖∈𝐼𝑘

z′
𝑖( ̃𝑦𝑖 − z𝑖α

′
𝑘) = 0

and 𝑛𝑘 is the number of observations in 𝐼𝑘.
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5. The VCE is estimated by

V̂ar(α̂) = 1
𝑛
Ĵ−1

0 𝚿̂ (Ĵ−1
0 )

′

where

𝚿̂ = 1
𝐾

𝐾
∑
𝑘=1

𝚿̂𝑘

𝚿̂𝑘 = 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂𝑖ψ̂
′
𝑖

ψ̂𝑖 = z′
𝑖( ̃𝑦𝑖 − z𝑖α̂

′)

Ĵ0 = 1
𝐾

𝐾
∑
𝑘=1

( 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂
𝑎
𝑖 )

and

ψ̂
𝑎
𝑖 = z′

𝑖z𝑖

Cross-fit SPOLR algorithm

1. Randomly partition the sample into 𝐾 subsamples called folds.

2. Define 𝐼𝑘 to be the observations in fold 𝑘, and define 𝐼𝐶𝑘 to be the sample observations not in

fold 𝑘.
3. For each 𝑘 = 1, . . . , 𝐾, fill in the observations of 𝑖 ∈ 𝐼𝑘 for the 𝐽 moment conditions that identify

α. These moment conditions use out-of-sample estimates of the high-dimensional components

estimated using the observations 𝑖 ∈ 𝐼𝐶𝑘.

a. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, perform a linear lasso of 𝑦 on d and x to select covariates

x̃𝑘,𝑦.

This lasso can choose the lasso penalty parameter (𝜆∗) using one of the plugin estimators

for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear

lasso is the default.

b. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, fit a linear regression of 𝑦 on d and x̃𝑘,𝑦, and let
̂δ𝑘 be the

estimated coefficients on x̃𝑘,𝑦.

c. For the observations 𝑖 ∈ 𝐼𝑘, fill in the partial outcome.

̃𝑦𝑖 = 𝑦𝑖 − x̃𝑘,𝑦,𝑖
̂δ
′
𝑘

d. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for each 𝑗 = 1, . . . , 𝐽, perform a linear lasso of 𝑑𝑗 on x to

select covariates x̃𝑘,𝑗.

Each of these lassos can choose the lasso penalty parameter (𝜆∗
𝑗) using one of the plugin

estimators for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for

the linear lasso is the default.

e. Using the observations 𝑖 ∈ 𝐼𝐶𝑘, for 𝑗 = 1, . . . , 𝐽, fit a linear regression of 𝑑𝑗 on x̃𝑘,𝑗, and

denote the coefficient estimates by 𝛄̂𝑘,𝑗.
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f. For each observation 𝑖 ∈ 𝐼𝑘, and for 𝑗 = 1, . . . , 𝐽, fill in the instrument

𝑧𝑗,𝑖 = 𝑑𝑗,𝑖 − x̃𝑘,𝑗,𝑖𝛄̂
′
𝑘,𝑗

g. For each observation 𝑖 ∈ 𝐼𝑘, collect the instruments into a vector z𝑖 = (𝑧1,𝑖, 𝑧2,𝑖, . . . , 𝑧𝐽,𝑖).
4. Compute the point estimates.

For DML2, compute α̂ by solving the following sample-moment equations.

1
𝑛

𝑛
∑
𝑖=1

( ̃𝑦𝑖 − d𝑖α
′)z′

𝑖 = 0

For DML1, α̂ is given by

α̂ = 1
𝐾

𝐾
∑
𝑘=1

α̂𝑘

where α̂𝑘 is computed by solving the sample-moment equations

1
𝑛𝑘

∑
𝑖∈𝐼𝑘

( ̃𝑦𝑖 − d𝑖α̂
′
𝑘)z′

𝑖 = 0

and 𝑛𝑘 is the number of observations in 𝐼𝑘.

5. The VCE is estimated by

V̂ar(α̂) = 1
𝑛
Ĵ−1

0 𝚿̂ (Ĵ−1
0 )

′

where

𝚿̂ = 1
𝐾

𝐾
∑
𝑘=1

𝚿̂𝑘

𝚿̂𝑘 = 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂𝑖ψ̂
′
𝑖

ψ̂𝑖 = ( ̃𝑦𝑖 − d𝑖α̂
′)z′

𝑖

Ĵ0 = 1
𝐾

𝐾
∑
𝑘=1

( 1
𝑛𝑘

∑
𝑖∈𝐼𝑘

ψ̂
𝑎
𝑖 )

and

ψ𝑎
𝑖 = d𝑖z

′
𝑖

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 3a and 3d of both

algorithms choose their penalty parameters (𝜆∗).
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Resampling the partitions

The 𝐾 folds are chosen once by default. Specify option resample(#) to have the 𝐾 folds randomly

selected # times. This resampling removes the dependence of the estimator on any specifically selected

folds, at the cost of more computer time.

Let 𝑆 be the specified number of resamples.

1. For each random partition 𝑠 = 1, . . . , 𝑆, use a cross-fit estimator to obtain the DM1 or the DM2

point estimates α̂𝑠 and the estimated VCE V̂ar(α̂𝑠).
2. The mean resampling-corrected point estimates are

α̃ = 1
𝑆

𝑆
∑
𝑠=1

α̂𝑠

3. The mean resampling-corrected estimate of the VCE is

Ṽar(α̃) = 1
𝑆

𝑆
∑
𝑠=1

{ V̂ar(α̂𝑠) + (α̂𝑠 − α̃)(α̂𝑠 − α̃)′}

Reference
Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018. Dou-

ble/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1–C68. https:

//doi.org/10.1111/ectj.12097.

Also see
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[LASSO] dsregress — Double-selection lasso linear regression

[LASSO] poregress — Partialing-out lasso linear regression

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097


Glossary

adaptive lasso. Adaptive lasso is one of three methods that Stata provides for fitting lasso models. The

other two methods are cross-validation and plugins. Adaptive lasso tends to include fewer covariates

than cross-validation and more covariates than plugins. Adaptive lasso is not used for fitting square-

root lasso and elastic-net models.

Bayesian information criterion, BIC. The Bayesian information criterion (BIC), also known as Schwarz

criterion, is an information-based criterion used for model selection. It is given by the formula −2 ×
log likelihood + 𝑘 ln𝑁, where 𝑘 is the number of parameters in the model and 𝑁 is the sample size.

beta-min condition. Beta-min condition is a mathematical statement that the smallest nonzero coeffi-

cient, in absolute value, be sufficiently large in the true or best approximating model. The condition

is seldom met in lasso models because lasso tends to omit covariates with small coefficients. That is

not an issue for prediction, but it is for inference. Stata’s double selection, partialing out, and cross-fit

partialing out work around the issue.

coefficients of interest. See covariates of interest and control covariates.

control variables. See covariates of interest and control covariates.

covariates. Covariates, also known as explanatory variables and RHS variables, refer to the variables

that appear or potentially appear on the right-hand side of a model and that predict the values of the

outcome variable. This manual often refers to “potential covariates” and “selected covariates” to

distinguish the variables that lasso considers from those it selects for inclusion in the model.

covariates of interest and control covariates. Covariates of interest and control covariates compose the

covariates that are specified when fitting lasso models for inference. In these cases, the coefficients

and standard errors for the covariates of interest are estimated and reported. The coefficients for the

control covariates are not reported nor are they recoverable, but they nonetheless appear in the model

to improve the measurement of the coefficients of interest.

Covariates of interest and control covariates are often called variables of interest and control variables.

The coefficients on the covariates of interest are called the coefficients of interest.

covariate selection. Covariate selection refers to processes that automatically select the covariates to be

included in a model. Lasso, square-root lasso, and elastic net are three such processes. What makes

them special is that they can handle so many potential covariates.

Covariate selection is handled at the same time as estimation. Covariates are included and excluded

based on coefficient estimates. When estimates are 0, covariates are excluded.

cross-fitting. Cross-fitting is another term for double machine learning.

cross-validation (CV). Cross-validation (CV) is a method for fitting lasso models. The other methods

that Stata provides are adaptive lasso and plugins.

The term in general refers to techniques that validate how well predictive models perform. Classic

CV uses one dataset to fit the model and another to evaluate its predictions. When the term is used in

connection with lasso, however, CV refers to 𝐾-fold CV, a technique that uses the same dataset to fit

the model and to produce an estimate of how well the model would do if used to make out-of-sample

predictions. See folds.
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cross-validation function. The cross-validation (CV) function is calculated by first dividing the data

into 𝐾 folds. The model for each 𝜆 (and 𝛼 for elastic net) is fit on data in all but one fold, and then

the prediction on that excluded fold is computed and a measure of fit calculated. These 𝐾 measures

of fit are averaged to give the value of the CV function. For linear models, the CV function is the CV

mean prediction error. For nonlinear models, the CV function is the CV mean deviance. CV finds the

minimum of the CV function, and the value of 𝜆 (and 𝛼) that gives the minimum is the selected 𝜆∗

(and 𝛼∗).

cross-validation mean deviance. Cross-validation mean deviance is a cross-validation function that

uses the observation-level deviance as a measure of fit.

cross-validation mean deviance ratio. Cross-validation mean deviance ratio is the cross-validation

function using the mean of the deviance ratio as the measure of fit.

cross-validation mean prediction error. Cross-validation mean prediction error is the cross-validation

function using themean of the square of the prediction error as themeasure of fit. For the linear model,

the prediction error is the difference between the individual-level outcome and the linear prediction

x′
𝑖β.

data-generating process (DGP) and data-generating mechanism (DGM). Data-generating process

(DGP) and data-generating mechanism (DGM) are synonyms for the underlying process that gener-

ated the data being analyzed. The scientific and statistical models that researchers fit are sometimes

approximations of the DGP.

deviance. The deviance is a measure-of-fit statistic for linear and nonlinear likelihood-based models.

The deviance for an observation 𝑖, 𝐷𝑖, is given by

𝐷𝑖 = −2(𝑙𝑖 − 𝑙saturated)

where 𝑙𝑖 is the observation-level likelihood and 𝑙saturated is the value of the saturated likelihood.
deviance null. The deviance null is the mean of the deviance evaluated for the log likelihood of a model

that only includes a constant.

deviance ratio. The deviance ratio is a measure-of-fit statistic for linear and nonlinear likelihood-based

models. It is given by 𝐷2

𝐷2 = 1 − 𝐷/(𝐷null)

where 𝐷 is the mean of the deviance and 𝐷null is the deviance null.

double machine learning (DML). Double machine learning (DML) is a method for estimating the coeffi-

cients of interest and their standard errors. When lasso is used for inference, you specify the covariates

of interest and the potential control covariates. DML is a family of techniques that combine sample

splitting and robust moment conditions. See double selection, partialing out, and cross-fit partialing

out.

double selection, partialing out, and cross-fit partialing out. Double selection, partialing out, and

cross-fit partialing out are three different estimation techniques for performing inference on a subset

of the coefficients in a lasso model. Stata provides these techniques for linear, logit, probit, Poisson,

and instrumental-variables models. Cross-fit partialing out is also known as double machine learning

(DML). Also see [LASSO] Lasso inference intro.
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ds. A shorthand that we use in this manual to refer to all the double-selection inference

commands—dsregress, dslogit, and dspoisson.

elastic net. Elastic net is a penalized estimator designed to be less likely than lasso to exclude highly

collinear covariates. Stata’s elasticnet command fits elastic-net models using cross-validation.

excluded covariates. See covariate selection.

folds and K-fold cross-validation. Folds and 𝐾-fold cross-validation refer to a technique for estimating

howwell amodel would perform in out-of-sample predictionwithout actually having a second dataset.

The same data that were used to fit the model are then divided into 𝐾 approximately equal-sized,

mutually exclusive subsamples called folds. For each fold 𝑘, the model is refit on the data in the other

𝐾 −1 folds, and that result is then used to make predictions for the values in fold 𝑘. When the process

is complete for all 𝐾 folds, the predictions in the combined folds are compared with actual values.

The number of folds, 𝐾, is usually set to 10.

included covariates. See covariate selection.

inference. Inference means statistical inference or scientific inference. It involves using samples of data

to infer the values of parameters in the underlying population along with measures of their likely accu-

racy. The likely accuracy is stated in terms of probabilities, confidence intervals, credence intervals,

standard errors, and other statistical measures.

Inference can also refer to scientific inference. Scientific inference is statistical inference on a causal

parameter. These parameters characterize cause-and-effect relationships. Does more education cause

higher incomes, or is it simply a proxy that is associated with higher incomes because those who have

it are judged to be smarter or have more drive to succeed or simply spent more time with the right

people? If the interest were in simply making statistical predictions, it would not matter.

in-sample 𝑅2. The in-sample 𝑅2 is the 𝑅2 evaluated at the sample where the model is fit.

knots. Knots are the values of the penalty parameters at which variables in the model change.

lambda and alpha. Lambda and alpha (𝜆 and 𝛼) are lasso’s and elastic-net’s penalty parameters.

Lambda is lasso’s and square-root lasso’s penalty parameter. Lambda is greater than or equal to 0.

When it is 0, all possible covariates are included in the model. At its largest value (which is model

dependent), no covariates are included. Thus, lambda orders the models.

Alpha is elastic-net’s penalty parameter. Alpha is bounded by 0 and 1, inclusive. When alpha is 0,

the elastic net becomes ridge regression. When alpha is 1, the elastic net becomes lasso.

lasso. Lasso has different meanings in this glossary, depending on usage.

First, we use lasso to mean lasso, the word that started as LASSO because it was an acronym for “least

absolute shrinkage and selection operator”.

Second, we use lasso to mean lasso and square-root lasso, which are two different types of lasso. See

square-root lasso.

Third, we use lasso to mean lasso, square-root lasso, and elastic net. Elastic net is yet another type of

lasso that uses a different penalty function. See elastic net.

Lasso in the broadest sense is widely used for prediction and covariate selection.

Lasso in the narrowest sense is implemented by Stata’s lasso command. It fits linear, logit, probit,

Poisson, and Cox models. It fits them using any of four methods: cross-validation, adaptive lasso,

plugins (not available for Cox models), and the Bayesian information criterion function.
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Square-root lasso is implemented by Stata’s sqrtlasso command. It fits linear models using cross-

validation or plugins.

Elastic net is implemented by Stata’s elasticnet command. It fits linear, logit, probit, Poisson, and

Cox models. It uses cross-validation.

Regardless of the particular lasso used, these methods estimate coefficients on potential covariates.

Covariates are included and excluded based on the estimate. When estimates are 0, covariates are

excluded.

lasso selection. See covariate selection.

nonzero coefficients. Nonzero coefficients are the coefficients estimated for the selected covariates.

not-selected covariates. Not-selected covariates is a synonym for excluded covariates; see covariate

selection.

outcome variable. Outcome variable, also known as dependent variable and LHS variable, refers to the

variable whose values are predicted by the independent variables, which are also known as covariates

and RHS variables.

out-of-sample 𝑅2. The out-of-sample 𝑅2 is the 𝑅2 evaluated for a sample distinct from the one for

which the model was fit.

penalized coefficients. Penalized coefficients are the coefficient estimates produced by lasso when the

covariates are not standardized to have a mean of 0 and standard deviation of 1.

penalized estimators. Penalized estimators are statistical estimators that minimize a measure of fit that

includes a penalty term. That term penalizes models based on their complexity. Lasso, square-root

lasso, and elastic net are penalized estimators.

What distinguishes lasso from elastic net, and is the only thing that distinguishes them, is the particular

form of the penalty term. Lasso uses the sum of the absolute values of the coefficients for the included

covariates. Elastic net uses the same penalty term plus the sum of the squared coefficients. The

additional term is designed to prevent exclusion of highly collinear covariates.

Square-root lasso uses the same penalty term as lasso, but the form of the objective function to which

the penalty is added differs.

penalty loadings. Penalty loadings refer to coefficient-specific penalty weights in adaptive lasso and

plugins. Allowing coefficients to have different penalty weights improves the model chosen by lasso,

square-root lasso, and elastic net.

penalty parameter. Penalty parameter is the formal term for lambda (𝜆), lasso’s and square-root lasso’s
penalty parameter, and alpha (𝛼), elastic-net’s penalty parameter. See lambda and alpha.

plugins. Plugins are the method for fitting lasso and square-root lasso models, but not elastic-net models.

It is an alternative to cross-validation. Cross-validation tends to include more covariates than are

justified, at least in comparisonwith the best approximatingmodel. Plugins were developed to address

this problem. Plugins have the added advantage of being quicker to execute, but they will sometimes

miss important covariates that cross-validation will find.

po. A shorthand that we use in this manual to refer to all the partialing-out inference

commands—poregress, pologit, popoisson, and poivregress.

postlasso coefficients. Postlasso coefficients, also known as postselection coefficients, are the estimated

coefficients you would obtain if you refit the model selected by lasso. To be clear about it, you fit

a linear model by using lasso. It selected covariates. You then refit the model on those covariates
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by using regress, logit, etc. Those are the postselection coefficients, and they will differ from

those produced by lasso. They will differ because lasso is a shrinkage estimator, and that leads to the

question: which are better for prediction?

There is no definitive answer to that question. The best answer we can give you is to use split samples

and lassogof to evaluate both sets of predictions and choose the better one.

For your information, Stata’s lasso commands—lasso, sqrtlasso, and elasticnet—provide

both the lasso and the postselection coefficients. The lasso coefficients are stored in e(b). The

postselection coefficients are stored in e(b postselection). You can do in-sample and out-of-

sample prediction with predict. predict by default uses the lasso coefficients. Specify option

postselection, and it uses the postselection coefficients.

potential covariates. See covariates.

prediction and predictive modeling. Prediction and predictive modeling refer to predicting values of

the outcome variable based on covariates. Prediction is what lasso was originally designed to do. The

variables on which the predictions are based do not necessarily have a cause-and-effect relationship

with the outcome. They might be proxies for the cause and effects. Also see inference.

regularized estimator. Regularized estimators is another term used for penalized estimators. See pe-

nalized estimators.

𝑅2. 𝑅2 is a measure of goodness of fit. It tells you what fraction of the variance of the outcome is

explained by your model.

sample splitting. Sample splitting is a way of creating two or more smaller datasets from one dataset.

Observations are randomly assigned to subsamples. Stata’s splitsample command does this. Sam-

ples are sometimes split to use the resulting subsamples in different ways. One could use the first

subsample to fit the model and the second subsample to evaluate its predictions.

saturated likelihood. The saturated likelihood is the likelihood for a model that has as many estimated

parameters as data points.

selected covariates. Selected covariates is synonym for included covariates; see covariate selection.

sparsity assumption. Sparsity assumption refers to a requirement for lasso to produce reliable results.

That requirement is that the true model that lasso seeks has few variables, where “few” is measured

relative to the number of observations in the dataset used to fit the model.

square-root lasso. Square-root lasso is a variation on lasso. Development of square-root lassos was

motivated by a desire to better fit linear models with homoskedastic but not normal errors, but it can

also be used with heteroskedastic errors. Stata’s sqrtlasso command fits square-root lassos.

standardized coefficients. Standardized coefficients are the coefficient estimates produced by lasso

when the covariates are standardized to have a mean of 0 and standard deviation of 1.

variable selection. See covariate selection.

variables of interest. See covariates of interest and control covariates.

xpo. A shorthand that we use in this manual to refer to all the cross-fit partialing-out inference

commands—xporegress, xpologit, xpopoisson, and xpoivregress.



Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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