STATA LASSO
REFERENCE MANUAL
RELEASE 19

BN
L‘JN\}’
A s

(A

J

A Stata Press Publication
StataCorp LLC
College Station, Texas

=~ ® Copyright © 1985-2025 StataCorp LLC
710 \%l All rights reserved
/| Version 19

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
ISBN-10: 1-59718-433-0
ISBN-13: 978-1-59718-433-5

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a
retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or other-
wise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of
a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not lim-
ited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements
and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD,
CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright © 1979 by Consumers Union of U.S., Inc.,
Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATA, Stata Press, Mata, MATA, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC.
Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
StataNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2025. Stata 19. Statistical software. StataCorp LLC.
The suggested citation for this manual is

StataCorp. 2025. Stata 19 Lasso Reference Manual. College Station, TX: Stata Press.

www.stata.com

https://www.stata.com

Contents

LassO INIIO .ottt et et e e Introduction to lasso 1
Lasso inference introc.oouueun... Introduction to inferential lasso models 12
bicplot ... Plot Bayesian information criterion function after lasso 19
coefpath Plot path of coefficients after lasso 25
Collinear covariateseeueuneeneennennennnn Treatment of collinear covariates 38
CVplot .o Plot cross-validation function after lasso 40
dslogito Double-selection lasso logistic regression 46
dSpOisSSONt Double-selection lasso Poisson regression 54
ASTEEIESS © vt vt ettt Double-selection lasso linear regression 62
elasticnet i Elastic net for prediction and model selection 69
estimates Store Saving and restoring estimates in memory and on disk 90
Inference examples, Examples and workflow for inference 92
Inference requirementsouiieiniiniin.n. Requirements for inference 139
JaSSO oo i Lasso for prediction and model selection 140
lasso postestimation Postestimation tools for lasso for prediction 176
lassocoef i Display coefficients after lasso estimation results 181
lasso examples Examples of lasso for prediction 197
lasso fitting, The process (in a nutshell) of fitting lasso models 222
lassogof Goodness of fit after lasso for prediction 235
lasso inference postestimation Postestimation tools for lasso inferential models 244
lassoinfo Display information about lasso estimation results 246
lassoknots i Display knot table after lasso estimation 255
1aSSO OPHONS v vt et ettt Lasso options for inferential models 274
lassoselect Select lambda after lasso 282
POIVICEIESS .ot ettt een s Partialing-out lasso instrumental-variables regression 294
pologit ... Partialing-out lasso logistic regression 302
POPOISSOM + vttt et ettt e et e e e Partialing-out lasso Poisson regression 310
POTEEIESS + v et et e e et e e e e et Partialing-out lasso linear regression 318
SQrtlasso ... Square-root lasso for prediction and model selection 327
XPOIVICEIESS ..o vvvvenenn.. Cross-fit partialing-out lasso instrumental-variables regression 344
xpologit ... Cross-fit partialing-out lasso logistic regression 354
XPOPOISSON '+ vt e teee e ie e eeeeeeens Cross-fit partialing-out lasso Poisson regression 364
XPOTELIESS « v vttt e et e Cross-fit partialing-out lasso linear regression 374
GlOSSAIY . o vttt ettt e e 385

Subject and author INAEXottt e 390

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example
is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second
is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the
reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT] Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[H20OML] Machine Learning in Stata Using H2O: Ensemble Decision Trees Reference Manual
[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual

[TS] Stata Time-Series Reference Manual

[1] Stata Index

[M] Mata Reference Manual

Lasso intro — Introduction to lasso

Description Remarks and examples Acknowledgments References Also see

Description

Lasso was originally an acronym for “least absolute shrinkage and selection operator”. Today, lasso
is considered a word and not an acronym.

Lasso is used for prediction, for model selection, and as a component of estimators to perform infer-
ence.

Lasso, elastic net, and square-root lasso are designed for model selection and prediction. Stata’s
lasso, elasticnet, and sqrtlasso commands implement these methods. lasso and elasticnet fit
continuous, binary, count, and failure-time outcomes, while sqrtlasso fits continuous outcomes.

Stata also provides lasso commands for inference. They use lassos to select control variables that
appear in the model, and they estimate coefficients and standard errors for a specified subset of covariates.

Stata’s lasso inference commands implement methods known as double selection, partialing out, and
cross-fit partialing out. With each of these methods, linear, logistic, or Poisson regression can be used to
model a continuous, binary, or count outcome. Partialing out and cross-fit partialing out also allow for
endogenous covariates in linear models.

Stata also provides a specialized lasso inference command for estimating treatment effects while us-
ing lassos to select control variables. telasso estimates the average treatment effect (ATE), average
treatment effect on the treated (ATET), or potential-outcome means (POMs); see [CAUSAL] telasso.

This entry provides an overview of lasso for prediction, model selection, and inference and an intro-
duction to Stata’s suite of lasso commands.

Remarks and examples

Remarks are presented under the following headings:

Summary of Stata’s lasso and elastic-net features
What is lasso?
Lasso for prediction
How lasso for prediction works
Stata commands for prediction
Lasso for model selection
Lasso for inference
Why do we need special lasso methods for inference?
Methods of lasso for inference
Stata commands for inference
Where to learn more

Lasso intro — Introduction to lasso 2

Summary of Stata’s lasso and elastic-net features

For those of you who are already experts on lasso, here is an overview full of buzz words without
explanations.

Stata provides three estimation commands for prediction and model selection.

lasso fits linear, logit, probit, Poisson, and Cox proportional hazards models.
The final model is selected using cross-validation (CV), adaptive lasso,
plugin estimators, or the Bayesian information criterion (BIC) function.

elasticnet also fits linear, logit, probit, Poisson, and Cox proportional hazards models.
elasticnet uses CV or the BIC function to select models.

sqrtlasso fits square-root lassos for linear models. The final model is selected using
CV, plugin estimators, or the BIC function.

After fitting a model, you obtain out-of-sample predictions by loading another dataset and typing

. predict newvarname

Stata provides another 11 lasso commands for use in inference. These 11 commands are arranged in
three groups.

ds commands perform double-selection lasso:
dsregress for linear models,
dslogit for logit models, and
dspoisson for Poisson models.

po commands perform partialing-out lasso:
poregress for linear models,
pologit for logit models,
popoisson for Poisson models, and
poivregress for linear models with endogenous covariates.

xpo commands perform cross-fit partialing-out lasso, also known as double
machine learning:
xporegress for linear models,
xpologit for logit models,
xpopoisson for Poisson models, and
xpoivregress for linear models with endogenous covariates.

Stata provides one additional lasso command for use in inference when your objective is to estimate
treatment effects.

telasso fits linear, logit, probit, and Poisson models and estimates the ATE, ATET,
or POMs.

Lasso intro — Introduction to lasso 3

Stata provides two preestimation commands that help you prepare your data and specify covariates.

splitsample

vl

divides your sample into k£ random subsamples. Use it for producing
subsamples for training, validation, and prediction.

creates named lists of variables to be included in 1asso. Sometimes,
you will want to specify many potential covariates without typing every
variable name. v1 creates named variable lists that can be used as
command arguments. Lists can contain hundreds or thousands of
variable names.

Stata provides eight postestimation commands that help you evaluate the selected model:

bicplot
cvplot
coefpath

lassoknots

lassogof

lassocoef

lassoselect

lassoinfo

What is lasso?

graphs the BIC function.
graphs the CV function.
graphs coefficient paths.

displays a knot table for covariates as they enter or leave the model and
measures of fit.

reports fit statistics that help you evaluate the predictive ability of a model.
It does this for one model or for multiple models in the same table.

lists the selected variables in the model. It does this for one model
or for multiple models in the same table.

selects a different model from the one chosen by the estimation command.

reports lasso information such as the dependent variable, selection method,
and number of nonzero coefficients for one or more models.

Lasso is a method for selecting and fitting covariates that appear in a model. The lasso command
can fit linear, logit, probit, Poisson, and Cox proportional hazards models. Let’s consider a linear model,
amodel of y on x1, x2, ..., xp. You would ordinarily fit this model by typing

. regressyxlx2...xp

Now assume that you are uncertain which variables (covariates) belong in the model, although you
are certain that some of them do and the number of them is small relative to the number of observations
in your dataset, V. In that case, you can type

. lasso linear y x1x2 ... xp

You can specify hundreds or even thousands of covariates. You can even specify more covariates than
there are observations in your data! The covariates you specify are the potential covariates from which

lasso selects.

Lasso intro — Introduction to lasso 4

Lasso is used in three ways:
1. Lasso is used for prediction.
2. Lasso is used for model selection.
3. Lasso is used for inference.

By prediction, we mean predicting the value of an outcome conditional on a large set of potential
regressors. And we mean predicting the outcome both in and out of sample.

By model selection, we mean selecting a set of variables that predicts the outcome well. We do
not mean selecting variables in the true model or placing a scientific interpretation on the coefficients.
Instead, we mean selecting variables that correlate well with the outcome in one dataset and testing
whether those same variables predict the outcome well in other datasets.

By inference, we mean inference for interpreting and giving meaning to the coefficients of the fitted
model. Inference is concerned with estimating effects of variables in the true model and estimating
standard errors, confidence intervals, p-values, and the like.

Lasso for prediction

Lasso was invented by Tibshirani (1996) and has been commonly used in building models for predic-
tion. Hastie, Tibshirani, and Wainwright (2015) provide an excellent introduction to the mechanics of the
lasso and to the lasso as a tool for prediction. See Biihlmann and van de Geer (2011) for more technical
discussion and clear discussion of the properties of lasso under different assumptions. See Cameron and
Trivedi (2022, chap. 28) for an introduction to lasso for prediction and for inference with examples using
Stata.

Lasso does not necessarily select the covariates that appear in the true model, but it does select a
set of variables that are correlated with them. If lasso selects potential covariate x47, that means x47
belongs in the model or is correlated with variables that belong in the model. If lasso omits potential
covariate x52, that means x52 does not belong in the model or belongs but is correlated with covariates
that were already selected. Because we are interested only in prediction, we are not concerned with the
exact variables selected, only that they are useful for prediction.

The model lasso selects is suitable for making predictions in samples outside the one you used for
estimation. Everyone knows about the danger of overfitting. Fit a model on one set of data and include
too many variables, and the result will exploit features randomly unique to those data that will not be
replicated in other data.

“Oh,” you may be thinking, “you mean that I can split my data into an estimation sample and a hold-
out sample, and after fitting, I can evaluate the model in the hold-out sample.” That is not what we mean,
although you can do this, and it is sometimes a good idea to do so. We mean that lasso works to avoid
the problem of overfitting by minimizing an estimate of the out-of-sample prediction error.

How lasso for prediction works

Lasso finds a solution for

Y=051X + 8%+ -+ B,%x,+€

Lasso intro — Introduction to lasso 5

by minimizing the prediction error subject to the constraint that the model is not too complex—that is, it
is sparse. Lasso measures complexity by the sum of the absolute values of 3, 3,, ..., 3,,. The solution
is obtained by minimizing
1 , u

SV —XB) (y =XB) + 28] (1)

2N =
The first term, (y — X3')'(y — X3'), is the in-sample prediction error. It is the same value that least
squares minimizes.

The second term, A Zj |31, is a penalty that increases in value the more complex the model. It is this
term that causes lasso to omit variables. They are omitted because of the nondifferentiable kinks in the
Zj |3;] absolute value terms. Had the kinks not been present—think of squared complexity terms rather
than absolute value—none of the coefficients would be exactly zero. The kinks cause some coefficients
to be zero.

If you minimized (1) with respect to the 3;’s and A, the solution would be A = 0. That would set the
penalty to zero. A = 0 corresponds to a model with maximum complexity.

Lasso proceeds differently. It minimizes (1) for given values of A. Lasso then chooses one of those
solutions as best based on another criterion, such as an estimate of the out-of-sample prediction error.

When we use lasso for prediction, we must assume the unknown true model contains few variables
relative to the number of observations, N. This is known as the sparsity assumption. How many true
variables are allowed for a given N? We can tell you that the number cannot be greater than something
proportional to VN /Ing, where ¢ = max{N, p} and p is the number of potential variables. We cannot,
however, say what the constant of proportionality is. That this upper bound decreases with g can be
viewed as the cost of performing covariate selection.

Lasso provides various ways of selecting A: through CV, adaptive lasso, a plugin estimator, or min-
imizing the Bayesian information criterion (BIC) function. CV selects the A that minimizes an estimate
of the out-of-sample prediction error. Adaptive lasso performs multiple lassos, each with CV. After each
lasso, variables with zero coefficients are removed, and remaining variables are given penalty weights
designed to drive small coefficients to zero. Thus, adaptive lasso typically selects fewer covariates than
CV.

The plugin method was designed to achieve an optimal sparsity rate. It tends to select a larger A than
CV and, therefore, fewer covariates in the final model. The number of covariates selected by minimizing
BIC typically lies between the number selected by CV and the number selected by the plugin method;
however, BIC tends to be more similar to the number selected by the plugin method. Furthermore, BIC
does not require a complex derivation as does the plugin, so like CV, it can be applied in a more general
context. See [LASSO] lasso and [LASSO] lasso fitting for more information on the methods of selecting
A, their differences, and how you can control the selection process.

Stata commands for prediction

We described the linear lasso model in the last section, but the concepts we have discussed apply to
models for binary and count outcomes as well.

To fit a linear lasso model, we might type
. lasso linear y x1-x500

and lasso will select a subset of variables from x1 to x500 that can be used in prediction.

Lasso intro — Introduction to lasso 6

If we have a binary outcome, we could instead fit a logit model by typing
. lasso logit y x1-x500
or a probit model by typing
. lasso probit y x1-x500

For a count outcome, we could fit a Poisson model by typing

. lasso poisson y x1-x500

For failure-time data that has been stset, we could fit a Cox proportional hazards model by typing

. lasso cox x1-x500

After any of these lasso commands, we can use predict to obtain predictions of y.

For examples demonstrating how to use the lasso command to fit models suitable for prediction, see
Remarks and examples in [LASSO] lasso and also see [LASSO] lasso examples.

Stata also has commands for fitting elastic nets and square-root lassos for prediction. See
[LASSO] elasticnet and [LASSO] sqrtlasso for more information and examples.

Lasso for model selection

Model selection is an overloaded term that implies different things in different disciplines. To some,
it implies finding a true model or data-generating process. To some, it implies less. Here model selec-
tion means finding a model that fits the data, not finding a model that allows for interpreting estimated
coefficients as effects. If this is your interest, see Lasso for inference below.

Lasso for model selection builds on lasso for prediction. In fact, the same lasso methods are used in
both cases. However, the goal of the analysis is different.

Model selection uses lasso to select variables in one dataset and then fits models using the selected
variables in other datasets. For example, consider finding genes correlated with an outcome in microarray
data. One approach starts with lasso. Researchers use it as a sieve to select the important predictors.
They go on to test whether those predictors (genetic markers) work in other datasets. Note that these
researchers are not giving scientific meaning to the estimated coefficients. They are looking only for
markers that correlate well with an outcome.

We can perform these types of tests because our interest lies in the selected model rather than the
true coefficients of the data-generating process (DGP), sometimes called the data-generating mechanism
(DGM). Interpretation is conditional on the selected model and cannot be interpreted as causal. See, for
instance, Lee et al. (2016). As Berk et al. (2013) put it, the goal is “... to merely describe association
between predictor and response variables; no data generating or causal claims are implied.”

Lasso for inference

When we use lasso for inference, we are interested in interpreting the estimated coefficients. We are
also interested in standard errors, hypothesis tests, confidence intervals, comparisons across levels, and
the like. We want to interpret the results in the same way we interpret results from standard regression
models.

Lasso intro — Introduction to lasso 7

Why do we need special lasso methods for inference?

It may be tempting to use lasso to select covariates and then use regress (or logit, probit, or
poisson) to fit a model with the selected covariates. The results from the regression provide estimated
coefficients and standard errors, confidence intervals, and p-values.

This approach does not work. Why?

Consider fitting a classic regression model. The standard error for a coefficient tells us about the
distribution of the coefficient in repeated sampling. The 95% confidence interval includes the true value
of the coefficient in 95% of repeated samples. Although we do not actually have repeated samples from
the population, the standard errors allow us to account for sample-to-sample variability when making
inferences.

If we use lasso to select covariates and then use regress to fit a model with only the selected covari-
ates, the results will be problematic for use in inference for a few reasons.

First, when we use lasso, or any variable-selection method, we introduce a new source of variability.
If we actually drew repeated samples from a population and used lasso to select covariates on each
one, different covariates would be selected in each dataset. However, we have selected covariates using
only a single sample. The standard errors reported by regress do not account for the sample-to-sample
variability in the variable selection.

Second, lasso tends to omit covariates with small coefficients. This problem arises because lasso
minimizes prediction error subject to the constraint that the model is not too complex, and lasso measures
complexity by the sum of the absolute values of the coefficients. Covariates with small coefficients tend
to be entrapped by the constraint. Small coefficients of covariates that belong in the model look just
like small coefficients of variables that do not. Mistakenly omitted covariates, even those with small
coefficients, can bias other coefficients. That bias is not solely a function of the size of the coefficient.
See, for instance, Leeb and Potscher (2005, 2006, 2008) and Belloni, Chernozhukov, and Hansen (2014).

And then there are more mundane reasons the selected variables can differ from the true variables.
Imagine that you have fit a lasso model. You look at the results and observe that region-of-country
covariates are included. You are surprised because you can think of no reason why they should be and
wonder whether you are about to make an interesting discovery. You look at the lasso results in hopes
of finding an explanation. You discover that income was excluded despite your expectations to the
contrary. You find that age and education were included, but that does not surprise you. But region,
age, and education are predictors of income. That could be the entire reason why region covariates were
included. They were included only because income was excluded. Or it could be something deeper.

In general, the variables selected by lasso do not even converge to the ones in the true model as the
number of observations goes to infinity. Lasso tends to omit covariates that have small coefficients in
favor of irrelevant ones (variables not in the true model) that are correlated with the error term.

For these reasons, we must use lasso-based methods that are designed specifically for inference when
we want to interpret coefficients.

Methods of lasso for inference

With lasso inferential methods, researchers wish to interpret the covariates selected by lasso in the
context of the DGP. They apply causal interpretations to the results. This approach accounts for the fact
that lasso does not select the true model with probability one, and it accounts for the errors that arise in
model selection. To achieve this DGP causal interpretation, you must perform the selection process with

Lasso intro — Introduction to lasso 8

resampling. Thus, more than split sampling is needed to obtain consistent standard errors. See Belloni,
Chernozhukov, and Hansen (2014) for an excellent introduction to using lasso to perform inference and
make causal interpretations.

When your interest is in the underlying DGP, there are various ways of using lasso to estimate the
effects of a few covariates that you have chosen a priori. These methods may be used when you know
there are more covariates in the model and that they are sparse (relative to /V). These methods apply, for
instance, to performing inference about the effect of smoking on a health outcome when you know that
lots of other variables potentially affect the outcome but do not know which ones.

The double-selection, partialing-out, and cross-fit partialing-out lassos provided by Stata can handle
such problems.

Other methods for inference have been discussed in the literature. For instance, see van de Geer et al.
(2014), Javanmard and Montanari (2014), and Zhang and Zhang (2014). The methods developed there
are not implemented in Stata. While they have some appealing theoretical properties, they have not yet
been much used in applied work.

Stata commands for inference

For inference, multistage extensions of lasso provide standard errors for a subset of variables that you
specify. Imagine that you wish to estimate the coefficients for d1 and d2 in the model that includes other
covariates:

. regress y d1 d2 x1-x500
Covariates x1 through x500 are control variables, some of which you need to include to obtain valid
results for d1 and d2. Suppose your data contain 1,000 observations.

If all 500 covariates belong in the model, there is no way to proceed. Get more data. If only a small
subset of them is required and you simply do not know which they are, there is a lasso-based solution.

Type
. dsregress y d1 d2, controls(x1-x500)

Coefficients and standard errors for d1 and d2 will be reported. dsregress will use lasso to select
from the 500 covariates and do that in a way that is robust to the model-selection mistakes that lasso
makes because of sampling variability. There is no a priori limit on the number of d variables you can
specify. But more variables mean more computation time. Time is roughly proportional to the number
of d variables.

Stata provides three methods to fit these types of inferential models. They are
1. the ds double-selection commands: dsregress, dslogit, and dspoisson.
2. the po partialing-out commands: poregress, pologit, popoisson, and poivregress.

3. the xpo cross-fit partialing-out commands, also known as double machine learning:
xporegress, xpologit, xpopoisson, and xpoivregress.

All three methods require a sparsity assumption. As with lasso for prediction, these methods of lasso
for inference rely on the assumption that the number of nonzero coefficients in the true model is small
relative to the number of observations and that the coefficients are large enough relative to error variance
to be selected by the lasso.

Lasso intro — Introduction to lasso 9

ds and po are asymptotically equivalent. poivregress can handle d1 and d2 being endogenous in
linear models. It does this using instrumental variables. You specify a set of potential instruments, and
lasso will select from among them. You can have many potential control variables and many potential
instruments; the number of each can be greater than V.

xpo is the most computationally intensive of the three methods. It is also generally viewed as superior
to ds and po because it allows a weaker definition of sparsity. The sparsity bound for the ds and po
methods grows in proportion to /N, while the sparsity bound for the xpo method grows in proportion
to N.

For information on the assumptions and how the ds, po, and xpo commands work, see [LASSO]| Lasso
inference intro and [LASSO] Inference requirements.

For examples of fitting lasso inferential models, see [LASSO] Inference examples.

Where to learn more

After reading this intro, you may want to learn more about lasso for prediction and model selection,
lasso for inference, and syntax for lasso commands, or you may just want to see some examples. Here
we provide a guide to the entries in this manual that you may want to read next.

If you are interested in lasso for prediction or model selection, you may want to go directly to the
syntax and examples demonstrating lasso, square-root lasso, and elastic net in

[LASSO] lasso Lasso for prediction and model selection
[LASSO] sqrtlasso Square-root lasso for prediction and model selection
[LASSO] elasticnet Elastic net for prediction and model selection

[LASSO] lasso examples Examples of lasso for prediction

If you are interested in lasso for inference, you can read more about the concepts, methods, and
corresponding Stata commands in

[LASSO] Lasso inference intro Introduction to inferential lasso models

If you want to see syntax for one of the lassos for inference commands, see

[LASSO] dsregress Double-selection lasso linear regression
[LASSO] dslogit Double-selection lasso logistic regression
[LASSO] dspoisson Double-selection lasso Poisson regression
[LASSO] poregress Partialing-out lasso linear regression
[LASSO] pologit Partialing-out lasso logistic regression
[LASSO] popoisson Partialing-out lasso Poisson regression

[LASSO] poivregress Partialing-out lasso instrumental-variables regression

[LASSO] xporegress Cross-fit partialing-out lasso linear regression

[LASSO] xpologit Cross-fit partialing-out lasso logistic regression

[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression

[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression

[LASSO] lasso options Lasso options for inferential models
You might instead want to start with worked examples that demonstrate the lasso inference commands.

[LASSO] Inference examples Examples and workflow for inference

Lasso intro — Introduction to lasso 10

If your inference involves estimating treatment effects, you can read about the lasso inference com-
mand that estimates the ATE, ATET, or POMs at

[CAUSAL] telasso Treatment-effects estimation using lasso

Whether you are using lasso for prediction or for inference, you may want to learn more about the
process of fitting lasso models and how you can make modifications to this process.

[LASSO] lasso fitting The process (in a nutshell) of fitting lasso models

Acknowledgments

We thank Christian B. Hansen of the University of Chicago for his advice over the years and his
amazingly fast responses to our numerous questions.

We thank Otilia Boldea of Tilburg University for her advice and for sharing her course materials on
model-selection methods and big data.

We thank Damian Kozbur of the University of Zurich for his advice about how to select the lasso
penalty parameter.

We thank Denis Chetverikov of the University of California at Los Angeles for conversations about
the CV lasso.

We thank Victor Chernozhukov of the Massachusetts Institute of Technology and Alexandre Belloni
of Duke University for their responses to our questions.

We thank Achim Ahrens of ETH Ziirich and Immigration Policy Lab, Christian B. Hansen of the
University of Chicago, and Mark E. Schaffer of Heriot-Watt University for their Stata commands lasso2,
cvlasso, rlasso, pdslasso, ivlasso, and lassologit, which are discussed in Ahrens, Hansen, and
Schaffer (2018, 2020). We also thank them for conversations about their approach to these methods.

We thank Wilbur Townsend of Harvard Business School for his Stata command elasticregress.
We thank Adrian Mander of the SPC (Statistical Process Control) for his Stata command lars.
We thank Jordi Sunyer and Mar Alvarez-Pedrerol of the ISGlobal Center for Research in Environ-

mental Epidemiology and Raquel Garcia-Esteban of the RTI Health Solutions for sharing the data they
used in Sunyer et al. (2017).

References

Ahrens, A., C. B. Hansen, and M. E. Schaffer. 2018. pdslasso: Stata module for post-selection and post-regularization
OLS or IV estimation and inference. Statistical Software Components S458459, Department of Economics, Boston
College. https://ideas.repec.org/c/boc/bocode/s458459.html.

.2020. lassopack: Model selection and prediction with regularized regression in Stata. Stata Journal 20: 176-235.

Ahrens, A., C. B. Hansen, M. E. Schaffer, and T. Wiemann. 2024. ddml: Double/debiased machine learning in Stata.
Stata Journal 24: 3—45.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014. High-dimensional methods and inference on structural and treat-
ment effects. Journal of Economic Perspectives 28: 29-50. https://doi.org/10.1257/jep.28.2.29.

Berk, R., L. D. Brown, A. Buja, K. Zhang, and L. Zhao. 2013. Valid post-selection inference. Annals of Statistics 41:
802-837. https://doi.org/10.1214/12-A0S1077.

Biihlmann, P., and S. van de Geer. 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications. Berlin:
Springer.

Cameron, A. C., and P. K. Trivedi. 2022. Microeconometrics Using Stata. 2nd ed. College Station, TX: Stata Press.

https://ideas.repec.org/c/boc/bocode/s458459.html
https://doi.org/10.1177/1536867X20909697
https://doi.org/10.1177/1536867X241233641
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.1214/12-AOS1077
https://www.stata-press.com/books/microeconometrics-stata

Lasso intro — Introduction to lasso 11

Dallakyan, A. 2022. graphiclasso: Graphical lasso for learning sparse inverse-covariance matrices. Stata Journal 22:
625-642.

Drukker, D. M., and D. Liu. 2019. An introduction to the lasso in Stata. The Stata Blog: Not Elsewhere Classitied.
https://blog.stata.com/2019/09/09/an-introduction-to-the-lasso-in-stata/.

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations.
Boca Raton, FL: CRC Press. https://doi.org/10.1201/b18401.

Huang, W., Y. Wang, and L. Zhou. 2024. Identify latent group structures in panel data: The classifylasso command. Stata
Journal 24: 46-71.

Javanmard, A., and A. Montanari. 2014. Confidence intervals and hypothesis testing for high-dimensional regression.
Journal of Machine Learning Research 15: 2869-2909.

Lee, J. D., D. L. Sun, Y. Sun, and J. E. Taylor. 2016. Exact post-selection inference, with application to the lasso. Annals
of Statistics 44: 907-927. https://doi.org/10.1214/15-A0S1371.

Leeb, H., and B. M. Pétscher. 2005. Model selection and inference: Facts and fiction. Econometric Theory 21: 21-59.
https://doi.org/10.1017/S0266466605050036.

. 2006. Can one estimate the conditional distribution of post-model-selection estimators? Annals of Statistics 34:
2554-2591. https://doi.org/10.1214/009053606000000821.

. 2008. Sparse estimators and the oracle property, or the return of Hodges’ estimator. Journal of Econometrics 142:
201-211. https://doi.org/10.1016/j.jeconom.2007.05.017.

Schwarz, C. 2023. Estimating text regressions using txtreg_train. Stata Journal 23: 799-812.

Sunyer, J., E. Suades-Gonzalez, R. Garcia-Esteban, 1. Rivas, J. Pujol, M. Alvarez-Pedrerol, J. Forns, X. Querol, and
X. Basagaifia. 2017. Traffic-related air pollution and attention in primary school children: Short-term association.
Epidemiology 28: 181-189. https://doi.org/10.1097/EDE.0000000000000603.

Tibshirani, R. J. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, B ser., 58:
267-288. https://doi.org/10.1111/.2517-6161.1996.tb02080.x.

van de Geer, S., P. Bithlmann, Y. Ritov, and R. Dezeure. 2014. On asymptotically optimal confidence regions and tests
for high-dimensional models. Annals of Statistics 42: 1166—1202. https://doi.org/10.1214/14-A0S1221.

Zhang, C.-H., and S. S. Zhang. 2014. Confidence intervals for low dimensional parameters in high dimensional linear
models. Journal of the Royal Statistical Society, B ser., 76: 217-242. https://doi.org/10.1111/rssb.12026.

Also see

[LASSO] Lasso inference intro — Introduction to inferential lasso models

[20ML] h2oml — Introduction to commands for Stata integration with H20 machine learning

https://doi.org/10.1177/1536867X221124538
https://blog.stata.com/2019/09/09/an-introduction-to-the-lasso-in-stata/
https://doi.org/10.1201/b18401
https://doi.org/10.1177/1536867X241233642
https://doi.org/10.1214/15-AOS1371
https://doi.org/10.1017/S0266466605050036
https://doi.org/10.1214/009053606000000821
https://doi.org/10.1016/j.jeconom.2007.05.017
https://doi.org/10.1177/1536867X231196349
https://doi.org/10.1097/EDE.0000000000000603
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/14-AOS1221
https://doi.org/10.1111/rssb.12026

Lasso inference intro — Introduction to inferential lasso models

Description Remarks and examples References Also see

Description

Lasso selects covariates and estimates coefficients but does not provide the standard errors required
for performing statistical inference. Stata provides three additional lasso-based methods for estimating
the coefficients and standard errors for a subset of the covariates, and the results have the added advantage
of being estimates of values from the true model that generated the data being analyzed.

The methods are double selection, partialing out, and cross-fit partialing out, which is also known
as double machine learning. They can be applied to linear, logistic, and Poisson regression models.
Partialing out and cross-fit partialing out can also be used with endogenous covariates and instrumental
variables in linear models.

Remarks and examples

Remarks are presented under the following headings:

The problem
Possible solutions
Solutions that focus on the true model
The double-selection solution
The partialing-out solution
The cross-fit partialing-out (double machine learning) solution
Where to learn more

The problem

You want to know the true effects of z1 and z2 on y, by which we mean the effect in the true underlying
model that generated the data being analyzed. We specify two variables, but you could specify one or a
handful.

You do not know whether z1 and z2 belong in the model, although you have your suspicions. Your
problem is to estimate the effects (coefficients) of z1 and z2 and obtain their standard errors.

At the same time, you do not know the other variables that appear in the model, but you do know that
they are among variables from x1 to 500. You also know that only a small number of them appear. We
will be more precise about the meaning of “small” later.

Possible solutions
If you had a sufficient number of observations in your data, you could fit a linear regression of y on
z1, z2, and x1 to x500:
. regress y z1 z2 x1-x500

The above is a solution because including extra explanatory variables does not cause bias, at least
as long as the number of covariates is not too large. Including extra variables merely causes a loss of
efficiency. Except there may be no merely about it. You may not have a sufficient number of observations
to fit this regression and answer questions about z1 and z2 with any degree of certainty.

12

Lasso inference intro — Introduction to inferential lasso models 13

In that case, you could use your scientific judgment to select the covariates that need to appear in the
model:

. regress y z1 z2 x3 x9 x203 x333 x478

The problem here is that you must be correct about the variables you included and excluded. And the
insight that led you to choose them cannot come from the data. And the choice you made is not testable.
And theory seldom provides sufficient guidance about variables or their functional form. In the age of
big data, modern research is increasingly looking for data-dependent guidance and rules.

Here is yet another solution. Select and fit the model using lasso, and force the inclusion of z1 and
z2 with parentheses:

. lasso linear y (z1 z2) x1-x500

Now lasso will select a model and obtain its coefficients. Problem is, the lasso procedure does
not provide standard errors. You cannot perform statistical tests of significance of z1 and z2 or obtain
confidence intervals for them. And there is a reason for that. lasso does not account for mistakes in
selecting from the potential covariates x1 to x500. Any mistakes it makes in selecting covariates that are
also correlated with z1 or z2 would lead to bias in estimating the coefficients and standard errors of z1
and z2.

Here is a solution. Refit the model that 1asso selected using regress. We would not recommend
this. Everyone agrees that it would be better to split your data into two samples, use the first to select the
model, and use the second to refit it. You will now have the standard errors you need. But even this will
not provide good estimates and standard errors if your interest is in the true model that generated the data.
The problem is twofold. First, this process still does not account sufficiently for the sampling variability
of the selection process for variables from x1 to x500. Second, it does not account for the possibility of
small coefficients in the true model. This second problem is more common and more detrimental than
you might guess. See, for instance, Leeb and Potscher (2005, 2006, 2008) and Belloni, Chernozhukov,
and Hansen (2014a).

Solutions that focus on the true model

If your interest is inference about z1 and z2 in the true model that generated the data, the solution is
to type

. dsregress y z1 z2, controls(x1-x500)
or

. poregress y z1 z2, controls(x1-x500)
or

. xporegress y z1 z2, controls(x1-x500)

These commands produce the double selection, partialing-out, and cross-fit partialing-out solutions, re-
spectively, for the linear model, but commands also exist for logistic, Poisson, and instrumental-variables
regression. These solutions all use multiple lassos and moment conditions that are robust to the model-
selection mistakes that lasso makes; namely, that it does not select the covariates of the true model with
probability 1. Of the three, the cross-fit partialing-out solution is best, but it can take a long time to run.
The other two solutions are most certainly respectable. The cross-fit solution allows the true model to
have more coefficients, and it allows the number of potential covariates, x1-x500 in our examples, to be
much larger. Technically, cross-fit has a less restrictive sparsity requirement.

Lasso inference intro — Introduction to inferential lasso models 14

All three of the methods have a sparsity requirement, and we have advice for you.
1. Let the commands fit the lassos using the default method, which is plugin.
2. If meeting the sparsity requirement concerns you, use cross-fit partialing out.

You may think of sparsity requirements as being unique to lasso, but they are not. Think about fitting
an ordinary logistic regression model or any other estimator with only asymptotic properties. How many
variables can be reliably included in the model if you have 100 observations? 500 observations? 1,000?
10,000? There is no answer to those questions except to say more with 1,000 than 500, more with 10,000
than 1,000, and so on.

The story is the same with the three inference methods. We can tell you more observations are better,
and we can tell you more. Their requirements are stricter than those for logistic regression. The sparsity
requirement for double selection and partialing out is that

s
_— is small

VN/Inp

where s is the number of covariates in the true model, NV is the number of observations in the data, and

p is the number of potential covariates. The sparsity requirement for cross-fit partialing out is the same,
except that /N is replaced by N. It is that

S

m is small

N is much larger than v/ N. That is why we said that, if meeting the sparsity requirement concerns you,
use cross-fit partialing out. It allows more covariates for all values of V.

We recommended that the lassos be fit using plugins because plugins were developed with these three
methods in mind. Plugins tend to produce models with fewer “extra” covariates. Fitting the lassos using
cross-validation for selection, on the other hand, tends to include lots of extra covariates. Using the
Bayesian information criterion function for selection tends to include a number of covariates that falls
between the numbers selected by the other two methods.

All three methods report the estimated coefficients for z1 and z2, their standard errors, test statis-
tics, and confidence intervals. Understanding how they work will be easier if we reduce the number of
variables from two to one. Let’s consider obtaining estimates for v in the model

y=da+xB8+e¢

where d is the covariate of interest.

The double-selection solution

Double selection is the easiest of the three to explain. Its algorithm is the following:
1. Run a lasso of d on x.
2. Run a lasso of y on x.
3. Let X be the union of the selected covariates from steps 1 and 2.
4. Regress y on d and X.

The estimate of « and its test statistics are then the coefficient on d and its test statistics.

Lasso inference intro — Introduction to inferential lasso models 15

Step 1 is the extra selection step from which double selection gets its name. It is this step that causes
the method to be robust to the mistakes in model selection that lasso makes.

Stata provides three double-selection commands—dsregress, dslogit, and dspoisson.

The partialing-out solution

The algorithm is the following:
1. Run a lasso of d on x. Let X,; be the covariates selected.
2. Regress d on X,. Let d be the residuals from this regression.
3. Run alasso of y on x. Let X, be the covariates selected.

4. Regress y on X,. Let be the residuals from this regression.
5. Regress ¥ on d.

The estimate of o and its test statistics are then the coefficient on d and its test statistics.

This algorithm is a high-dimensional version of the classic partialing-out estimator, which you can
learn about in Wooldridge (2020, chap. 3-2). In the classic estimator, the moment conditions used to
estimate the coefficient on d are orthogonal to the variables in x. In the high-dimensional variant, the
moment conditions in step 5 are orthogonal to the relevant variables in x; thus, small changes in the
variables included do not have a significant effect on the estimator for «.

Stata provides four partialing-out commands—poregress, pologit, popoisson, and
poivregress.

poivregress provides a variation on the algorithm shown above that handles endogenous variables
with instrumental variables in linear models.

The cross-fit partialing-out (double machine learning) solution

Cross-fit partialing out is a split-sample version of partialing out. Cross-fit partialing out is also known
as double machine learning (DML).

1. Divide the data in roughly equal-sized subsamples 1 and 2.
2. In sample 1:
a. Run a lasso of d on x. Let X;; be the covariates.

b. Regress d on X,;. Let ﬁl be the estimated coefficients.

c. Runalasso of y on x. Let X,; be the covariates selected.

d. RegressyonX,;. Letq, be the estimated coefficients.
3. In sample 2:

a. Fillind = d — %4, 8,

b. Filling =y —X,;%.

Lasso inference intro — Introduction to inferential lasso models 16

4. Still in sample 2:

a. Run a lasso of d on x. Let X;, be the covariates.
b. Regress d on X,,. Let ,?32 be the estimated coefficients.

c. Run alasso of y on x. Let X, , be the covariates selected.
d. Regress yonX,,. Let 5, be the estimated coefficients.
5. In sample 1:
a. Fillind = d — X;5/3,.
b. Fillin § =y — X574,
6. In the full sample: Regress § on d.
The estimate of o and its test statistics are then the coefficient on d and its test statistics.

Cross-fit partialing out has a more relaxed sparsity requirement than partialing out and double selec-
tion, as we mentioned earlier. This is because the sample is split and coefficients are obtained from one
sample and used in another, which is independent, and that adds robustness.

There are two variants of cross-fit partialing out (recall it is also known as DML): DML1 and DML2.
Shown above is the algorithm for DML2, which is Stata’s default method. DMLI1, available as an option,
predates DML2 and solves the moment conditions within each fold (group) that is cross-fit and then
averages. DML2, by comparison, solves the moment conditions jointly. See Methods and formulas.
DML2 produced better results in simulations in Chernozhukov et al. (2018).

In the algorithm shown, the sample is split in two. The software splits it into K parts, where K = 10
by default. You could specify K = 2, but you would not want to do that. Larger K works better and
K = 10 is viewed as sufficient. This is known as the 10-fold method.

Stata provides four cross-fit partialing-out commands—zxporegress, xpologit, xpopoisson, and
xpoivregress. xpoivregress provides a variation on the algorithms that handles endogenous vari-
ables with instrumental variables in linear models.

Where to learn more

See
[LASSO] dsregress Double-selection lasso linear regression
[LASSO] dslogit Double-selection lasso logistic regression
[LASSO] dspoisson Double-selection lasso Poisson regression
[LASSO] poregress Partialing-out lasso linear regression
[LASSO] pologit Partialing-out lasso logistic regression
[LASSO] popoisson Partialing-out lasso Poisson regression

[LASSO] poivregress Partialing-out lasso instrumental-variables regression

[LASSO] xporegress Cross-fit partialing-out lasso linear regression

[LASSO] xpologit Cross-fit partialing-out lasso logistic regression

[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression

[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression

And then there is the literature.

Lasso inference intro — Introduction to inferential lasso models 17

For a strikingly readable introduction, see Belloni, Chernozhukov, and Hansen (2014a). For a more
technical discussion, see Belloni and Chernozhukov (2011).

Double selection was developed by Belloni, Chernozhukov, and Hansen (2014b). Their article also
provides first-rate intuition on why the process works.

Partialing out was developed by Belloni et al. (2012). The 2012 date makes it appear that partialing out
predates double selection, but the ordering was due to different publication lags. Their article also devel-
ops the plugin estimator for lasso and then develops the partialing-out instrumental-variables estimator.
Partialing out was extended from linear to nonlinear models by Belloni, Chernozhukov, and Wei (2016).
For a three-page introduction to the partialing-out instrumental-variables estimator, see Chernozhukov,
Hansen, and Spindler (2015).

Cross-fit partialing out was developed by Chernozhukov et al. (2018). The researchers of this article
had worked on these issues for years. They later came together to assemble this important article, which
is an odd but appealing mix of intuition and technical derivations, especially concerning sample splitting.

Bickel, Ritov, and Tsybakov (2009) predates all the above and provided the theoretical foundations
for what would become the plugin estimator. It also provided rates of convergence for the lasso which
was used by subsequent authors. The article is both seminal and technical.

References

Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments
with an application to eminent domain. Econometrica 80: 2369-2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2011. “High dimensional sparse econometric models: An Introduction”. In Inverse
Problems of High-Dimensional Estimation, edited by P. Alguier, E. Gautier, and G. Stoltz, 121-156. Berlin: Springer.
https://doi.org/10.1007/978-3-642-19989-9 3.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014a. High-dimensional methods and inference on structural and
treatment effects. Journal of Economic Perspectives 28: 29-50. https://doi.org/10.1257/jep.28.2.29.

. 2014b. Inference on treatment effects after selection among high-dimensional controls. Review of Economic
Studies 81: 608—650. https://doi.org/10.1093/restud/rdt044.

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-
trols. Journal of Business and Economic Statistics 34: 606—619. https://doi.org/10.1080/07350015.2016.1166116.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov. 2009. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics
37: 1705-1732. https://doi.org/10.1214/08-A0S620.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018. Dou-
ble/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1-C68. https:
//doi.org/10.1111/ectj.12097.

Chernozhukov, V., C. B. Hansen, and M. Spindler. 2015. Post-selection and post-regularization inference in linear mod-
els with many controls and instruments. American Economic Review 105: 486—490. https://doi.org/10.1257/aer.
p20151022.

Drukker, D. M., and D. Liu. 2019. Using the lasso for inference in high-dimensional models. The Stata Blog: Not
Elsewhere Classified. https://blog.stata.com/2019/09/09/using-the-lasso-for-inference-in-high-dimensional-models/.

Leeb, H., and B. M. Pétscher. 2005. Model selection and inference: Facts and fiction. Econometric Theory 21: 21-59.
https://doi.org/10.1017/S0266466605050036.

. 2006. Can one estimate the conditional distribution of post-model-selection estimators? Annals of Statistics 34:
2554-2591. https://doi.org/10.1214/009053606000000821.

. 2008. Sparse estimators and the oracle property, or the return of Hodges’ estimator. Journal of Econometrics 142:
201-211. https://doi.org/10.1016/j.jeconom.2007.05.017.

Wooldridge, J. M. 2020. Introductory Econometrics: A Modern Approach. 7th ed. Boston: Cengage.

https://doi.org/10.3982/ECTA9626
https://doi.org/10.1007/978-3-642-19989-9_3
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.1093/restud/rdt044
https://doi.org/10.1080/07350015.2016.1166116
https://doi.org/10.1214/08-AOS620
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1257/aer.p20151022
https://doi.org/10.1257/aer.p20151022
https://blog.stata.com/2019/09/09/using-the-lasso-for-inference-in-high-dimensional-models/
https://doi.org/10.1017/S0266466605050036
https://doi.org/10.1214/009053606000000821
https://doi.org/10.1016/j.jeconom.2007.05.017
https://www.stata.com/bookstore/introductory-econometrics/

Lasso inference intro — Introduction to inferential lasso models 18

Also see

[LASSO] Lasso intro — Introduction to lasso

bicplot — Plot Bayesian information criterion function after lasso

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

bicplot graphs the Bayesian information criterion (BIC) function after a lasso fit.

bicplot can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso inference
commands.

Quick start

Graph the BIC function after lasso, sqrtlasso, or elasticnet
bicplot

Graph the BIC function after elasticnet for a = 0.5
bicplot, alpha(.5)

After any of the ds or po commands, graph the BIC function for the dependent variable y
bicplot, for(y)

After an xpo command without option resample, graph the BIC function for x in cross-fit fold 2
bicplot, for(x) xfold(2)

After an xpo command with resample, graph the BIC function for x in cross-fit fold 2 for the first
resample

bicplot, for(x) xfold(2) resample(1)

Same as above, but graph the BIC function as a function of the ¢,-norm of the standardized coefficient
vector

bicplot, for(x) xfold(2) resample(1) xunits(linorm)

After telasso, graph the BIC function for the outcome variable y at treatment level 1
bicplot, for(y) tlevel(1)

Menu

Statistics > Postestimation

19

bicplot — Plot Bayesian information criterion function after lasso 20

Syntax

After lasso, sqrtlasso, and elasticnet

bicplot [, options]

After ds and po commands

bicplot, for (varspec) [options |

After xpo commands without resample

bicplot, for (varspec) xfold(#) [options |

After xpo commands with resample

bicplot, for (varspec) xfold(#) resample (#) |options |

After telasso for the outcome variable

bicplot, for (varspec) tlevel (#) [options |

After telasso for the treatment variable

bicplot, for (varspec) [options |

After telasso for the outcome variable with cross-fitting but without resample

bicplot, for (varspec) tlevel (#) xfold(#) [options]

After telasso for the treatment variable with cross-fitting but without resample

bicplot, for (varspec) xfold(#) [options |

After telasso for the outcome variable with cross-fitting and resample

bicplot, for (varspec) tlevel (#) xfold(#) resample(#) [options |

After telasso for the treatment variable with cross-fitting and resample

bicplot, for (varspec) xfold(#) resample (#) |options |

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

bicplot — Plot Bayesian information criterion function after lasso 21

options

Description

Main
xunits (x_unit_spec)

minmax
* for (varspec)
*xfold(#)

*resample (#)
*tlevel(#)
alpha(#)

lineopts(cline_options)

Reference lines
biclineopts (xline_options)

nobicline
1slineopts (x/ine_options)
nolsline

rlabelopts (r_label _opts)

Data
data(filename | , replace])

Y axis, X axis, Titles, Legend, Overall
twoway_options

x-axis units (scale); default is xunits (rlnlambda), where
rlnlambda denotes A on a reverse logarithmic scale

add labels for the minimum and maximum x-axis units

lasso for varspec; telasso, ds, po, and xpo commands only

lasso for the #th cross-fit fold; xpo commands and telasso
with xfolds only

lasso for the #th resample; xpo commands and telasso
with resample only

lasso for the outcome model with the treatment level #;
telasso only

graph BIC function for o = #; default is the selected value a*;
allowed after elasticnet only

affect rendition of the plotted lines

affect rendition of reference line identifying the minimum
of the BIC function or other stopping rule

suppress reference line identifying the minimum of the BIC
function or other stopping rule

affect rendition of reference line identifying the value selected
using lassoselect

suppress reference line identifying the value selected using
lassoselect

change look of labels for reference line

save plot data to filename

any options other than by () documented in [G-3] twoway_options

*for (varspec) is required for all ds, po, and xpo commands and for telasso.

xfold(#) is required for all xpo commands and for telasso when the option xfolds (#) was specified.

resample (#) is required for xpo and for telasso when the option resample (#) was specified.

tlevel (#) is required for the outcome model in telasso.

X_unit_spec

Description

rlnlambda
1nlambda
linorm
linormraw

A on a reverse logarithmic scale; the default
A on a logarithmic scale

£, -norm of standardized coefficient vector

¢,-norm of unstandardized coefficient vector

bicplot — Plot Bayesian information criterion function after lasso 22

xline_options

Description

style (addedlinestyle)

[no]extend

1style (linestyle)
lpattern (/inepatternstyle)
lwidth (linewidthstyle)
1color (colorstyle)

overall style of added line

[do not] extend line through plot region’s margins
overall style of line

line pattern (solid, dashed, etc.)

thickness of line

color and opacity of line

r_label _opts

Description

labgap (size)
labstyle (textstyle)
labsize (fextsizestyle)
labcolor (colorstyle)

margin between tick and label
overall style of label

size of label

color and opacity of label

Options

Main

xunits (x_unit_spec) specifies the x-axis units used for graphing the BIC function. The following
X_unit_specs are available:

rlnlambda specifies z-axis units A on a reverse logarithmic scale. This is the default.
1nlambda specifies x-axis units A on a logarithmic scale.
l1inorm specifies x-axis units £;-norm of the standardized coefficient vector.
linormraw specifies z-axis units ¢, -norm of the unstandardized coefficient vector.
minmax adds labels for the minimum and maximum z-axis units to the graph of the BIC function.

for (varspec) specifies a particular lasso after telasso or a ds, po, or xpo estimation command fit
using the option selection(bic). For all commands except poivregress and xpoivregress,
varspec is always varname; it is either depvar, the dependent variable, or one of varsofinterest for
which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred (varname) . The lasso for
depvar is specified with its varname. For the endogenous variable varname, there are two lassos,
which can be identified by varname and pred (varname). The exogenous variables of interest each
have only one lasso, and it is specified by pred (varname) .

This option is required after ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command. For each variable to be fit with
a lasso, K lassos are done, one for each cross-fit fold, where K is the number of folds. This option
specifies which fold, where # = 1,2, ..., K. xfold(#) is required after an xpo command.

resample (#) specifies a particular lasso after an xpo estimation command fit using the option
resample (#). For each variable to be fit with a lasso, R x K lassos are done, where R is the num-
ber of resamples and K is the number of cross-fitting folds. This option specifies which resample,
where #= 1,2, ..., R. resample(#), along with xfold (#), is required after an xpo command with
resampling.

bicplot — Plot Bayesian information criterion function after lasso 23

tlevel (#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs the BIC function for « = #. The default is alpha(a*), where o* is the selected a.
alpha(#) may only be specified after elasticnet.

lineopts (cline_options) affects the rendition of the plotted line. See [G-3] cline_options.

Reference lines

biclineopts (x/ine_options) affects the rendition of the reference line identifying the minimum BIC
value, the value selected when the stopping tolerance is reached, or the grid-minimum value.

xline_options are the following: style(addedlinestyle), noextend, lstyle(linestyle),
lpattern (linepatternstyle), lwidth (linewidthstyle), and lcolor(colorstyle). They specify
how the reference line identifying the minimum BIC value is presented. See [G-4] addedlinestyle,
[G-4] linestyle, [G-4] linepatternstyle, [G-4] linewidthstyle, and [G-4] colorstyle.

nobicline suppresses the reference line identifying the minimum BIC value, the value selected when
either the stopping tolerance or the grid-minimum value is reached.

1slineopts (xline_options) affects the rendition of the reference line identifying the value selected
using lassoselect.

xline_options are the following: style(addedlinestyle), noextend, lstyle(linestyle),
lpattern (linepatternstyle), lwidth (linewidthstyle), and lcolor(colorstyle). They specify
how the reference line identifying the value selected using lassoselect is presented. See
[G-4] addedlinestyle, [G-4] linestyle, [G-4] linepatternstyle, [G-4] linewidthstyle, and [G-4] colorstyle.

nolsline suppresses the reference line identifying the value selected using lassoselect.

rlabelopts (r_label_opts) changes the look of labels for the reference line. The label options
labgap (relativesize), labstyle (fextstyle), labsize (textsizestyle), and labcolor (colorstyle)
specify details about how the labels are presented. See [G-4] size, [G-4] textstyle, [G-4] textsizestyle,
and [G-4] colorstyle.

Data

data(filename | , replace]) saves the plot data to a Stata data file.

Y axis, X axis, Titles, Legend, Overall W

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and options for saving the graph to disk
(see [G-3] saving_option).

Remarks and examples

BIC plots graph the BIC function over the search grid for the lasso penalty parameter \.

The search grid can be shown as the log of the lasso penalty parameter)\, xunits(lnlambda);
the reverse of that scale, xunits(rlnlambda); the ¢;-norm of the standardized coefficients,
xunits(linorm); or the ¢;-norm of the unstandardized coefficients, xunits(linormraw). The re-
verse log of lambda is the default because it represents the BIC search path over A, with the first A tried
on the left and the last A tried on the right.

bicplot — Plot Bayesian information criterion function after lasso 24

BIC plots can be drawn after any command that directly searches over a grid of A\’s. They can be
drawn after the commands lasso, elasticnet, sqrtlasso, telasso, or any of the 11 lasso inference
commands.

Examples that demonstrate how to use bicplot after the lasso command can be found in BIC in
[LASSO] lasso examples.

Also see

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[CAUSAL] telasso postestimation — Postestimation tools for telasso

coefpath — Plot path of coefficients after lasso

Description Quick start Menu Syntax Options
Remarks and examples Also see

Description

coefpath graphs the coefficient paths after any lasso fit using selection(cv),
selection(adaptive), selection(bic), or selection(none). A line is drawn for each co-
efficient that traces its value over the searched values of the lasso penalty parameter A or over the
£,-norm of the fitted coefficients that result from lasso selection using those values of .

coefpath can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso inference
commands.

Quick start

Graph the coefficient paths after lasso, sqrtlasso, or elasticnet
coefpath

Graph the unstandardized coefficient paths

coefpath, rawcoefs

Graph the coefficient paths after elasticnet for the a = 0.5 lasso
coefpath, alpha(.5)

Same as above, but graph the paths using a single linestyle, rather than line-specific linestyles

coefpath, alpha(.5) mono

After any of the ds or po commands, graph the paths for the dependent variable y
coefpath, for(y)

Same as above, but graph the paths as a function of In\
coefpath, for(y) xunits(lnlambda)

After an xpo command without resample, graph the paths for x in cross-fit fold 2
coefpath, for(x) xfold(2)

After an xpo command with resample, graph the paths for x in cross-fit fold 2 for the first resample
coefpath, for(x) xfold(2) resample(1)

After telasso, graph the paths for the outcome variable y at treatment level 1
coefpath, for(y) tlevel(1l)

Menu

Statistics > Postestimation

25

coefpath — Plot path of coefficients after lasso 26

Syntax

After lasso, sqrtlasso, and elasticnet

coefpath [, options]

After ds and po commands

coefpath, for (varspec) |options |

After xpo commands without resample

coefpath, for (varspec) xfold(#) [options]

After xpo commands with resample

coefpath, for (varspec) xfold(#) resample(#) |options |

After telasso for the outcome variable

coefpath, for (varspec) tlevel (#) [options]

After telasso for the treatment variable

coefpath, for (varspec) |options |

After telasso for the outcome variable with cross-fitting but without resample

coefpath, for (varspec) tlevel (#) xfold(#) [options|

After telasso for the treatment variable with cross-fitting but without resample

coefpath, for (varspec) xfold(#) [options]

After telasso for the outcome variable with cross-fitting and resample

coefpath, for (varspec) tlevel (#) xfold(#) resample(#) [options]

After telasso for the treatment variable with cross-fitting and resample

coefpath, for (varspec) xfold(#) resample(#) |options |

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

coefpath — Plot path of coefficients after lasso 27

options

Description

Main
xunits (x_unit_spec)
minmax
* for (varspec)
*xfold (#)

* resample (#)
*tlevel (#)
alpha(#)

rawcoefs

Reference line

rlopts(cline_options)

norefline

Path

lineopts(cline_options)

line#opts (cline_options)

mono

monoopts (cline_options)

Data

x-axis units (scale); default is xunits(11norm)

adds minimum and maximum values to the = axis

lasso for varspec; telasso, ds, po, and xpo commands only

lasso for the #th cross-fit fold; xpo commands and telasso
with xfolds only

lasso for the #th resample; xpo commands and telasso
with resample only

lasso for the outcome model with the treatment level #;
telasso only

graph coefficient paths for o = #; default is the selected
value o*; only allowed after elasticnet

graph unstandardized coefficient paths

affect rendition of reference line
suppress plotting reference line

affect rendition of all coefficient paths; not allowed when there
are 100 or more coefficients

affect rendition of coefficient path #; not allowed when there
are 100 or more coefficients

graph coefficient paths using a single line; default is mono
for 100 or more coefficients

affect rendition of line used to graph coefficient paths when
mono is specified

data(filename [, replace]) save plot data to filename

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by () documented in [G-3] twoway_options

*for (varspec) is required for all ds, po, and xpo commands and for telasso.

xfold(#) is required for all xpo commands and for telasso when the option xfolds (#) was specified.
resample (#) is required for xpo and for telasso when the option resample (#) was specified.
tlevel (#) is required for the outcome model in telasso.

X_unit_spec Description

linorm £,-norm of standardized coefficient vector; the default
linormraw £, -norm of unstandardized coefficient vector
1nlambda A on a logarithmic scale

rlnlambda A on a reverse logarithmic scale

coefpath — Plot path of coefficients after lasso 28

Options

Main

xunits (x_unit_spec) specifies the x-axis units used for graphing the coefficient paths. The following
X_unit_specs are available:

l1inorm specifies x-axis units ¢, -norm of the standardized coefficient vector. This is the default.
linormraw specifies z-axis units ¢, -norm of the unstandardized coefficient vector.
1nlambda specifies z-axis units A on a logarithmic scale.
rlnlambda specifies z-axis units A on a reverse logarithmic scale.
minmax adds minimum and maximum values to the z axis.

for (varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command fit
using the option selection(cv), selection(adaptive), or selection(bic). For all commands
except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either dep-
var, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred (varname) . The lasso for
depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by
varname and pred (varname) . The exogenous variables of interest each have only one lasso, and it
is specified by pred (varname) .

For telasso, varspec is either the outcome variable or the treatment variable.
This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds (#) was specified. For each variable to be fit with a lasso, K lassos are done, one
for each cross-fit fold, where K is the number of folds. This option specifies which fold, where
#=1,2,..., K. xfold(#) is required after an xpo command and after telasso when the option
xfolds (#) was specified.

resample (#) specifies a particular lasso after an xpo estimation command or after telasso fit using the
option resample (#). For each variable to be fit with a lasso, R x K lassos are done, where R is the
number of resamples and K is the number of cross-fitting folds. This option specifies which resample,
where #=1,2,..., R. resample (#), along with xfold (#), is required after an xpo command and
after telasso with resampling.

tlevel (#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs coefficient paths for « = #. The default is alpha(a*), where a* is the selected «.
alpha (#) may only be specified after elasticnet.

rawcoefs specifies that unstandardized coefficient paths be graphed. By default, coefficients of stan-
dardized variables (mean 0 and standard deviation 1) are graphed.

Reference line

rlopts(cline_options) affects the rendition of the reference line. See [G-3] cline_options.

norefline suppresses plotting the reference line.

coefpath — Plot path of coefficients after lasso 29

Path

lineopts (cline_options) affects the rendition of all coefficient paths. See [G-3] cline_options.
lineopts () is not allowed when there are 100 or more coefficients.

line#opts (cline_options) affects the rendition of coefficient path #. See [G-3] cline_options.
line#fopts () is not allowed when there are 100 or more coefficients.

mono graphs the coefficient paths using a single line. mono is the default when there are 100 or more
coefficients in the lasso.

monoopts (cline_options) affects the rendition of the line used to graph the coefficient paths when mono
is specified. See [G-3] cline_options.

Data

r

data(filename | , replace]) saves the plot data to a Stata data file.

Y axis, X axis, Titles, Legend, Overall)

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and options for saving the graph to disk
(see [G-3] saving_option).

Remarks and examples

Remarks are presented under the following headings:

Coefficient path plots

An example

Adding a legend

A scale and reference line

After fitting with sqrtlasso

After fitting with elasticnet

After fitting with inference commands

Coefficient path plots

Coefficient path plots show the path of each coefficient over the search grid for the lasso penalty
parameter A\. The grid can be shown as either the log of lambda, xunits(1nlambda); the reverse of
that scale, xunits (rlnlambda); the ¢;-norm of the standardized coefficients, xunits(1linorm) (the
default); or the ¢, -norm of the unstandardized coefficients. The ¢, -norm of the standardized coefficients
is traditionally the default because it directly represents the lasso constraint in the standardized coefficient
space—the maximum allowed sum of the absolute values of the coefficients subject to a value of lambda.
A and the /;-norm have an inverse monotonic relationship. A is the lasso penalty. The ¢,-norm is its
impact on the length of the coefficient vector.

Coefficient path plots can be drawn after any command that directly searches over a grid of
A’s—that is, after any command that uses option selection(cv), selection(adaptive), or
selection(none). They can be drawn after commands lasso, elasticnet, sqrtlasso, or any of
the 11 lasso inference commands.

coefpath — Plot path of coefficients after lasso 30

An example

We used the auto dataset to demonstrate the lasso command in [LASSO] lasso.
. sysuse auto
(1978 automobile data)

While this dataset is an unlikely candidate for fitting with lasso, it is perfectly good for demonstrating
both lasso fitting and coefpath.

In that entry, we discussed how to model mpg on the remaining covariates in the dataset by typing

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio price
> trunk length displacement, selection(cv, alllambdas) stop(0) rseed(12345)

Evaluating up to 100 lambdas in grid ...

Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
(output omitted)
Grid value 100: lambda = .0004691 no. of nonzero coef. = 13

10-fold cross-validation with 100 lambdas ...

Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100
(output omitted)

Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
. cross-validation complete

Lasso linear model No. of obs = 69

No. of covariates = 15

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean

nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 0.0049 33.74852

40 lambda before .1246008 8 0.6225 12.80314

* 41 selected lambda .11356316 8 0.6226 12.79854

42 lambda after .1034458 8 0.6218 12.82783

100 last lambda .0004691 13 0.5734 14.46932

* lambda selected by cross-validation.

This command is fully explained in [LASSO] lasso. Of special interest here is the suboption
alllambdas and the option stop (0). Together, they ensure that the full 100 default values in the cross-
validation grid are searched. Otherwise, 1asso will stop searching once it has found an optimum or once
one of its other stopping rules is met.

coefpath — Plot path of coefficients after lasso 31

Graphing the coefficient paths for this lasso fit is as easy as typing

. coefpath

Coefficient paths

Standardized coefficients

0 5 10 15
L1-norm of standardized coefficient vector

The z axis shows the sum of the absolute values of the penalized coefficients (the ¢;-norm) going
from 0 to 15. Each line traces the penalized coefficient for one of the standardized covariates in our
model. These graphs are popular but pose a bit of a conundrum. They can only be interpreted when there
are few covariates, yet lasso is often most applicable when there are many covariates.

Adding a legend

Often, there are too many variables to allow for interest in any single path. These data are small
enough that we can look at each covariate. Let’s turn the legend on and place it beside the graph, using
a single column for the keys,

. coefpath, lineopts(lwidth(thick)) legend(on)

Coefficient paths

== (.foreign
21 = 1 foreign
m—].rep78
2 14 2.rep78
& —— 3.rep78
% m— 4. rep78
g o —~— — 5.rep78
3 ——— headroom
-.E weight
8 19 turn
s —— gear_ratio
2 5 price
m— trunk
length
-39 = displacement
0 5 10 15

L1-norm of standardized coefficient vector

coefpath — Plot path of coefficients after lasso 32

Looking at the graph, we now know which variable is traced by each line. We see that car weight
is traced by the light green line that starts off downward before its effect declines toward 0. What is
happening here is that weight enters early and absorbs any effect of other variables that are correlated
with it but have yet to enter the model. When 5.rep78 enters the model, the coefficient on weight
flattens. As gear_ratio, price, and turn enter, the effect of weight is further attenuated toward 0.
This is simply what happens when correlated variables are added to a model. With lasso, they are added
slowly because the lasso penalty brings in the coefficients in a penalized form rather than all at once.

Lasso is just letting variables into the model based on its penalty and the current value of lambda. We
can see what is happening, but that is about it.

)\ scale and reference line

In this example from [LASSO] lasso, we might find it yet more interesting to put our plot on the same
scale as the cvplot from that entry and add a reference line for the \ selected by cross-validation. We
change the scale by adding xunits (rlnlambda) and place the reference line by adding x1ine (. 1135),

. coefpath, lineopts(lwidth(thick)) legend(on) xunits(rlnlambda) xline(.1135)

Coefficient paths

: e e (), fOPEIQN
24 ! = 1 foreign
! m—1.rep78
9 14 : 2.rep78
_5 | — 3.rep78
% / : m—4.rep78
9 0 L 5.rep78
‘fé \:\‘ = headroom
s | weight
g 17 1 turn
] : gear_ratio
n 2 : price
| = trunk
: length
-3 : = displacement

1 1 01 001

We know from the output of 1lasso that cross-validation selected eight coefficients. We can now see
where each of them is in its path when cross-validation selected a model.

After fitting with sqrtlasso

There is not much to say about using coefpath after fitting with sqrtlasso. You type the same
thing after sqrtlasso that you would type after lasso.

If you wish to see that, you can simply change lasso to sqrtlasso in the estimation command
above. Make no changes to any other commands.

What’s more, you can add the option sqrtlasso whenever it is allowed to any of the inference
commands below. Nothing changes in the way we specify our coefpath commands.

After fitting with elasticnet

The only thing that changes with coefpath after an elasticnet command is that we can specify the
option alpha () to graph the paths for a value of « that is different than the alpha chosen by elasticnet.

coefpath — Plot path of coefficients after lasso 33

We can fit an elasticnet model using the auto dataset:

. elasticnet linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement,
> selection(cv, alllambdas) stop(0) rseed(12345)

(output omitted)

Elastic net linear model No. of obs = 69
No. of covariates = 15
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
alpha ID Description lambda coef. R-squared error

1.000
1 first lambda 9.382281 0 -0.0064 34.13399
109 last lambda .0004691 13 0.5734 14.46932

0.750
110 first lambda 9.382281 0 -0.0064 34.13399
218 last lambda .0004691 14 0.5736 14.46276

0.500
219 first lambda 9.382281 0 -0.0033 34.02853
264 lambda before .1647149 11 0.6328 12.45289
* 265 selected lambda .1500821 11 0.6331 12.44435
266 lambda after .1367492 11 0.6331 12.44506
327 last lambda .0004691 14 0.5738 14.4564

* alpha and lambda selected by cross-validation.

coefpath — Plot path of coefficients after lasso 34

We see that cross-validation chose « to be 0.5. Had it chosen 1, the elasticnet would have reduced
to lasso. To see the coefficient path graph for o = 0.5, we simply type

. coefpath

Coefficient paths

Standardized coefficients

0 5 10 15
L1-norm of standardized coefficient vector
acy = .5 is the cross-validation minimum a.

That looks quite a bit different from the first graph we drew in this entry, which is the graph for lasso
and would be the same as the graph we would get if we added the option alpha(1).

If we wanted the graph for o = 0.75, we would type

. coefpath, alpha(.75)

After fitting with inference commands

All postestimation tools, including coefpath, can be used after the ds, ps, and xpo inference com-
mands. Of all the postestimation commands, coefpath is the least likely to be useful in this context.
The inference commands use lassos to select control variables from a set of potential controls. Aside
from diagnosing whether something pathological occurred in the lasso, you are not supposed to care
which controls were selected, much less their coefficients, and even less the path of those coefficients.
Regardless, you can draw coefficient path plots for any lasso run by an inference command.

We will use a few of the examples from [LASSO] Inference examples to show you what to type to
create a coefficient path plot.

All these examples use breathe.dta, which attempts to measure the effect of nitrogen dioxide on
the reaction time of school children. All these examples will run, but we dispense with the output here.
If you are curious, run some.

To prepare the dataset, type

. use https://www.stata-press.com/data/r19/breathe

. do no2

All the ds (double-selection) and po (partialing-out) coefpaths are drawn in exactly the same way.
To fit one of the double-selection models from [LASSO] Inference examples, we type

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

coefpath — Plot path of coefficients after lasso 35

Recall that we are using global macros $cc and $fc to hold our control variables. $cc holds the
continuous controls, and $fc holds the factor-variable controls. Typing $cc simply substitutes the list
of continuous controls into our command, and likewise for $fc. We write i. ($£c) so that each of the
variables in $fc is expanded into dummy variables for each distinct level of the variable.

To draw the coefficient path plot for the lasso of the dependent variable react, we type

. coefpath, for(react)

To draw the plot for the lasso of the variable of interest no2_class, we type

. coefpath, for(no2_class)

If we had fit the models via partialing out by typing poregress instead of dsregress, nothing would
change. Typing coefpath, for(react) would still produce the coefficient path plot for the lasso of
react, and typing coefpath, for(no2_class) would still produce the plot for no2_class.

What’s more, what we type to plot coefficient paths does not change if our dependent variable were
dichotomous and we had fit the model by using dslogit or pologit. Nor does it change if the dependent
variable is a count and we fit the model by using dspoisson or popoisson.

Things do change if we fit the model by using the xpo (cross-fit partialing-out) estimators. The xpo
estimators perform lots of lassos. Let’s refit our original model using xporegress.

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted)

To see the lassos that xporegress ran, we can use lassoinfo:

. lassoinfo, each

Estimate: active
Command: xporegress

No. of

Dependent Selection xfold Selection selected
variable Model method no. criterion lambda variables
no2_class linear cv 1 CV min. .1801304 14
no2_class linear cv 2 CV min. .2561599 10
no2_class linear cv 3 CV min. .2181624 13
no2_class linear cv 4 CV min. .1963854 13
no2_class linear cv 5 CV min. .2352711 11
no2_class linear cv 6 CV min. .2663564 12
no2_class linear cv 7 CV min. .1293717 16
no2_class linear cv 8 CV min. .1722497 15
no2_class linear cv 9 CV min. .264197 9
no2_class linear cv 10 CV min. .1184878 16
react linear cv 1 CV min. 2.130811 19
react linear cv 2 CV min. 2.443412 16
react linear cv 3 CV min. 2.062956 17
react linear cv 4 CV min. 4.220311 13
react linear cv 5 CV min. 7.434224 8
react linear cv 6 CV min. 3.356193 14
react linear cv 7 CV min. 7.954354 6
react linear cv 8 CV min. 6.422852 8
react linear cv 9 CV min. 2.982171 15
react linear cv 10 CV min. 2.738883 18

coefpath — Plot path of coefficients after lasso 36

That’s 20 lassos! react has 10 and no2_class has 10. There is one lasso for each variable for each
cross-validation fold. The cross-validation folds are enumerated in the column titled xfold no.. To see
the cross-validation plot for the third cross-validation fold for the variable react, we type

. coefpath, for(react) xfold(3)
Change react to no2_class to see the plot for no2_class.
Feel free to plot all 18 other pairings of each variable with the cross-validation folds.

Again, it would not matter if we had fit xpologit or xpopoisson models. We type the same thing
to see our coefficient path plots.

The cross-fit models can create even more lassos. We are willing to resample the whole process to
reduce the sampling variability. Let’s resample the process 10 times:

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) ///
resample(10) rseed(12345)

If you type that command, be patient; it takes a few minutes to run.

Now, let’s look at our lassos:

. lassoinfo, each

Estimate: active
Command: xporegress

No. of
Dependent Selection Resample xfold Selection sel.
variable Model method number no. criterion lambda var.
no2_class linear cv 1 1 CV min. .1801304 14
no2_class linear cv 1 2 CV min. .2561599 10
(output omitted)
no2_class linear cv 1 10 CV min. .1184878 16
no2_class linear cv 2 1 CV min. .2118238 12
(output omitted)
no2_class ‘ linear cv 2 10 CV min. .1773874 13
(output omitted)
no2_class linear cv 3 10 CV min. .1676957 13
react linear cv 1 1 CV min. 2.130811 19
(output omitted)
react linear cv 1 10 CV min. 2.738883 18
react linear cv 2 1 CV min. 4.379673 14
(output omitted)
react linear cv 2 10 CV min. 3.747121 14
react linear cv 3 1 CV min. 5.821677 11
(output omitted)

react ‘ linear cv 3 10 CV min. 3.668243 13

We now have 30 of them! There is one for each variable within each cross-validation sample within
each resample sample. Here is how we would graph the coefficient path plot for the third cross-validation
sample in the second resample sample for the covariate of interest no2_class.

. coefpath, for(no2_class) resample(2) xfold(3)

If we had typed resample (10) instead of resample (3) on our xporegress command, we would
have 200 possible graphs. Have fun looking at those.

Yet again, it would not matter if we had fit xpologit or xpopoisson models. We still type the same
thing to see our coefficient path plots.

coefpath — Plot path of coefficients after lasso 37

Also see

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[CAUSAL] telasso postestimation — Postestimation tools for telasso

Collinear covariates — Treatment of collinear covariates

Description Remarks and examples Also see

Description

Lasso, square-root lasso, and elastic net treat collinear covariates differently from traditional estima-
tors. With these models, you specify variables that might be included in the model, and they choose the
variables to be included. When you specify those variables, it is important that you present them with
all possible alternatives. This means that, when including factor variables, you must include the full
collinear set of indicators.

If you use Stata’s factor-variable notation, it is handled automatically for you. If you create indicator
variables for yourself, you must create and include them all.

Remarks and examples

Remarks are presented under the following headings:

Summary

Explanation

Applies to inferential commands
Does not apply to alwaysvars

Summary
Consider factor variable group that takes on the values 1, 2, and 3. If you type
. lasso linear yi.group ...

lasso will know that separate covariates for group 1, 2, and 3 are to be included among the variables
to be potentially included in the model.

If you create your own indicator variables, you need to create and specify indicators for all the values
of the factor variable:

. generate gl = (group==1)
. generate g2 = (group==2)
. generate g3 = (group==3)
. lassolinear y gl g2 g3 ...

It is important that you do not omit one of them, say, g1, and instead type

. lasso linear yg2g3 ...

Explanation

With no loss of generality, we will focus on lasso for this explanation. Assume lasso has just found the
best model for \; with k covariates and is now searching for the best model for A, ;, where A, ; < A,.

The \;,; model will not always be the same \; model with new covariates added, but this is often the
case. (Sometimes, covariates in the A\, model are removed.) Assume this is a case of adding only new
covariates. Also assume that g1, g2, and g3 have not been chosen yet and that lasso chooses g1.

38

Collinear covariates — Treatment of collinear covariates 39

But what if we did not specify g1 among the potential covariates? What if rather than typing
. lasso linear y gl g2 g3 ...
we typed
. lasso linearyg2g3 ...

In that case, lasso would not choose g1 because it could not. It would choose some other covariate or
covariates, perhaps g2, perhaps g3, perhaps g2 and g3, or perhaps other covariates. And lasso is on an
inferior path because g1 was not among the potential covariates.

Although selecting both g2 and g3 in place of g1 gives an equivalent model for prediction, it may
have wasted an extra penalty on the coefficients for g2 and g3. A model with only g1 may have a
smaller penalty and allow other covariates to be included, which a model with g2 and g3 would not. By
eliminating g1, we have denied lasso the opportunity to find a more parsimonious model.

Applies to inferential commands

You must also specify full collinear sets of potential covariates with the inferential commands. Specify
full sets in the controls () option, such as

. dsregress y z1 z2, controls(glg2g3 ...)
Likewise for the high-dimensional instruments in poivregress and xpoivregress:
. poivregressy ... (z12z2=glg2g3...), controls(...)
Just as with 1lasso, the issue is handled automatically if you use factor-variable notation:

. dsregress y z1 z2, controls(i.group ...)

Does not apply to alwaysvars

With any lasso, you can specify covariates that will always appear in the model. You specify them in
parentheses. For example, for lasso, type

. lasso linear y (x1x2) x3x4 ...

and for the inference commands, type
. dsregress y z1 z2, controls((x1x2) x3x4 ...)

We call the covariates that always appear in the model alwaysvars. The alwaysvars do not need to be
full collinear sets. Indeed, collinear variables among the alwaysvars will be omitted.

Factor-variable notation handles the problem automatically in both cases:
. lasso linear (i.region ...) i.group ...

A base level will be set for i.region (or you can set it explicitly). For i.group, all levels will be
included. If you try to set a base level for i.group, it will be ignored.

Also see

[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction

cvplot — Plot cross-validation function after lasso

Description Quick start Menu Syntax Options
Remarks and examples Also see
Description

cvplot graphs the cross-validation (CV) function after a lasso fit using selection(cv),
selection(adaptive), selection(bic), or selection(none).

cvplot can be used after lasso, elasticnet, sqrtlasso, telasso, or any of the lasso inference
commands.

Quick start

Graph the CV function after 1asso, sqrtlasso, or elasticnet
cvplot

Same as above, and draw a reference line identifying the value selected by the one-standard-error rule

cvplot, seline

Graph the CV function after elasticnet for the « = 0.5 lasso
cvplot, alpha(.5)

After any of the ds or po commands, graph the CV function for the dependent variable y
cvplot, for(y)

Same as above, and show standard error bands for the CV function
cvplot, for(y) se

After an xpo command without resample, graph the CV function for x in cross-fit fold 2
cvplot, for(x) xfold(2)

After an xpo command with resample, graph the CV function for x in cross-fit fold 2 for the first resample
cvplot, for(x) xfold(2) resample(1)

Same as above, but graph the CV function as a function of the £, -norm of the standardized coefficient
vector

cvplot, for(x) xfold(2) resample(1) xunits(linorm)

After telasso, graph the CV function for the outcome variable x at treatment level 1
cvplot, for(y) tlevel(l)

Menu

Statistics > Postestimation

40

cvplot — Plot cross-validation function after lasso 41

Syntax

After lasso, sqrtlasso, and elasticnet

cvplot [, options |

After ds and po commands

cvplot, for (varspec) [options]

After xpo commands without resample

cvplot, for (varspec) xfold(#) [options |

After xpo commands with resample

cvplot, for (varspec) xfold(#) resample (#) [options |

After telasso for the outcome variable

cvplot, for (varspec) tlevel (#) [options]

After telasso for the treatment variable

cvplot, for(varspec) [options]

After telasso for the outcome variable with cross-fitting but without resample

cvplot, for (varspec) tlevel (#) xfold(#) [options |

After telasso for the treatment variable with cross-fitting but without resample

cvplot, for (varspec) xfold(#) [options |

After telasso for the outcome variable with cross-fitting and resample

cvplot, for (varspec) tlevel (#) xfold(#) resample (#) [options |

After telasso for the treatment variable with cross-fitting and resample

cvplot, for (varspec) xfold(#) resample (#) [options |

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

cvplot — Plot cross-validation function after lasso 42

options

Description

Main
xunits (x_unit_spec)

minmax
* for (varspec)
*xfold(#)

*resample (#)
*tlevel(#)
alpha(#)

lineopts(cline_options)

S.E. plot
se
seopts (rcap_options)

Reference lines
cvlineopts (cline_options)

nocvline
1slineopts(cline_options)
nolsline
selineopts(cline_options)

[no|seline

hrefline

rlabelopts (r_label_opts)

Data
data(filename [, replace])

Y axis, X axis, Titles, Legend, Overall
twoway_options

x-axis units (scale); default is xunits (rlnlambda), where
rlnlambda denotes A on a reverse logarithmic scale

add labels for the minimum and maximum x-axis units

lasso for varspec; telasso, ds, po, and xpo commands only

lasso for the #th cross-fit fold; xpo commands and telasso
with xfolds only

lasso for the #th resample; xpo commands and telasso
with resample only

lasso for the outcome model with the treatment level #;
telasso only

graph CV function for o = #; default is the selected value o*;
allowed after elasticnet only

affect rendition of the plotted lines

show standard error bands for the CV function
affect rendition of the standard error bands

affect rendition of reference line identifying the minimum
of the CV function or other stopping rule

suppress reference line identifying the minimum of the CV function
or other stopping rule

affect rendition of reference line identifying the value selected
using lassoselect

suppress reference line identifying the value selected using
lassoselect

affect rendition of reference line identifying the value selected
by the one-standard-error rule

draw or suppress reference line identifying the value selected by
the one-standard-error rule; shown by default for
selection(cv, serule)

add horizontal reference lines that intersect the vertical reference
lines

change look of labels for reference line

save plot data to filename

any options other than by () documented in [G-3] twoway_options

*for (varspec) is required for all ds, po, and xpo commands and for telasso.

xfold(#) is required for all xpo commands and for telasso when the option xfolds (#) was specified.

resample (#) is required for xpo and for telasso when the option resample (#) was specified.

tlevel (#) is required for the outcome model in telasso.

cvplot — Plot cross-validation function after lasso 43

X_unit_spec Description
rlnlambda A on a reverse logarithmic scale; the default
1nlambda A on a logarithmic scale
linorm £, -norm of standardized coefficient vector
linormraw £, -norm of unstandardized coefficient vector
r_label_opts Description
labgap (size) margin between tick and label
labstyle (textstyle) overall style of label
labsize (textsizestyle) size of label
labcolor(colorstyle) color and opacity of label
Options
Main

xunits (x_unit_spec) specifies the x-axis units used for graphing the CV function. The following
X_unit_specs are available:

rlnlambda specifies z-axis units A on a reverse logarithmic scale. This is the default.
1nlambda specifies z-axis units A on a logarithmic scale.
linorm specifies x-axis units ¢, -norm of the standardized coefficient vector.
linormraw specifies x-axis units £;-norm of the unstandardized coefficient vector.
minmax adds labels for the minimum and maximum z-axis units to the graph of the CV function.

for (varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command fit
using the option selection(cv), selection(adaptive), or selection(bic). For all commands
except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either dep-
var, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred (varname) . The lasso for
depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by
varname and pred (varname) . The exogenous variables of interest each have only one lasso, and it
is specified by pred (varname) .

For telasso, varspec is either the outcome variable or the treatment variable.
This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds (#) was specified. For each variable to be fit with a lasso, K lassos are done, one
for each cross-fit fold, where K is the number of folds. This option specifies which fold, where
#=1,2,..., K. xfold(#) is required after an xpo command and after telasso when the option
xfolds (#) was specified.

cvplot — Plot cross-validation function after lasso 44

resample (#) specifies a particular lasso after an xpo estimation command or after telasso fit using the
option resample (#). For each variable to be fit with a lasso, R x K lassos are done, where R is the
number of resamples and K is the number of cross-fitting folds. This option specifies which resample,
where #=1,2,..., R. resample(#), along with xfold (#), is required after an xpo command and
after telasso with resampling.

tlevel (#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

alpha(#) graphs the CV function for « = #. The default is alpha(a*), where o* is the selected a.
alpha (#) may only be specified after elasticnet.

lineopts (cline_options) affects the rendition of the plotted line. See [G-3] cline_options.

S.E. plot

se shows standard error bands for the CV function.

seopts (rcap_options) affects the rendition of the standard error bands. See [G-3] rcap_options.

Reference lines

cvlineopts(cline_options) affects the rendition of the reference line identifying the minimum CV
value, the value selected when the stopping tolerance is reached, or the grid-minimum value. See
[G-3] cline_options.

nocvline suppresses the reference line identifying the minimum CV value, the value selected when the
stopping tolerance is reached, or the grid-minimum value.

1slineopts (cline_options) affects the rendition of the reference line identifying the value selected
using lassoselect. See [G-3] cline_options.

nolsline suppresses the reference line identifying the value selected using lassoselect.

selineopts (cline_options) affects the rendition of the reference line identifying the value selected by
the one-standard-error rule. See [G-3] cline_options.

[no]seline draws or suppresses a reference line identifying the value selected by the one-standard-error
rule. By default, the line is shown when selection(cv, serule) was the selection method for the
lasso. For other selection methods, the line is not shown by default.

hrefline adds horizontal reference lines that intersect the vertical reference lines.

rlabelopts (r_label_opts) changes the look of labels for the reference line. The label options
labgap (relativesize), labstyle(textstyle), labsize (textsizestyle), and labcolor (colorstyle)
specify details about how the labels are presented. See [G-4] size, [G-4] textstyle, [G-4] textsizestyle,
and [G-4] colorstyle.

Data

data(filename | , replace]) saves the plot data to a Stata data file.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These

include options for titling the graph (see [G-3] title_options) and options for saving the graph to disk
(see [G-3] saving_option).

cvplot — Plot cross-validation function after lasso 45

Remarks and examples

CV plots graph the CV function over the search grid for the lasso penalty parameter A. For linear
models, the CV function is the mean squared error of the predictions in the CV samples. For logit and
Poisson models, the CV function is the mean deviance in the CV samples.

The search grid can be shown as the log of the lasso penalty parameter A\, xunits(1lnlambda);
the reverse of that scale, xunits(rlnlambda); the ¢;-norm of the standardized coefficients,
xunits(linorm); or the ¢;-norm of the unstandardized coefficients, xunits (11lnormraw). The re-
verse log of lambda is the default because it represents the CV search path over A\, with the first A tried
on the left and the last) tried on the right.

CV plots can be drawn after any command that directly searches over a grid of \’s—that is, after
any command that used the option selection(cv), selection(adaptive), or selection(none).
They can be drawn after commands lasso, elasticnet, sqrtlasso, telasso, or any of the 11 lasso
inference commands.

Examples that demonstrate how to use cvplot after the lasso command can be found in The CV
function in [LASSO] lasso.

Examples after elasticnet can be found starting in example 2 of [LASSO] elasticnet.

Also see

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction
[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

[CAUSAL] telasso postestimation — Postestimation tools for telasso

dslogit — Double-selection lasso logistic regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see
Description

dslogit fits a lasso logistic regression model and reports odds ratios along with standard errors, test
statistics, and confidence intervals for specified covariates of interest. The double-selection method is
used to estimate effects for these variables and to select from potential control variables to be included
in the model.

Quick start

Report an odds ratio from a logistic regression of y on d1, and include x1 to x100 as potential control
variables to be selected by lassos

dslogit y dl, controls(x1-x100)

Same as above, and estimate odds ratios for the levels of categorical d2
dslogit ydl i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal A* in each lasso
dslogit ydli.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
dslogit ydl i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
dslogit ydli.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
dslogit ydl i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.
dslogit ydli.d2, controls(x1-x100) lasso(*, selection(cv, alllambdas))

Menu

Statistics > Lasso > Lasso inferential models > Binary outcomes > Double-selection logit model

46

dslogit — Double-selection lasso logistic regression 47

Syntax

dslogit depvar varsofinterest [if | [in],

controls([(alwaysvars)| othervars) |options]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options

Description

Model

* controls([(alwaysvars)| othervars)
selection(plugin)
selection(cv)
selection(adaptive)
selection(bic)

sqrtlasso
missingok

offset (varname)

SE/Robust
vce (veetype)

Reporting
level(#)
or
coef
display__options

Optimization
[no]log
verbose
rseed (#)

Advanced
lasso (varlist, lasso_options)

sqrtlasso(varlist, lasso_options)

alwaysvars and othervars make up the set of control
variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

use a plugin iterative formula to select an optimal value of
the lasso penalty parameter * for each lasso; the default

use CV to select an optimal value of the lasso
penalty parameter * for each lasso

use adaptive lasso to select an optimal value of the lasso
penalty parameter A* for each lasso

use BIC to select an optimal value of the lasso
penalty parameter * for each lasso

use square-root lassos for varsofinterest

after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

include varname in the lasso and model for depvar with
its coefficient constrained to be 1

vecetype may be robust (the default), cluster clustvar,
oroim

set confidence level; default is 1evel (95)
report odds ratios; the default
report estimated coefficients

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

display or suppress an iteration log
display a verbose iteration log
set random-number seed

specify options for the lassos for variables in varlist; may be
repeated

specify options for square-root lassos for variables in varlist;
may be repeated

dslogit — Double-selection lasso logistic regression 48

reestimate refit the model after using lassoselect to select a different
)*

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

*controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
Options
N

controls ([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted
variables. Control variables are also known as confounding variables. dslogit fits lassos for depvar
and each of the varsofinterest. alwaysvars are variables that are always to be included in these lassos.
alwaysvars are optional. othervars are variables that each lasso will choose to include or exclude.
That is, each lasso will select a subset of othervars. The selected subset of othervars may differ
across lassos. controls() is required.

selection(plugin|cv|adaptive |bic) specifies the selection method for choosing an optimal value
of the lasso penalty parameter A* for each lasso or square-root lasso estimation. Separate lassos
are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the
selection method for all of these lassos. You can specify different selection methods for different
lassos using the option lasso () or sqrtlasso(). When lasso() or sqrtlasso() isused to specify
a different selection method for the lassos of some variables, they override the global setting made
using selection() for the specified variables.

selection(plugin) is the default. It selects A* based on a “plugin” iterative formula dependent on
the data. See [LASSO] lasso options.

selection(cv) selects the A* that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects A* using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the * that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.
This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar
is always a logit lasso. The option lasso() can be used with sqrtlasso to specify that regular
lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See
[LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-
missing observations of variables in the final model. In all cases, any observation with missing values
for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the
lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and
their standard errors.

dslogit — Double-selection lasso logistic regression 49

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with
missing values for any othervars not selected will be added to the estimation sample (provided there
are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing values,
the estimation sample for a model fit using the default selection(plugin) will likely differ from
the estimation sample for a model fit using, for example, selection(cv).

offset (varname) specifies that varname be included in the lasso and model for depvar with its coeffi-
cient constrained to be 1.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (vce (cluster clustvar)),
and that are derived from asymptotic theory (vce (oim)). See [R] vce_option.

When vce (cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this
affects how the log-likelihood function is computed and how the sample is split in cross-validation;
see Methods and formulas in [LASSO] lasso. Specifying vce (cluster clustvar) may lead to different
selected controls and therefore to different point estimates for your variable of interest when compared
to the estimation that ignores clustering.

Reporting

level (#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, e*. Standard errors and confi-
dence intervals are similarly transformed. or is the default.

coef reports the estimated coefficients « rather than the odds ratios (e®). This option affects how results
are displayed, not how they are estimated. coef may be specified at estimation or when replaying
previously estimated results.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fmt), pformat (% fmt),
sformat (%fmt), and nolstretch; see [R] Estimation options.

Optimization

[no]1log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-
sages indicating when each lasso estimation begins are shown. Specify verbose to see a more detailed
log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of
the lasso estimations for these selection methods, which can be time consuming when there are many
othervars specified in controls ().

rseed(#) sets the random-number seed. This option can be used to reproduce results for
selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running
dslogit. See [R] set seed.

dslogit — Double-selection lasso logistic regression 50

Advanced

lasso (varlist, lasso_options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for
these variables. varlist consists of one or more variables from depvar or varsofinterest. _all or
* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different
variables are given in each specification. lasso_options are selection(...), grid(...), stop(#),
tolerance(#), dtolerance(#), and cvtolerance (#). When lasso (varlist, selection(...))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso (varlist, lasso_options) works like the option lasso (), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables from
varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This
option is repeatable as long as different variables are given in each specification. lasso_options are
selection(...), grid(...), stop(#), tolerance(#), dtolerance(#), and cvtolerance(#).
When sqrtlasso (varlist, selection(...)) is specified, it overrides any global selection() op-
tion for the variables in varlist. See [LASSO] lasso options.

The following options are available with dslogit but are not shown in the dialog box:

reestimate is an advanced option that refits the dslogit model based on changes made to the underly-
ing lassos using lassoselect. After running dslogit, you can select a different * for one or more
of the lassos estimated by dslogit. After selecting *, you type dslogit, reestimate to refit the
dslogit model based on the newly selected \’s.

reestimate may be combined only with reporting options.
noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples

dslogit performs double-selection lasso logistic regression. This command estimates odds ratios,
standard errors, and confidence intervals and performs tests for variables of interest while using lassos
to select from among potential control variables.

The logistic regression model is

Pr(y = 1]d,x) = xplda’ + x5
y=ASY =TT exp(da’ +x3')

where d are the variables for which we wish to make inferences and x are the potential control vari-
ables from which the lassos select. dslogit estimates the « coefficients and reports the corresponding
odds ratios, e“. However, double selection does not provide estimates of the coefficients on the control
variables (3) or their standard errors. No estimation results can be reported for 3.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use dslogit and the other lasso inference commands are presented
in [LASSO] Inference examples. In particular, we recommend reading | Overview for an introduction to
the examples and to the v1 command, which provides tools for working with the large lists of variables
that are often included when using lassos methods. See 2 Fitting and interpreting inferential models for

dslogit — Double-selection lasso logistic regression 51

comparisons of the different methods of fitting inferential models that are available in Stata. Everything
we say there about methods of selection is applicable to both linear and nonlinear models. See 3 Fitting
logit inferential models to binary outcomes. What is different? for examples and discussion specific to
logistic regression models. The primary difference from linear models involves interpreting the results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results

dslogit stores the following ine():

Scalars
e(N) number of observations
e(N_clust) number of clusters

e(k_varsofinterest)

e(k_controls)
e(k_controls_sel)
e(df)

e(chi2)

e(p)

e(rank)

Macros

e(cmd)
e(cmdline)
e(depvar)
e(lasso_depvars)
e(varsofinterest)
e(controls)
e(controls_sel)
e(model)
e(title)
e(offset)
e(clustvar)
e(chi2type)
e(vce)
e(vcetype)
e(rngstate)
e(properties)
e(predict)
e(select_cmd)
e(marginsnotok)
e(asbalanced)
e(asobserved)

Matrices

e(b)
e(V)

Functions

e(sample)

Matrices

r(table)

number of variables of interest

number of potential control variables

number of selected control variables

degrees of freedom for test of variables of interest

X2

p-value for test of variables of interest
rank of e (V)

dslogit

command as typed

name of dependent variable

names of dependent variables for all lassos
variables of interest

potential control variables

selected control variables

logit

title in estimation output

linear offset variable

name of cluster variable

Wald; type of x? test

veetype specified in vce ()

title used to label Std. err.
random-number state used

bV

program used to implement predict
program used to implement lassoselect
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector
variance—covariance matrix of the estimators

marks estimation sample

In addition to the above, the following is stored in r ():

matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

dslogit — Double-selection lasso logistic regression 52

Methods and formulas

dslogit implements double-selection lasso logit regression (DSLLR) as described in Belloni, Cher-
nozhukov, and Wei (2016, table 2 and sec. 2.1). The regression model is

E[y|d, x] = G(da’ + 5, +x3')

where G(a) = exp(a)/{1 + exp(a)}, d contains the .J covariates of interest, and x contains the p
controls. The number of covariates in d must be small and fixed. The number of controls in x can be
large and, in theory, can grow with the sample size; however, the number of nonzero elements in 3 must
not be too large, which is to say that the model must be sparse.

DSLLR algorithm

L.

Perform a logit lasso of 3 on d and x, and denote the selected controls by X.

This logit lasso can choose the lasso penalty parameter (A*) using the plugin estimator, adaptive
lasso, or CV. The plugin value is the default.

. Fit a logit regression of y on d and X, denoting the estimated coefficient vectors by & and ﬁ,

respectively.

3. Letw; = G'(d;& + ilﬁ/) be the ith observation of the predicted value of the derivative of G(-).

. Forj=1,...,J, perform a linear lasso of d; on X using observation-level weights w,, and denote

the selected controls by X;.

Each of these lassos can choose the lasso penalty parameter (A}) using one of the plugin estimators
for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso
is the default.

. Let X be the distinct variables from the union of the variables in X1, ..., X 7, and X.

. Fit a logit regression of y on d and X, denoting the estimated coefficient vectors by & and B,

respectively.

. Store the point estimates & in e (b) and their variance estimates (VCE) in e (V).

Option vce(robust), the robust estimator of the VCE for a logistic regression, is the default.
Specify option vce (oim) to get the OIM estimator of the VCE.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose their
penalty parameter (A*).

Reference

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-
trols. Journal of Business and Economic Statistics 34: 606—619. https://doi.org/10.1080/07350015.2016.1166116.

https://doi.org/10.1080/07350015.2016.1166116

dslogit — Double-selection lasso logistic regression 53

Also see

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models
[LASSO] pologit — Partialing-out lasso logistic regression

[LASSO] xpologit — Cross-fit partialing-out lasso logistic regression

[R] logit — Logistic regression, reporting coefficients

[R] logistic — Logistic regression, reporting odds ratios

[U] 20 Estimation and postestimation commands

dspoisson — Double-selection lasso Poisson regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see
Description

dspoisson fits a lasso Poisson regression model and reports incidence-rate ratios along with standard
errors, test statistics, and confidence intervals for specified covariates of interest. The double-selection
method is used to estimate effects for these variables and to select from potential control variables to be
included in the model.

Quick start

Report an incidence-rate ratio from a Poisson regression of y on d1, and include x1 to x100 as potential
control variables to be selected by lassos

dspoissony dl, controls(x1-x100)

Same as above, and estimate incidence-rate ratios for the levels of categorical d2

dspoissony dl i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal A* in each lasso

dspoissonydl i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

dspoissonydl i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
dspoissonydl i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
dspoissony dl i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

dspoissonydl i.d2, controls(x1-x100) ///
lasso(*, selection(cv, alllambdas))

Menu

Statistics > Lasso > Lasso inferential models > Count outcomes > Double-selection Poisson model

54

dspoisson — Double-selection lasso Poisson regression 55

Syntax

dspoisson depvar varsofinterest [if | [in],

controls([(alwaysvars)| othervars) |options]
varsofinterest are variables for which coefficients and their standard errors are estimated.

options Description

Model

* controls([(alwaysvars)| othervars) alwaysvars and othervars make up the set of control
variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter * for each lasso; the default
selection(cv) use CV to select an optimal value of the lasso
penalty parameter * for each lasso
selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter A* for each lasso
selection(bic) use BIC to select an optimal value of the lasso
penalty parameter * for each lasso
sqrtlasso use square-root lassos for varsofinterest
missingok after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model
offset (varname,) include varname,, in the lasso and model for depvar with
its coefficient constrained to be 1
exposure (varname,) include In(varname,) in the lasso and model for depvar
with its coefficient constrained to be 1
SE/Robust
vce (veetype) veetype may be robust (the default), cluster clustvar,
or oim
Reporting
level(#) set confidence level; default is 1evel (95)
irr report incidence-rate ratios; the default
coef report estimated coefficients
display_options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
Optimization
[no]log display or suppress an iteration log
verbose display a verbose iteration log
rseed (#) set random-number seed
Advanced
lasso (varlist, lasso_options) specify options for the lassos for variables in varlist; may be

repeated

sqrtlasso (varlist, lasso_options) specify options for square-root lassos for variables in varlist;
may be repeated

dspoisson — Double-selection lasso Poisson regression 56

reestimate refit the model after using lassoselect to select a different
)*

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

*controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
Options
N

controls ([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted
variables. Control variables are also known as confounding variables. dspoisson fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these
lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or
exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars may
differ across lassos. controls() is required.

selection(plugin|cv|adaptive |bic) specifies the selection method for choosing an optimal value
of the lasso penalty parameter A* for each lasso or square-root lasso estimation. Separate lassos
are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the
selection method for all of these lassos. You can specify different selection methods for different
lassos using the option lasso () or sqrtlasso(). When lasso() or sqrtlasso() isused to specify
a different selection method for the lassos of some variables, they override the global setting made
using selection() for the specified variables.

selection(plugin) is the default. It selects A* based on a “plugin” iterative formula dependent on
the data. See [LASSO] lasso options.

selection(cv) selects the A* that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects A* using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the * that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos for the varsofinterest.
This option does not apply to depvar. Square-root lassos are linear models, and the lasso for depvar
is always a Poisson lasso. The option lasso() can be used with sqrtlasso to specify that regular
lasso be done for some variables, overriding the global sqrtlasso setting for these variables. See
[LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-
missing observations of variables in the final model. In all cases, any observation with missing values
for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the
lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and
their standard errors.

dspoisson — Double-selection lasso Poisson regression 57

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with
missing values for any othervars not selected will be added to the estimation sample (provided there
are no missing values for any of the variables in the final model).

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing values,
the estimation sample for a model fit using the default selection(plugin) will likely differ from
the estimation sample for a model fit using, for example, selection(cv).

offset (varname,) specifies that varname, be included in the lasso and model for depvar with its co-
efficient constrained to be 1.

exposure (varname,) specifies that In(varname,) be included in the lasso and model for depvar with
its coefficient constrained to be 1.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (vce (cluster clustvar)),
and that are derived from asymptotic theory (vce (oim)). See [R] vce_option.

When vce (cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this
affects how the log-likelihood function is computed and how the sample is split in cross-validation;
see Methods and formulas in [LASSO] lasso. Specifying vce (cluster clustvar) may lead to different
selected controls and therefore to different point estimates for your variable of interest when compared
to the estimation that ignores clustering.

Reporting
level (#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, e®. Standard errors and
confidence intervals are similarly transformed. irr is the default.

coef reports the estimated coefficients « rather than the incidence-rate ratios, e®. This option affects
how results are displayed, not how they are estimated. coef may be specified at estimation or when
replaying previously estimated results.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (},fint), pformat (%fimt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

[no]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-
sages indicating when each lasso estimation begins are shown. Specify verbose to see amore detailed
log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of
the lasso estimations for these selection methods, which can be time consuming when there are many
othervars specified in controls().

dspoisson — Double-selection lasso Poisson regression 58

rseed(#) sets the random-number seed. This option can be used to reproduce results for
selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running
dspoisson. See [R] set seed.

Advanced

lasso (varlist, lasso_options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for
these variables. varlist consists of one or more variables from depvar or varsofinterest. _all or
* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different
variables are given in each specification. lasso_options are selection(...), grid(...), stop(#),
tolerance(#), dtolerance(#), and cvtolerance (#). When lasso (varlist, selection(...))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

sqrtlasso (varlist, lasso_options) works like the option lasso (), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables from
varsofinterest. Square-root lassos are linear models, and this option cannot be used with depvar. This
option is repeatable as long as different variables are given in each specification. lasso_options are
selection(...), grid(...), stop(#), tolerance(#), dtolerance(#), and cvtolerance (#).
When sqrtlasso (varlist, selection(...)) is specified, it overrides any global selection() op-
tion for the variables in varlist. See [LASSO] lasso options.

The following options are available with dspoisson but are not shown in the dialog box:

reestimate is an advanced option that refits the dspoisson model based on changes made to the under-
lying lassos using lassoselect. After running dspoisson, you can select a different A* for one or
more of the lassos estimated by dspoisson. After selecting *, you type dspoisson, reestimate
to refit the dspoisson model based on the newly selected A*’s.

reestimate may be combined only with reporting options.
noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples

dspoisson performs double-selection lasso Poisson regression. This command estimates incidence-
rate ratios, standard errors, and confidence intervals and performs tests for variables of interest while
using lassos to select from among potential control variables.

The Poisson regression model is
Elyld, x] = exp(da’ + x8)

where d are the variables for which we wish to make inferences and x are the potential control variables
from which the lassos select. dspoisson estimates the v coefficients and reports the corresponding
incidence-rate ratios, e“. However, double selection does not provide estimates of the coefficients on
the control variables (3) or their standard errors. No estimation results can be reported for 3.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

dspoisson — Double-selection lasso Poisson regression 59

Examples that demonstrate how to use dspoisson and the other lasso inference commands are pre-
sented in [LASSO] Inference examples. In particular, we recommend reading I Overview for an intro-
duction to the examples and to the v1 command, which provides tools for working with the large lists
of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential
models for comparisons of the different methods of fitting inferential models that are available in Stata.
Everything we say there about methods of selection is applicable to both linear and nonlinear models.
See 4 Fitting inferential models to count outcomes. What is different? for examples and discussion spe-
cific to Poisson regression models. The primary difference from linear models involves interpreting the
results.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

Stored results

dspoisson stores the following in e ():

Scalars
e(N) number of observations
e(N_clust) number of clusters

number of variables of interest
number of potential control variables
number of selected control variables

e(k_varsofinterest)
e(k—_controls)
e(k_controls_sel)

e(df) degrees of freedom for test of variables of interest
e(chi2) x?
e(p) p-value for test of variables of interest
e (rank) rank of e (V)
Macros
e(cmd) dspoisson
e(cmdline) command as typed

e(depvar)
e(lasso_depvars)
e(varsofinterest)
e(controls)

name of dependent variable

names of dependent variables for all lassos
variables of interest

potential control variables

e(controls_sel)
e(model)
e(title)
e(offset)
e(clustvar)
e(chi2type)
e(vce)
e(vcetype)
e(rngstate)
e(properties)
e(predict)
e(select_cmd)
e(marginsnotok)
e(asbalanced)
e(asobserved)

Matrices

e(b)
e(V)

Functions

e(sample)

selected control variables

poisson

title in estimation output

linear offset variable

name of cluster variable

Wald; type of x? test

veetype specified in vee ()

title used to label Std. err.
random-number state used

bV

program used to implement predict
program used to implement lassoselect
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector
variance—covariance matrix of the estimators

marks estimation sample

dspoisson — Double-selection lasso Poisson regression 60

In addition to the above, the following is stored in r () :

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas

dspoisson implements double-selection lasso Poisson regression (DSLPR) as described in Belloni,
Chernozhukov, and Wei (2016, table 2 and sec. 2.1). The regression model is

E[y|d, x| = G(da’ + B, + x3')

where G(a) = exp(a), d contains the J covariates of interest, and x contains the p controls. The number
of covariates in d must be small and fixed. The number of controls in x can be large and, in theory, can
grow with the sample size; however, the number of nonzero elements in 3 must not be too large, which
is to say that the model must be sparse.

DSLPR algorithm
1. Perform a Poisson lasso of y on d and x, and denote the selected controls by X.

This Poisson lasso can choose the lasso penalty parameter (A*) using the plugin estimator, adaptive
lasso, or CV. The plugin value is the default.

2. Fit a Poisson regression of on d and X, denoting the estimated coefficient vectors by & and E,
respectively.

3. Letw; = G’'(d;& + ilﬁ/) be the ith observation of the predicted value of the derivative of G(-).

4. For j=1,...,J, perform a linear lasso of d; on x using observation-level weights w;, and denote
the selected controls by X;.

Each of these lassos can choose the lasso penalty parameter (A}) using one of the plugin estimators
for a linear lasso, adaptive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso
is the default.

5. Let X be the distinct variables from the union of the variables in X, ..., X;, and X.

6. Fit a Poisson regression of i on d and X, denoting the estimated coefficient vectors by & and ,B,
respectively.

7. Store the point estimates & in e (b) and their variance estimates (VCE) in e (V).

Option vce (robust), the robust estimator of the VCE for a Poisson regression, is the default.
Specify option vce (oim) to get the OIM estimator of the VCE.

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 4 choose their
penalty parameter (*).

Reference

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-
trols. Journal of Business and Economic Statistics 34: 606—-619. https://doi.org/10.1080/07350015.2016.1166116.

https://doi.org/10.1080/07350015.2016.1166116

dspoisson — Double-selection lasso Poisson regression 61

Also see

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models
[LASSO] popoisson — Partialing-out lasso Poisson regression

[LASSO] xpopoisson — Cross-fit partialing-out lasso Poisson regression

[R] poisson — Poisson regression

[U] 20 Estimation and postestimation commands

dsregress — Double-selection lasso linear regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see
Description

dsregress fits a lasso linear regression model and reports coefficients along with standard errors,
test statistics, and confidence intervals for specified covariates of interest. The double-selection method
is used to estimate effects for these variables and to select from potential control variables to be included
in the model.

Quick start

Estimate a coefficient for d1 in a linear regression of y on d1, and include x1 to x100 as potential control
variables to be selected by lassos

dsregress y d1, controls(x1-x100)

Same as above, and estimate coefficients for the levels of categorical d2
dsregress y d1 i.d2, controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal A* in each lasso
dsregress ydl i.d2, controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility
dsregress ydl i.d2, controls(x1-x100) selection(cv) rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off
dsregress ydl i.d2, controls(x1-x100) lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d1, and i.d2
dsregress y d1 i.d2, controls(x1-x100) lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

dsregress ydl i.d2, controls(x1-x100) ///
lasso(*, selection(cv, alllambdas))

Menu

Statistics > Lasso > Lasso inferential models > Continuous outcomes > Double-selection model

62

dsregress — Double-selection lasso linear regression 63

Syntax

dsregress depvar varsofinterest [if | [in],

controls([(alwaysvars)| othervars) |options]

varsofinterest are variables for which coefficients and their standard errors are estimated.

options

Description

Model

* controls([(alwaysvars)| othervars)

selection(plugin)

selection(cv)

selection(adaptive)

selection(bic)

sqrtlasso
missingok

SE/Robust
vce (veetype)

Reporting
level(#)
display__options

Optimization
[no]log
verbose
rseed (#)

Advanced

lasso (varlist, lasso_options)

sqrtlasso(varlist, lasso_options)

reestimate

noheader
coeflegend

alwaysvars and othervars make up the set of control
variables; alwaysvars are always included;
lassos choose whether to include or exclude othervars

use a plugin iterative formula to select an optimal value of
the lasso penalty parameter * for each lasso; the default

use CV to select an optimal value of the lasso
penalty parameter * for each lasso

use adaptive lasso to select an optimal value of the lasso
penalty parameter A* for each lasso

use BIC to select an optimal value of the lasso
penalty parameter * for each lasso

use square-root lassos

after fitting lassos, ignore missing values in any othervars
not selected, and include these observations in the final
model

veetype may be robust (the default), cluster clustvar,
ols, hc2, orhc3

set confidence level; default is 1evel (95)

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

display or suppress an iteration log
display a verbose iteration log
set random-number seed

specify options for the lassos for variables in varlist; may be
repeated

specify options for square-root lassos for variables in varlist;
may be repeated

refit the model after using lassoselect to select a different
)*

do not display the header on the coefficient table

display legend instead of statistics

dsregress — Double-selection lasso linear regression 64

*controls() is required.

varsofinterest, alwaysvars, and othervars may contain factor variables. Base levels of factor variables cannot be set for
alwaysvars and othervars. See [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.
reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Model

controls([(alwaysvars)] othervars) specifies the set of control variables, which control for omitted
variables. Control variables are also known as confounding variables. dsregress fits lassos for
depvar and each of the varsofinterest. alwaysvars are variables that are always to be included in these
lassos. alwaysvars are optional. othervars are variables that each lasso will choose to include or
exclude. That is, each lasso will select a subset of othervars. The selected subset of othervars may
differ across lassos. controls() is required.

selection(plugin|cv|adaptive |bic) specifies the selection method for choosing an optimal value
of the lasso penalty parameter A* for each lasso or square-root lasso estimation. Separate lassos
are estimated for depvar and each variable in varsofinterest. Specifying selection() changes the
selection method for all of these lassos. You can specify different selection methods for different
lassos using the option lasso () or sqrtlasso(). When lasso () or sqrtlasso () isused to specify
a different selection method for the lassos of some variables, they override the global setting made
using selection() for the specified variables.

selection(plugin) is the default. It selects A* based on a “plugin” iterative formula dependent on
the data. See [LASSO] lasso options.

selection(cv) selects the A* that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects A* using the adaptive lasso selection method. It cannot be specified
when sqrtlasso is specified. See [LASSO] lasso options.

selection(bic) selects the * that gives the minimum of the BIC function. See [LASSO] lasso
options.

sqrtlasso specifies that square-root lassos be done rather than regular lassos. The option lasso()
can be used with sqrtlasso to specify that regular lasso be done for some variables, overriding the
global sqrtlasso setting for these variables. See [LASSO] lasso options.

missingok specifies that, after fitting lassos, the estimation sample be redefined based on only the non-
missing observations of variables in the final model. In all cases, any observation with missing values
for depvar, varsofinterest, alwaysvars, and othervars is omitted from the estimation sample for the
lassos. By default, the same sample is used for calculation of the coefficients of the varsofinterest and
their standard errors.

When missingok is specified, the initial estimation sample is the same as the default, but the sample
used for the calculation of the coefficients of the varsofinterest can be larger. Now observations with
missing values for any othervars not selected will be added to the estimation sample (provided there
are no missing values for any of the variables in the final model).

dsregress — Double-selection lasso linear regression 65

missingok may produce more efficient estimates when data are missing completely at random. It
does, however, have the consequence that estimation samples can change when selected variables
differ in models fit using different selection methods. That is, when othervars contain missing values,
the estimation sample for a model fit using the default selection(plugin) will likely differ from
the estimation sample for a model fit using, for example, selection(cv).

SE/Robust

vce (veetype) specifies the type of standard error reported. The default is vce (robust), which is ro-
bust to some kinds of misspecification. Also available are vce (cluster clustvar), which allows for
intragroup correlation; vce (ols), which specifies the standard variance estimator for ordinary least-
squares regression; and vce (hc2) and vce (hc3), which specify alternative bias corrections for the
robust variance calculation. See [R] vce_option and Options in [R] regress.

When vce (cluster clustvar) is specified, all lassos also account for clustering. For each lasso, this
affects how the log-likelihood function is computed and how the sample is split in cross-validation;
see Methods and formulas in [LASSO] lasso. Specifying vce (cluster clustvar) may lead to different
selected controls and therefore to different point estimates for your variable of interest when compared
to the estimation that ignores clustering.

Reporting

level (#); see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fmt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Optimization

[no]1log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-
sages indicating when each lasso estimation begins are shown. Specify verbose to see a more detailed
log.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful
when doing selection(cv) or selection(adaptive). It allows you to monitor the progress of
the lasso estimations for these selection methods, which can be time consuming when there are many
othervars specified in controls ().

rseed(#) sets the random-number seed. This option can be used to reproduce results for
selection(cv) and selection(adaptive). The default selection method selection(plugin)
does not use random numbers. rseed(#) is equivalent to typing set seed # prior to running
dsregress. See [R] set seed.

Advanced

lasso (varlist, lasso_options) lets you set different options for different lassos, or advanced options
for all lassos. You specify a varlist followed by the options you want to apply to the lassos for
these variables. varlist consists of one or more variables from depvar or varsofinterest. _all or
* may be used to specify depvar and all varsofinterest. This option is repeatable as long as different
variables are given in each specification. /asso_options are selection(...), grid(...), stop(#),
tolerance(#), dtolerance(#), and cvtolerance (#). When lasso (varlist, selection(...))
is specified, it overrides any global selection() option for the variables in varlist. It also overrides
the global sqrtlasso option for these variables. See [LASSO] lasso options.

dsregress — Double-selection lasso linear regression 66

sqrtlasso (varlist, lasso_options) works like the option lasso (), except square-root lassos for the
variables in varlist are done rather than regular lassos. varlist consists of one or more variables
from depvar or varsofinterest. This option is repeatable as long as different variables are given
in each specification. lasso_options are selection(...), grid(...), stop(#), tolerance(#),
dtolerance(#), and cvtolerance (#). When sqrtlasso (varlist, selection(...)) is specified,
it overrides any global selection() option for the variables in varlist. See [LASSO] lasso options.

The following options are available with dsregress but are not shown in the dialog box:

reestimate is an advanced option that refits the dsregress model based on changes made to the under-
lying lassos using lassoselect. After running dsregress, you can select a different * for one or
more of the lassos estimated by dsregress. After selecting *, you type dsregress, reestimate
to refit the dsregress model based on the newly selected \’s.

reestimate may be combined only with reporting options.
noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

Remarks and examples

dsregress performs double-selection lasso linear regression. This command estimates coefficients,
standard errors, and confidence intervals and performs tests for variables of interest while using lassos
to select from among potential control variables.

The linear regression model is
E[y|d, x] = da’ + x5

where d are the variables for which we wish to make inferences and x are the potential control vari-
ables from which the lassos select. dsregress reports estimated coefficients for ac. However, double-
selection does not provide estimates of the coefficients on the control variables (3) or their standard
errors. No estimation results can be reported for (3.

For an introduction to the double-selection lasso method for inference, as well as the partialing-out
and cross-fit partialing-out methods, see [LASSO] Lasso inference intro.

Examples that demonstrate how to use dsregress and the other lasso inference commands are pre-
sented in [LASSO] Inference examples. In particular, we recommend reading I Overview for an intro-
duction to the examples and to the v1 command, which provides tools for working with the large lists
of variables that are often included when using lasso methods. See 2 Fitting and interpreting inferential
models for examples of fitting inferential lasso linear models and comparisons of the different methods
available in Stata.

If you are interested in digging deeper into the lassos that are used to select controls, see 5 Exploring
inferential model lassos in [LASSO] Inference examples.

dsregress — Double-selection lasso linear regression 67

Stored results

dsregress stores the following in e ():

Scalars
e(N) number of observations
e(N_clust) number of clusters

e(k_varsofinterest)

e(k_controls)
e(k_controls_sel)
e(df)

e(chi2)

e(p)

e(rank)

Macros

e(cmd)
e(cmdline)
e(depvar)
e(lasso_depvars)
e(varsofinterest)
e(controls)
e(controls_sel)
e(model)
e(title)
e(clustvar)
e(chi2type)
e(vce)
e(vcetype)
e(rngstate)
e(properties)
e(predict)
e(select_cmd)
e(marginsnotok)
e(asbalanced)
e(asobserved)

number of variables of interest

number of potential control variables

number of selected control variables

degrees of freedom for test of variables of interest

X2

p-value for test of variables of interest
rank of e (V)

dsregress

command as typed

name of dependent variable

names of dependent variables for all lassos
variables of interest

potential control variables

selected control variables

linear

title in estimation output

name of cluster variable

Wald; type of x? test

veetype specified in vce ()

title used to label Std. err.
random-number state used

bV

program used to implement predict
program used to implement lassoselect
predictions disallowed by margins

factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r () :

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and

confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas

dsregress implements double-selection lasso as described in Belloni, Chernozhukov, and Hansen
(2014). The regression model is
E[yld, x| =da’ + 3, + x5

dsregress — Double-selection lasso linear regression 68

where d contains the J covariates of interest and x contains the p controls. The number of covariates in
d must be small and fixed. The number of controls in x can be large and, in theory, can grow with the
sample size; however, the number of nonzero elements in 3 must not be too large, which is to say that
the model must be sparse.

Double-selection lasso algorithm

1.

Perform a linear lasso of y on x, and denote the selected variables by X,

This lasso can choose the lasso penalty parameter (*) using the plugin estimator, adaptive lasso,
or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

. Forj=1,...,J, perform a linear lasso of d; on x, and denote the selected controls by ij.

Each of these lassos can choose the lasso penalty parameter (A}) using the plugin estimator, adap-
tive lasso, or CV. The heteroskedastic plugin estimator for the linear lasso is the default.

. Let X be the distinct variables in the union of the variables in X;, ..., X;, and X,

. Fit a linear regression of y on d and X, denoting the estimated coefficient vectors by & and B,

respectively.

. Store the point estimates & in e (b) and their variance estimates (VCE) in e (V).

Option vce (robust), the robust estimator of the VCE for a linear regression, is the default. See
Methods and formulas in [R] regress for details about option vce (robust) and the other VCE
estimators available via options vce (ols), vce (hc2), and vece (he3).

See Methods and formulas in [LASSO] lasso for details on how the lassos in steps 1 and 2 choose their
penalty parameter (*).

Reference

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014. Inference on treatment effects after selection among high-
dimensional controls. Review of Economic Studies 81: 608—650. https://doi.org/10.1093/restud/rdt044.

Also see

[
[
[
[

LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models
LASSO] poregress — Partialing-out lasso linear regression
LASSO] xporegress — Cross-fit partialing-out lasso linear regression

R] regress — Linear regression

[U] 20 Estimation and postestimation commands

https://doi.org/10.1093/restud/rdt044

elasticnet — Elastic net for prediction and model selection

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see
Description

elasticnet selects covariates and fits linear, logistic, probit, Poisson, and Cox proportional hazards
models using elastic net. Results from elasticnet can be used for prediction and model selection.

elasticnet saves but does not display estimated coefficients. The postestimation commands listed
in [LASSO] lasso postestimation can be used to generate predictions, report coefficients, and display
measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

Quick start

Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

elasticnet linear y1 x1-x100

Same as above, but specify the grid « = 0.1,0.2, ..., 1 using a numlist
elasticnet linear y1 x1-x100, alpha(0.1(0.1)1)

Same as above, but force x1 and x2 to be in the model while elasticnet selects x3 to x100
elasticnet linear y1 (x1 x2) x3-x100, alpha(0.1(0.1)1)

Fit a logistic model for binary outcome y2 with grid « = 0.7,0.8,0.9, 1
elasticnet logit y2 x1-x100, alpha(0.70.80.9 1)

Same as above, and set a random-number seed for reproducibility
elasticnet logit y2 x1-x100, alpha(0.7 0.8 0.9 1) rseed(1234)

Fit a Poisson model for count outcome y3 with exposure time
elasticnet poisson y3 x1-x100, alpha(0.1(0.1)1) exposure(time)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.
elasticnet linear y1 x1-x100, alpha(0.1(0.1)1) selection(cv, alllambdas)

Turn off the early stopping rule, and iterate over A’s until a minimum is found or until the end of the A
grid is reached

elasticnet linear y1 x1-x100, alpha(0.1(0.1)1) stop(0)

Fit a Cox proportional hazards model for t with failure indicator fail, and select covariates from x1 to
x100 using CV

stset t, failure(fail)
elasticnet cox x1-x100

Same as above, but select covariates by minimizing the BIC
elasticnet cox x1-x100, selection(bic)

69

elasticnet — Elastic net for prediction and model selection 70

Menu

Statistics > Lasso > Elastic net

Syntax

For linear, logit, probit, and Poisson models

elasticnet model depvar | (alwaysvars) | othervars [if] [in] [weight] [, options]

For Cox models

elasticnet cox [(alwaysvars) | othervars [if | [in] [, options]

model is one of linear, logit, probit, or poisson.

alwaysvars are variables that are always included in the model.

othervars are variables that elasticnet will choose to include in or exclude from the model.

options

Description

Model
*noconstant
selection(cv [, cv_opis|)

selection(bic |, bic_opts|)

selection(none)
offset (varname,)
exposure (varname,)

* cluster (clustvar)

Optimization
[no]log
rseed (#)
alphas (numlist | matname)
grid(#, [, ratio(#) min(#) |)

crossgrid(augmented)
crossgrid(union)

crossgrid(different)
stop(#)

cvtolerance (#)
bictolerance (#)
tolerance (#)
dtolerance (#)
penaltywt (matname)

suppress constant term
select mixing parameter o* and lasso penalty
parameter * using CV

select mixing parameter o* and lasso penalty
parameter * using BIC
do not select a* or A*
include varname, in model with coefficient constrained to 1

include In(varname,) in model with coefficient constrained
to 1 (poisson model only)

specify cluster variable clustvar

display or suppress an iteration log

set random-number seed

specify the v grid with numlist or a matrix

specify the set of possible A’s using a logarithmic grid with
#, grid points

augment the A grids for each « as necessary to produce a
single A\ grid; the default

use the union of the A grids for each « to produce a single
A grid

use different A grids for each «

tolerance for stopping the iteration over the A grid early

tolerance for identification of the CV function minimum

tolerance for identification of the BIC function minimum

convergence tolerance for coefficients based on their values

convergence tolerance for coefficients based on deviance

programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

elasticnet — Elastic net for prediction and model selection 71

cv_opts

Description

folds (#)
alllambdas

serule
stopok

strict

gridminok

use # folds for Cv

fit models for all A’s in the grid or until the stop (#) tolerance is reached;
by default, the CV function is calculated sequentially by A, and estimation
stops when a minimum is identified

use the one-standard-error rule to select *

when, for a value of «, the CV function does not have an identified minimum
and the stop (#) stopping criterion for A was reached at)\, allow

Astop t0 be included in an («, A) pair that can potentially be selected
as (o, *); the default

requires the CV function to have an identified minimum for every value of «;
this is a stricter alternative to the default stopok

when, for a value of «, the CV function does not have an identified minimum
and the stop (#) stopping criterion for A was not reached, allow the
minimum of the A grid, A, to be included in an (v, \) pair that can
potentially be selected as (a*, A*); this is a looser alternative to the default
stopok and is rarely used

bic_opts

Description

alllambdas

stopok

strict

gridminok

postselection

fit models for all A’s in the grid or until the stop (#) tolerance is reached;
by default, the BIC function is calculated sequentially by A, and estimation
stops when a minimum is identified

when, for a value of «, the BIC function does not have an identified minimum
and the stop (#) stopping criterion for A was reached at)\, allow
Astop t0 be included in an (o, A) pair that can potentially be selected
as (a*, A*); the default

requires the BIC function to have an identified minimum for every value of «;
this is a stricter alternative to the default stopok

when, for a value of «, the BIC function does not have an identified minimum
and the stop (#) stopping criterion for A was not reached, allow the
minimum of the X grid, A,i,, to be included in an («, A) pair that can
potentially be selected as (a*, *); this is a looser alternative to the default
stopok and is rarely used

use postselection coefficients to compute BIC

*noconstant and cluster () are not allowed with elasticnet cox.

You must stset your data before using elasticnet cox;see [ST] stset.

alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed with all se/_method options. fweights are allowed when
selection(plugin), selection(bic), or selection(none) is specified. See [U] 11.1.6 weight. For elasticnet
cox, weights must be specified when you stset your data.

penaltywt (matname) does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

See [LASSO] lasso fitting for an overview of the lasso estimation procedure and a detailed description of
how to set options to control it.

elasticnet — Elastic net for prediction and model selection 72

Model

noconstant omits the constant term. Note, however, when there are factor variables among the other-
vars, elasticnet can potentially create the equivalent of the constant term by including all levels of
a factor variable. This option is likely best used only when all the othervars are continuous variables
and there is a conceptual reason why there should be no constant term. This option is not allowed
with cox.

selection(cv), selection(bic), and selection(none) specify the selection method used to select
A",
selection(cv [, cv_opis]) is the default. It selects the (a*, *) that give the minimum of the CV
function.

folds (#) specifies that CV with # folds be done. The default is folds (10).

alllambdas specifies that, for each o, models be fit for all A’s in the grid or until the stop (#)
tolerance is reached. By default, models are calculated sequentially from largest to smallest),
and the CV function is calculated after each model is fit. If a minimum of the CV function is
found, the computation ends at that point without evaluating additional smaller A’s.

alllambdas computes models for these additional smaller A’s. Because computation time
is greater for smaller \, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the CV function is wanted for
assurance that a true minimum has been found. Regardless of whether alllambdas is specified,
the selected (a*, *) will be the same.

serule selects A* based on the “one-standard-error rule” recommended by Hastie, Tibshirani, and
Wainwright (2015, 13—14) instead of the A that minimizes the CV function. The one-standard-
error rule selects, for each «, the largest A for which the CV function is within a standard error
of the minimum of the CV function. Then, from among these («, \) pairs, the one with the
smallest value of the CV function is selected.

stopok, strict, and gridminok specify what to do when, for a value of «, the CV function
does not have an identified minimum at any value of A in the grid. A minimum is identified at
Aevmin When the CV function at both larger and smaller adjacent \’s is greater than it is at A,
When the CV function for a value of « has an identified minimum, these options all do the same
thing: (v, Aymin) becomes one of the (v, A) pairs that potentially can be selected as the smallest
value of the CV function. In some cases, however, the CV function declines monotonically as
A gets smaller and never rises to identify a minimum. When the CV function does not have an
identified minimum, stopok and gridminok make alternative picks for A in the («, \) pairs
that will be assessed for the smallest value of the CV function. The option strict makes no
alternative pick for \. You may specify only one of stopok, strict, or gridminok; stopok is
the default if you do not specify one. With each of these options, estimation results are always
left in place, and alternative («, A) pairs can be selected and evaluated.

stopok specifies that, for a value of a, when the CV function does not have an identified min-
imum and the stop (#) stopping tolerance for A was reached at Ay, the pair (@, Ay,) is
picked as one of the pairs that potentially can be selected as the smallest value of the CV func-
tion. A, is the smallest A for which coefficients are estimated, and it is assumed that Ay,
has a CV function value close to the true minimum for that value of . When no minimum
is identified for a value of « and the stop (#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum for each value of «, and if not,
an error is issued.

elasticnet — Elastic net for prediction and model selection 73

gridminok is a rarely used option that specifies that, for a value of o, when the CV function has
no identified minimum and the stop (#) stopping criterion was not met, Ay, the minimum
of the A grid, is picked as part of a pair («a, A that potentially can be selected as the
smallest value of the CV function.

gmin)

The gridminok criterion is looser than the default stopok, which is looser than strict. With
strict, the selected (a*, A*) pair is the minimum of the CV function chosen from the (v, Aymin)
pairs, where all \’s under consideration are identified minimums. With stopok, the set of (o, A)
pairs under consideration for the minimum of the CV function include identified minimums,

Acvmin» OF values, A, that met the stopping criterion. With gridminok, the set of (a, A) pairs
under consideration for the minimum of the CV function potentially include Aypin, Agops OF
Agmin-

gmin

selection(bic [, bic_opts|) selects (a*, *) by using the Bayesian information criterion (BIC)
function. It selects the (o, A*) with the minimum BIC function value.

bic_opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that, for each «, models be fit for all A’s in the grid or until the stop (#)
tolerance is reached. By default, models are calculated sequentially from largest to smallest A,
and the BIC function is calculated after each model is fit. If a minimum of the BIC function is
found, the computation ends at that point without evaluating additional smaller \’s.

alllambdas computes models for these additional smaller A’s. Because computation time
is greater for smaller A, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected (o, *) will be the same.

stopok, strict, and gridminok specify what to do when, for a value of «, the BIC function
does not have an identified minimum at any value of \ in the grid. A minimum is identified at
Apiemin When the BIC function at both larger and smaller adjacent A’s is greater than it is at Ay,
When the BIC function for a value of « has an identified minimum, these options all do the same
thing: (o, Apicmin) Decomes one of the (v, A) pairs that potentially can be selected as the smallest
value of the BIC function. In some cases, however, the BIC function declines monotonically as
A gets smaller and never rises to identify a minimum. When the BIC function does not have an
identified minimum, stopok and gridminok make alternative picks for A in the («,) pairs
that will be assessed for the smallest value of the BIC function. The option strict makes no
alternative pick for A. You may specify only one of stopok, strict, or gridminok; stopokis
the default if you do not specify one. With each of these options, estimation results are always
left in place, and alternative («, A) pairs can be selected and evaluated.

stopok specifies that, for a value of «, when the BIC function does not have an identified
minimum and the stop (#) stopping tolerance for A was reached at Ay, the pair (v, Ayqp)
is picked as one of the pairs that potentially can be selected as the smallest value of the
BIC function. Ay, is the smallest A for which coefficients are estimated, and it is assumed
that Ay, has a BIC function value close to the true minimum for that value of o. When
no minimum is identified for a value of v and the stop (#) criterion is not met, an error is
issued.

strict requires the BIC function to have an identified minimum for each value of o, and if not,
an error is issued.

elasticnet — Elastic net for prediction and model selection 74

gridminok is a rarely used option that specifies that, for a value of o, when the BIC function has
no identified minimum and the stop (#) stopping criterion was not met, Ay, the minimum
of the A grid, is picked as part of a pair (a, Agp;,) that potentially can be selected as the
smallest value of the BIC function.

The gridminok criterion is looser than the default stopok, which is looser than strict.
With strict, the selected (o, *) pair is the minimum of the BIC function chosen from the
(@, Apiemin) P2ITS, where all A’s under consideration are identified minimums. With stopok, the
set of («v, \) pairs under consideration for the minimum of the BIC function include identified
minimums, Apicyin, OF values, Ay, that met the stopping criterion. With gridminok, the set of
(e, X) pairs under consideration for the minimum of the BIC function potentially include Ay;cin,
Agtops OF A

postselection specifies to use the postselection coefficients to compute the BIC function. By
default, the penalized coefficients are used.

stop? gmin®

selection(none) does not select an (a*, *) pair. In this case, the elastic net is estimated for a grid
of values for A for each «, but no attempt is made to determine which («, \) pair is best. The
postestimation command lassoknots can be run to view a table of A’s that define the knots (that
is, the distinct sets of nonzero coefficients) for each a. The lassoselect command can then be
used to select an (a*, *) pair, and lassogof can be run to evaluate the prediction performance
of the selected pair.

When selection(none) is specified, neither the CV function nor the BIC function is computed.
If you want to view the knot table with values of the CV function shown and then select (a*, *),
you must specify selection(cv). Similarly, if you want to view the knot table with values
of the BIC function shown, you must specify selection(bic). There are no suboptions for
selection(none).

offset (varname,) specifies that varname,, be included in the model with its coefficient constrained to
be 1.

exposure (varname,) can be specified only for the poisson model. It specifies that In(varname,) be
included in the model with its coefficient constrained to be 1.

cluster (clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how
the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood
function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the sub-
sample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are kept
together in the same subsample. This option is not allowed with elasticnet cox.

Optimization

[no]1log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for
selection(cv). (selection(bic) and selection(none) do not use random numbers.)
rseed (#) is equivalent to typing set seed # prior to running elasticnet. See [R] set seed.

alphas (numlist | matname) specifies either a numlist or a matrix containing the grid of values for a.
The default is alphas (0.5 0.75 1). Specifying a small, nonzero value of « for one of the values of
alphas () will result in lengthy computation time because the optimization algorithm for a penalty
that is mostly ridge regression with a little lasso mixed in is inherently inefficient. Pure ridge regres-
sion (a = 0), however, is computationally efficient.

elasticnet — Elastic net for prediction and model selection 75

gridg#g [, ratio(#) min(#) |) specifies the set of possible \’s using a logarithmic grid with #, grid
points.

#, is the number of grid points for A. The defaultis #, = 100. The grid is logarithmic with the ith grid
point (i = 1,...,n = #,) givenby In\; = [(i — 1)/(n — 1) In7 + In Ay, where Ao = Ay
is the maximum, A, = A,, = min(#) is the minimum, and 7 = Agpin/Agmax = ratio(#) is the

ratio of the minimum to the maximum.

ratio(#) specifies Aypin/Agmax- The maximum of the grid, A,y is set to the smallest A for which
all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).
Agmin 18 then set based on ratio(#). When p < N, where p is the total number of othervars
and alwaysvars (not including the constant term) and NV is the number of observations, the default
value of ratio (#) is le—4. When p > N, the default is 1le—2.

min(#) sets A By default, A
data.

is based on ratio (#) and A which is computed from the

gmin*® gmin gmax>
crossgrid(augmented), crossgrid(union), and crossgrid(different) specify the type of two-
dimensional grid used for («, A). crossgrid(augmented) and crossgrid(union) produce a grid
that is the product of two one-dimensional grids. That is, the A grid is the same for every value of a.

crossgrid(different) uses different A grids for different values of

crossgrid(augmented), the default grid, is formed by an augmentation algorithm. First, a suitable
A grid for each « is computed. Then, nonoverlapping segments of these grids are formed and
combined into a single A grid.

crossgrid(union) specifies that the union of A grids across each value of « be used. That is, a A
grid for each « is computed, and then they are combined by simply putting all the A values into
one grid that is used for each a.. This produces a fine grid that can cause the computation to take
a long time without significant gain in most cases.

crossgrid(different) specifies that different A grids be used for each value of «. This option is
rarely used. Using different A grids for different values of o complicates the interpretation of the
CV selection method. When the A grid is not the same for every value of «, comparisons are based
on parameter intervals that are not on the same scale.

stop (#) specifies a tolerance that is the stopping criterion for the A iterations. The default is le—S5.
Estimation starts with the maximum grid value, Ay, and iterates toward the minimum grid value,
Agmin- When the relative difference in the deviance produced by two adjacent A grid values is less than
stop (#), the iteration stops and no smaller \’s are evaluated. The value of A that meets this tolerance

is denoted by A,. Typically, this stopping criterion is met before the iteration reaches A

gmin’
Setting stop (#) to a larger value means that iterations are stopped earlier at a larger \Ay,,. To pro-
duce coefficient estimates for all values of the A grid, you can specify stop(0). Note, however,
that computations for small A\’s can be extremely time consuming. In terms of time, when you use
selection(cv) or selection(bic), the optimal value of stop (#) is the largest value that allows
estimates for just enough \’s to be computed to identify the minimum of the CV or BIC function. When
setting stop (#) to larger values, be aware of the consequences of the default * selection procedure
given by the default stopok. You may want to override the stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller \’s with a relative difference in the CV function greater than #. For
nonlinear models, at least five smaller \’s are required. The default is le—3. Setting # to a bigger
value makes a stricter criterion for identifying a minimum and brings more assurance that a declared

elasticnet — Elastic net for prediction and model selection 76

minimum is a true minimum, but it also means that models may need to be fit for additional smaller
A, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information
about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum BIC
function. A minimum is identified when the BIC function rises above a nominal minimum for at least
two smaller \’s with a relative difference in the BIC function greater than #. The default is le—2.
Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more
assurance that a declared minimum is a true minimum, but it also means that models may need to be
fit for additional smaller A, which can be time consuming. See Methods and formulas in [LASSO] lasso
for more information about this tolerance and the other tolerances.

tolerance (#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-
vergence is achieved when the relative change in each coefficient is less than this tolerance. The
default is tolerance (1e-7).

dtolerance (#) is ararely used option that changes the convergence criterion for the coefficients. When
dtolerance (#) is specified, the convergence criterion is based on the change in deviance instead of
the change in the values of coefficient estimates. Convergence is declared when the relative change
in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-
ifying this option and instead using the default tolerance(1e-7) criterion or specifying a smaller
value for tolerance (#).

The following option is available with elasticnet but is not shown in the dialog box:

penaltywt (matname) is a programmer’s option for specifying a vector of weights for the coefficients
in the penalty term. The contribution of each coefficient to the lasso penalty term is multiplied by its
corresponding weight. Weights must be nonnegative. By default, each coefficient’s penalty weight
is 1.

Remarks and examples

Elastic net, originally proposed by Zou and Hastie (2005), extends lasso to have a penalty term that is
a mixture of the absolute-value penalty used by lasso and the squared penalty used by ridge regression.
Coefficient estimates from elastic net are more robust to the presence of highly correlated covariates than
are lasso solutions.

For the linear model, the penalized objective function for elastic net is

1 X - P
Q=53 —ho—xBP+A3 (

where (3 is the p-dimensional vector of coefficients on covariates x. The estimated 3 are those that
minimize () for given values of o and \.

1—
zaﬂ?—ﬁ—a\ﬂj\)

As with lasso, p can be greater than the sample size N. When o = 1, elastic net reduces to lasso.
When o = 0, elastic net reduces to ridge regression.

When o > 0, elastic net, like lasso, produces sparse solutions in which many of the coefficient
estimates are exactly zero. When o = 0, that is, ridge regression, all coefficients are nonzero, although
typically many are small.

elasticnet — Elastic net for prediction and model selection 77

Ridge regression has long been used as a method to keep highly collinear variables in a regression
model used for prediction. The ordinary least-squares (OLS) estimator becomes increasingly unstable as
the correlation among the covariates grows. OLS produces wild coefficient estimates on highly correlated
covariates that cancel each other out in terms of fit. The ridge regression penalty removes this instability
and produces point estimates that can be used for prediction in this case.

None of the ridge regression estimates are exactly zero because the squared penalty induces a smooth
tradeoff around 0 instead of the kinked-corner tradeoff induced by lasso. By mixing the two penalties,
elastic net retains the sparse-solution property of lasso, but it is less variable than the lasso in the presence
of highly collinear variables. The coefficient paths of elastic-net solutions are also smoother over A than
are lasso solutions because of the added ridge-regression component.

To fit a model with elasticnet, you specify a set of candidate a’s and a grid of A values. CV is
performed on the combined set of (c, A) values, and the (o*, A*) pair that minimizes the value of the CV
function is selected.

This procedure follows the convention of Hastie, Tibshirani, and Wainwright (2015), which is to
specify a few values for « and a finer grid for A. The idea is that only a few points in the space between
ridge regression and lasso are worth reviewing, but a finer grid over) is needed to trace out the paths of
which coefficients are not zero.

The default candidate values of « are 0.5, 0.75, and 1. Typically, you would use the default first and
then set « using the alpha (numlist) option to get lower and upper bounds on a*. Models for small,
nonzero values of « take more time to estimate than o« = 0 and larger values of «. This is because
the algorithm for fitting a model that is mostly ridge regression with a little lasso mixed in is inherently
inefficient. Pure ridge or mostly lasso models are faster.

The A grid is set automatically, and the default settings are typically sufficient to determine A*. The
default grid can be changed using the grid () option. See [LASSO] lasso fitting for a detailed description
of the CV selection process and how to set options to control it.

b Example 1: Elastic net and data that are not highly correlated

We will fit an elastic-net model using the example dataset from [LASSO] lasso examples. It has stored
variable lists created by v1. See [D] vl for a complete description of the v1 system and how to use it to
manage large variable lists.

elasticnet — Elastic net for prediction and model selection 78

After we load the dataset, we type v1 rebuild to make the saved variable lists active again.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with v1)

. vl rebuild

Rebuilding vl macros ...

Macro’s contents
Macro # Vars Description
System
$v1dummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables
User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We have four user-defined variable lists, demographics, factors, idemographics, and ifactors.
The variable lists idemographics and ifactors contain factor-variable versions of the categori-
cal variables in demographics and factors. That is, a variable g3 in demographics is i.93 in
idemographics. See [LASSO] lasso examples to see how we created these variable lists.

We are going to use idemographics and ifactors along with the system-defined variable list
vlcontinuous as arguments to elasticnet. Together they contain the potential variables we want
to specify. Variable lists are actually global macros, and when we use them as arguments in commands,
we put a $ in front of them.

We also set the random-number seed using the rseed () option so we can reproduce our results.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)
alpha 1 of 3: alpha =1

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.34476

(output omitted)

Grid value 37: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
. cross-validation complete ... minimum found

alpha 2 of 3: alpha = 0.75

10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0

Folds: 1...5....10 CVF = 18.34476
(output omitted)
Grid value 34: lambda = .0974746 no. of nonzero coef. = 126

Folds: 1...5....10 CVF = 11.95437
. cross-validation complete ... minimum found

elasticnet — Elastic net for prediction and model selection 79

alpha 3 of 3: alpha = 0.5

10-fold cross-validation

with 109 lambdas ...

Grid value 1: lambda = 1.818102 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33643
(output omitted)
Grid value 31: lambda = .1288556 no. of nonzero coef. = 139
Folds: 1...5....10 CVF = 12.0549
. cross-validation complete ... minimum found
Elastic net linear model No. of obs = 914
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
alpha ID Description lambda coef. R-squared error
1.000
1 first lambda 1.818102 0 -0.0016 18.34476
32 lambda before .1174085 58 0.3543 11.82553
* 33 | selected lambda .1069782 64 0.3547 11.81814
34 lambda after .0974746 66 0.3545 11.8222
37 last lambda .0737359 80 0.3487 11.92887
0.750
38 first lambda 1.818102 0 -0.0016 18.34476
71 last lambda .0974746 126 0.3473 11.95437
0.500
72 first lambda 1.818102 0 -0.0012 18.33643
102 last lambda .1288556 139 0.3418 12.0549

* alpha and lambda selected by cross-validation.

CV selected a* = 1, that is, the results from an ordinary lasso.

All models we fit using elastic net on these data selected a* = 1. The data are not correlated enough

to need elastic net.

b Example 2: Elastic net and data that are highly correlated

d

The dataset in example 1, fakesurvey_v1l, contained data we created in a simulation. We did our
simulation again setting the correlation parameters to much higher values, up to p = 0.95, and we created
two groups of highly correlated variables, with correlations between variables from different groups much
lower. We saved these data in a new dataset named fakesurvey2_v1. Elastic net was proposed not just
for highly correlated variables but especially for groups of highly correlated variables.

We load the new dataset and run v1 rebuild.

. use https://www.stata-press.com/data/r19/fakesurvey2_vl, clear
(Fictitious survey data with vl)

. vl rebuild

Rebuilding vl macros ...

(output omitted)

elasticnet — Elastic net for prediction and model selection 80

In anticipation of elastic net showing interesting results this time, we randomly split our data into two
samples of equal sizes. One we will fit models on, and the other we will use to test their predictions. We
use splitsample to generate a variable indicating the samples.

. set seed 1234
. splitsample, generate(sample) nsplit(2)
. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues

We fit an elastic-net model using the default ’s.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous

> if sample == 1, rseed(1234)
alpha 1 of 3: alpha =1
(output omitted)
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted)
Grid value 42: lambda = .161071 no. of nonzero coef. = 29
Folds: 1...5....10 CVF = 15.12964
. cross-validation complete ... minimum found
alpha 2 of 3: alpha = 0.75
(output omitted)
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted)
Grid value 40: lambda = .1940106 no. of nonzero coef. = 52
Folds: 1...5....10 CVF = 15.07523
. cross-validation complete ... minimum found
alpha 3 of 3: alpha = 0.5
(output omitted)
10-fold cross-validation with 109 lambdas ...
Grid value 1: lambda = 6.323778 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.78722
(output omitted)
Grid value 46: lambda = .11102 no. of nonzero coef. = 115

Folds: 1...5....10 CVF = 14.90808
. cross-validation complete ... minimum found

elasticnet — Elastic net for prediction and model selection 81

Elastic net linear model No. of obs = 449
No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
alpha ID Description lambda coef. R-squared error
1.000
1 first lambda 6.323778 0 -0.0036 26.82324
42 last lambda .161071 29 0.4339 15.12964
0.750
43 first lambda 6.323778 0 -0.0036 26.82324
82 last lambda .1940106 52 0.4360 15.07523
0.500
83 first lambda 6.323778 0 -0.0022 26.78722
124 lambda before .161071 87 0.4473 14.77189
* 125 selected lambda .1467619 92 0.4476 14.76569
126 lambda after .133724 96 0.4468 14.78648
128 last lambda .11102 115 0.4422 14.90808

* alpha and lambda selected by cross-validation.

. estimates store elasticnet

Wonderful! It selected o* = 0.5. We should not stop here, however. There may be smaller values
of a that give lower minimums of the CV function. If the number of observations and number of po-
tential variables are not too large, you could specify the option alpha(0(0.1)1) the first time you run
elasticnet. However, if we did this, the command would take much longer to run than the default. It
will be especially slow for « = 0.1 as we mentioned earlier.

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous

> if sample == 1, rseed(1234) alpha(0.1 0.2 0.3)
alpha 1 of 3: alpha = .3
(output omitted)
10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324
(output omitted)
Grid value 59: lambda = .160193 no. of nonzero coef. = 122
Folds: 1...5....10 CVF = 14.84229
. cross-validation complete ... minimum found

alpha 2 of 3: alpha = .2
(output omitted)

10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.82324

(output omitted)

elasticnet — Elastic net for prediction and model selection 82

Grid value 56: lambda = .2117657 no. of nonzero coef. = 137
Folds: 1...5....10 CVF = 14.81594
. cross-validation complete ... minimum found
alpha 3 of 3: alpha = .1
(output omitted)
10-fold cross-validation with 113 lambdas ...
Grid value 1: lambda = 31.61889 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 26.81813
(output omitted)
Grid value 51: lambda = .3371909 no. of nonzero coef. = 162
Folds: 1...5....10 CVF = 14.81783
. cross-validation complete ... minimum found
Elastic net linear model No. of obs = 449
No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
alpha ID Description lambda coef. R-squared error
0.300
1 first lambda 31.61889 0 -0.0036 26.82324
59 last lambda .160193 122 0.4447 14.84229
0.200
60 first lambda 31.61889 0 -0.0036 26.82324
110 lambda before .3371909 108 0.4512 14.66875
* 111 selected lambda .3072358 118 0.4514 14.66358
112 lambda after .2799418 125 0.4509 14.67566
115 last lambda .2117657 137 0.4457 14.81594
0.100
116 first lambda 31.61889 0 -0.0034 26.81813
166 last lambda .3371909 162 0.4456 14.81783

* alpha and lambda selected by cross-validation.

. estimates store elasticnet

The selected o* is 0.2. This value is better, according to CV, than o = 0.1 or o = 0.3.

elasticnet — Elastic net for prediction and model selection 83

We can plot the CV function for the selected a* = 0.2.

. cvplot

Cross-validation function

304

25+

204

15+

Cross-validation plot

10

A

Ocy = .2 is the cross-validation minimum a.
Acv = .31 is the cross-validation minimum A; # coefficients = 118.
The cV function looks quite flat around the selected *. We could assess alternative A (and alternative
«) using lassoknots. We run lassoknots with options requesting the number of nonzero coefficients
be shown (nonzero), along with the CV function (cvmpe) and estimates of the out-of-sample R? (osr2).

. lassoknots, display(nonzero cvmpe o0sr2)

No. of CV mean Out-of-
nonzero pred. sample
alpha ID lambda coef. error R-squared
0.300
15 | 9.603319 4 26.42296 0.0114
(output omitted)
54 .2550726 92 14.67746 0.4509
55 .2324126 98 14.66803 0.4512
56 .2117657 105 14.67652 0.4509
(output omitted)
59 .160193 122 14.84229 0.4447
0.200
69 | 14.40498 4 26.54791 0.0067
(output omitted)
110 .3371909 108 14.66875 0.4512
* 111 .3072358 118 14.66358 0.4514
112 .2799418 1256 14.67566 0.4509
(output omitted)
115 ‘ .2117657 137 14.81594 0.4457

elasticnet — Elastic net for prediction and model selection 84

0.100
117 28.80996 4 26.67947 0.0018
(output omitted)
161 .5369033 143 14.76586 0.4476
162 .4892063 148 14.75827 0.4478
162 .4892063 148 14.75827 0.4478
163 .4457466 152 14.76197 0.4477
(output omitted)

166 ‘ .3371909 162 14.81783 0.4456

* alpha and lambda selected by cross-validation.

When we examine the output from lassoknots, we see that the CV function appears rather flat along A
from the minimum and also across a.

N
b Example 3: Ridge regression

Let’s continue with the previous example and fit a ridge regression. We do this by specifying
alpha(0).

. elasticnet linear q104 $idemographics $ifactors $vlcontinuous

> if sample == 1, rseed(1234) alpha(0)
(output omitted)
Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 3.16e+08 no. of nonzero coef. = 275
Grid value 2: lambda = 2880.996 no. of nonzero coef. = 275
(output omitted)
Grid value 99: lambda = .3470169 no. of nonzero coef. = 275

Grid value 100: lambda = .3161889 no. of nonzero coef. = 275

10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100

(output omitted)

Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
. cross-validation complete

Elastic net linear model No. of obs = 449

No. of covariates = 275

Selection: Cross-validation No. of CV folds = 10

No. of OQut-of- CV mean

nonzero sample prediction

alpha ID Description lambda coef. R-squared error
0.000

1 first lambda 3161.889 275 -0.0036 26.82323

88 lambda before .9655953 275 0.4387 15.00168

* 89 selected lambda .8798144 275 0.4388 14.99956

90 lambda after .8016542 275 0.4386 15.00425

100 last lambda .3161889 275 0.4198 15.50644

* alpha and lambda selected by cross-validation.

. estimates store ridge

elasticnet — Elastic net for prediction and model selection 85

In this implementation, ridge regression selects A* using CV. We can plot the CV function.

. cvplot
Cross-validation plot
)\CV

304
=4
2
3]
é 25+
c
2
g
B
E
o 204
¢
(]

| I
15 T T T T
1000 100 10 1

A

Oy = 0 is the cross-validation minimum a.
Acv = .88 is the cross-validation minimum A; # coefficients = 275.

b Example 4: Comparing elastic net, ridge regression, and lasso

We fit elastic net and ridge on half of the sample in the previous examples so we could evaluate the
prediction on the other half of the sample.

Let’s continue with the data from example 2 and example 3 and fit a lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous

> if sample == 1, rseed(1234)

note: 1.q14 omitted because of collinearity with another variable.
note: 1.q136 omitted because of collinearity with another variable.
10-fold cross-validation with 100 lambdas ...

Grid value 1: lambda = 3.161889 no. of nonzero coef. = 0
(output omitted)
Grid value 33: lambda = .161071 no. of nonzero coef. = 29
Folds: 1...5....10 CVF = 15.12964
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 449
No. of covariates = 275
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda 3.161889 0 0.0020 26.67513
28 lambda before .2564706 18 0.4348 15.10566
* 29 selected lambda .2336864 21 0.4358 15.07917
30 lambda after .2129264 21 0.4355 15.08812
33 last lambda .161071 29 0.4339 15.12964

* lambda selected by cross-validation.

. estimates store lasso

We stored the results of the earlier elastic net and ridge in memory using estimates store. We did
the same for the lasso results. Now we can compare out-of-sample prediction using lassogof.

elasticnet — Elastic net for prediction and model selection 86

. lassogof elasticnet ridge lasso, over(sample)

Penalized coefficients

Name sample MSE R-squared Obs
elasticnet
Training 11.70471 0.5520 480
Testing 14.60949 0.4967 501
ridge
Training 11.82482 0.5576 449
Testing 14.88123 0.4809 476
lasso
Training 13.41709 0.4823 506
Testing 14.91674 0.4867 513

Elastic net did better out of sample based on the mean squared error and R? than ridge and lasso.

Note that the numbers of observations for both the training and testing samples were slightly different
for each of the models. splitsample split the sample exactly in half with 529 observations in each half
sample. The sample sizes across the models differ because the different models contain different sets of
selected variables; hence, the pattern of missing values is different. If you want to make the half samples
exactly equal after missing values are dropped, an optional varlist containing the dependent variable and
all the potential variables can be used with splitsample to omit any missing values in these variables.
See [D] splitsample.

Before we conclude that elastic net won out over ridge and lasso, we must point out that we were
not fair to lasso. Theory states that for the lasso linear model, postselection coefficients provide slightly
better predictions. See predict in [LASSO] lasso postestimation.

We run lassogof again for the lasso results, this time specifying that postselection coefficients be
used.

. lassogof lasso, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs
lasso
Training 13.14487 0.4928 506
Testing 14.62903 0.4966 513

We declare a tie with elastic net!

Postselection coefficients should not be used with elasticnet and, in particular, with ridge regres-
sion. Ridge works by shrinking the coefficient estimates, and these are the estimates that should be
used for prediction. Because postselection coefficients are OLS regression coefficients for the selected
coefficients and because ridge always selects all variables, postselection coefficients after ridge are OLS
regression coefficients for all potential variables, which clearly we do not want to use for prediction.

d

elasticnet — Elastic net for prediction and model selection 87

Stored results

elasticnet stores the following ine():

Scalars
e(N) number of observations
e(N_clust) number of clusters

e(k_allvars)
e(k_nonzero_sel)
e(k_nonzero_cv)

e(k_nonzero_serule)

e(k_nonzero_min)
e(k_nonzero_max)
e(k_nonzero_bic)
e(alpha_sel)
e(alpha—_cv)
e(lambda_sel)
e(lambda_gmin)
e(lambda_gmax)
e(lambda_last)
e(lambda_cv)
e(lambda_serule)
e(lambda_bic)
e(ID_sel)
e(ID_cv)
e(ID_serule)
e(ID_bic)
e(cvm_min)
e(cvm_serule)
e(devratio_min)
e(devratio_max)
e(L1_min)
e(L1_max)
e(L2_min)
e(L2_max)
e(1ll_sel)
e(n_lambda)
e(n_fold)
e(stop)

Macros

e(cmd)
e(cmdline)
e(depvar)
e(allvars)
e(allvars_sel)
e(alwaysvars)
e(othervars_sel)
e(post_sel_vars)
e(clustvar)

e(lasso_selection)

e(sel_criterion)
e(crossgrid)
e(model)
e(title)
e(rngstate)
e(properties)
e(predict)
e(marginsnotok)

number of potential variables

number of nonzero coefficients for selected model

number of nonzero coefficients at CV mean function minimum
number of nonzero coefficients for one-standard-error rule
minimum number of nonzero coefficients among estimated \’s
maximum number of nonzero coefficients among estimated \’s
number of nonzero coefficients at BIC function minimum

value of selected o*

value of a at CV mean function minimum

value of selected *

value of A at grid minimum

value of X at grid maximum

value of last A computed

value of A at CV mean function minimum

value of A for one-standard-error rule

value of X at BIC function minimum

ID of selected *

ID of A at CV mean function minimum

ID of A for one-standard-error rule

ID of A at BIC function minimum

minimum CV mean function value

CV mean function value at one-standard-error rule

minimum deviance ratio

maximum deviance ratio

minimum value of £, -norm of penalized unstandardized coefficients
maximum value of ¢, -norm of penalized unstandardized coefficients
minimum value of £,-norm of penalized unstandardized coefficients
maximum value of ¢,-norm of penalized unstandardized coefficients
log-likelihood value of selected model

number of \’s

number of CV folds

stopping rule tolerance

elasticnet

command as typed

name of dependent variable

names of all potential variables
names of all selected variables

names of always-included variables
names of other selected variables

all variables needed for postelastic net
name of cluster variable

selection method

criterion used to select A*

type of two-dimensional grid

linear, logit, probit, poisson, or cox
title in estimation output
random-number state used

b

program used to implement predict
predictions disallowed by margins

elasticnet — Elastic net for prediction and model selection 88

Matrices
e(b) penalized unstandardized coefficient vector
e(b_standardized) penalized standardized coefficient vector
e(b_postselection) postselection coefficient vector

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r () :

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas

The methods and formulas for elastic net are given in Methods and formulas in [LASSO] lasso. Here
we provide the methods and formulas for ridge regression, which is a special case of elastic net.

Unlike lasso and elastic net, ridge regression has a differentiable objective function, and there is
a closed-form solution to the problem of minimizing the objective function. The solutions for ridge
regression with nonlinear models are obtained by iteratively reweighted least squares.

The estimates of a generalized linear model (GLM) ridge regression model are obtained by minimizing

N

Qr = W; f(y;: Bo +x:8) 2552

=1

where N is the number of observations; w0, is the normalized observation-level weight; f(-) is the like-
lihood contribution for the regress, loglt, probit, or poisson model; 3, is the intercept; x; is the
1 x p vector of covariates; 3 is the 1 x p vector of coefficients; A is the ridge penalty parameter, which
must be greater than or equal to 0; and «; are coefficient-level weights (which by default are all 1).

The normalized weights @, sum to 1. That is,

~ w;

W =N
Ziil Ww;
where w; is the original observation-level weight. If weights are not specified with elasticnet, w; = 1
and w; = 1/N.

The penalized objective function of the ridge regression for the cox model is

Nf p
SR exp(me N
j=1

j=114€D; LeER;
where j indexes the ordered failure times ¢(;), j = 1,..., Ny D; is the set of observations that fail at

t(;); and R; is the set of observations k that are at risk at tlme i (that is, all k such that ¢, < ¢(; <1y,

and £, is the entry time for the kth observation).

When the model is 1inear,

Py o+ 38) = 5, — B — %8V

elasticnet — Elastic net for prediction and model selection 89

When the model is logit,
Fi Bo +x:8") = =y (By +x;8") + In{1 + exp(5y +x;8)}
When the model is probit,
Fi By +x:8) = —y; n{@(By +x,8)} — (1 —y;) In {1 — @(B, +x,8')}
When the model is poisson,
Fi Bo +x:8") = =y (By +x:8") + exp(By +x,8)

For the 1inear model, the point estimates are given by

o N -1 N
(Bo. B) = (% AI) > Wy
i=1 i=1
where X, = (1,x;) and T is a diagonal matrix with the coefficient-level weights 0, Ki,...,k, on the

diagonal.

For the nonlinear models, the optimization problem is solved using iteratively reweighted least
squares. See Segerstedt (1992) and Nyquist (1991) for details of the iteratively reweighted least-squares
algorithm for the GLM ridge-regression estimator.

References

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations.
Boca Raton, FL: CRC Press. https://doi.org/10.1201/b18401.

Nyquist, H. 1991. Restricted estimation of generalized linear models. Journal of the Royal Statistical Society, C ser., 40:
133-141. https://doi.org/10.2307/2347912.

Segerstedt, B. 1992. On ordinary ridge regression in generalized linear models. Communications in Statistics—Theory
and Methods 21: 2227-2246. https://doi.org/10.1080/03610929208830909.

Zou, H., and T. J. Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical
Society, B ser., 67: 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503 ..

Also see

LASSO] lasso postestimation — Postestimation tools for lasso for prediction
LASSO] lasso — Lasso for prediction and model selection
LASSO] Lasso intro — Introduction to lasso

LASSO] sqrtlasso — Square-root lasso for prediction and model selection

[
[
[
[
[R] logit — Logistic regression, reporting coefficients
[R] poisson — Poisson regression

[R] probit — Probit regression

[R] regress — Linear regression

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands

https://doi.org/10.1201/b18401
https://doi.org/10.2307/2347912
https://doi.org/10.1080/03610929208830909
https://doi.org/10.1111/j.1467-9868.2005.00503.x

estimates store — Saving and restoring estimates in memory and on disk

Description Remarks and examples Also see

Description

estimates store name stores the current (active) estimation results under the name name.

estimates restore name loads the results stored under name into the current (active) estimation
results.

estimates save filename saves the current (active) estimation results in filename.
estimates use filename loads the results saved in filename into the current (active) estimation results.

The estimates commands after the lasso commands work the same as they do after other estima-
tion commands. There is only one difference. estimates save filename saves two files, not just one.
filename . ster and filename . stxer are saved. See [R] estimates for details.

Remarks and examples

Remarks are presented under the following headings:

Overview

Postestimation commands that work only with current results
Postestimation commands that work with current results
lassoselect creates new estimation results

Overview
If you are not familiar with estimates store and restore, see [R] estimates store. You will likely
want to use estimates store to compare results from multiple lassos.

If you are not familiar with estimates save and use, see [R] estimates save. Lassos fit with many
potential variables can take considerable time to run. xpo commands, especially when the resample
option is specified, can also have lengthy computation times. You will likely want to save your estimation
results to a file.

When you use estimates save, you will see

. estimates save mygreatlasso
file mygreatlasso.ster saved
extended file mygreatlasso.stxer saved

Two files are saved. Keep these files together in the same folder (directory). estimates use needs both
of them to load the results back into the current estimation results.

Postestimation commands that work only with current results

The following postestimation commands work only with current (active) estimation results:
bicplot, coefpath, cvplot, lassoknots, and lassoselect.

The following postestimation commands work with current or stored estimation results: lassocoef,
lassogof, and lassoinfo.

For the commands that work only with current results, this means that if you

. estimates store mylassol

90

estimates store — Saving and restoring estimates in memory and on disk 91

and then run another estimation command, you must

. estimates restore lassol

before you can use bicplot, coefpath, cvplot, lassoknots, or lassoselect again.

Postestimation commands that work with current results

lassocoef and lassogof are intended for use with multiple estimation results. You will often be
typing commands such as

. lassgof mylassol mylasso2 mylasso3, over(sample)

where mylassol, mylasso2, and mylasso3 are names of stored estimation results. See [LASSO] lasso-
gof for examples.

lassocoef has a more complex syntax because it will work with lasso, sqrtlasso, and
elasticnet, and also with the ds, po, and xpo commands or a mixture of them. You can type something
like

. lassocoef mylassol (mydsregress, for(y)) (mydsregress, for(x))

wheremylassol andmydsregress are names of stored estimation results, withmylassol a lasso result
and mydsregress a dsregress result. See [LASSO] lassocoef for examples. lassoinfo is designed to
tell you the available names (typically variable names) that can be specified with for ().

lassoselect creates new estimation results

When you run one of the lasso commands, such as
. lasso ...
and then use lassoselect to change the selected * like so

. lassoselect lambda = 0.245

lassoselect creates a new estimation result and makes it current. It is almost the same as running
another estimation command and wiping out the old estimation results. We say “almost” because it is
easy to change A* back to what it was originally.

A better workflow when using lassoselect is the following:

. lasso ...

. estimates store mylassol

. lassoselect lambda = 0.245
. estimates store mylassolsel

. lassogof mylassol mylassolsel, over(sample)

See [LASSO] lassoselect.

Also see

[R] estimates save — Save and use estimation results

[R] estimates store — Store and restore estimation results

Inference examples — Examples and workflow for inference

Description Remarks and examples References Also see

Description

Lasso for inference comprises 11 related estimation commands and several postestimation commands
for performing inference about a true model. Fitting and interpreting inferential lasso models is demon-
strated via examples.

Remarks and examples

Remarks are presented under the following major headings:

1 Overview

2 Fitting and interpreting inferential models

3 Fitting logit inferential models to binary outcomes. What is different?
4 Fitting inferential models to count outcomes. What is different?

5 Exploring inferential model lassos

6 Fitting an inferential model with endogenous covariates

1 Overview

1.1 How to read the example entries

All the examples demonstrate something about the inferential lasso models, so we obviously think
you should read this entire section. That said, there are a lot of pages, so here are some other options.

Everyone should read 1.3 Review of concepts, 2.1 Overview of inferential estimation methods, and
2.2 Fitting via cross-fit partialing out (xpo) using plugin. What you read there is essential to using and
understanding all the inferential models. We are pretty sure you will also want to read 2.3 Fitting via
cross-fit partialing out (xpo) using cross-validation, 2.4 Fitting via double selection (ds) using cross-
validation, and 2.5 Fitting via the other 22 methods.

We use the variable-management tool v1 to manage the variable lists used in all the examples, and
most of the examples use a common dataset. We introduce both in 1.4 The primary dataset. We say
enough in sections 2.1 and 2.2 that you will not be lost if you do not read section 1.4. But you will better
understand the dataset—and how we are manipulating it—if you read section 1.4.

If you are only interested in logit models for binary outcomes, then 3 Fitting logit inferential models
to binary outcomes. What is different? is essential reading, but only after reading sections 1.3, 2.1, and
2.2. Similarly, if your sole interest is Poisson models for count outcomes, then read 4 Fitting inferential
models to count outcomes. What is different?, but only after reading sections 1.3, 2.1, and 2.2.

The titles on all other sections are relatively self explanatory. So, if you are not reading all the sections,
choose from them based on your interest.

92

Inference examples — Examples and workflow for inference 93

1.2 Detailed outline of the topics

1 Overview
1.1 How to read the example entries
1.2 Detailed outline of the topics
1.3 Review of concepts
1.4 The primary dataset
2 Fitting and interpreting inferential models
2.1 Overview of inferential estimation methods
2.2 Fitting via cross-fit partialing out (xpo) using plugin
2.3 Fitting via cross-fit partialing out (xpo) using cross-validation
2.4 Fitting via double selection (ds) using cross-validation
2.5 Fitting via the other 22 methods
2.6 Fitting models with several variables of interest
2.7 Fitting models with factor variables of interest
2.8 Fitting models with interactions of interest
2.9 Fitting models with a nonlinear relationship of interest
2.10 Controls are controls
3 Fitting logit inferential models to binary outcomes. What is different?
3.1 Interpreting standard odds ratios
3.2 Interpreting models with factor variables, nonlinear relationships, and interactions
4 Fitting inferential models to count outcomes. What is different?
4.1 Interpreting standard incidence-rate ratios
4.2 Interpreting models with factor variables
5 Exploring inferential model lassos
6 Fitting an inferential model with endogenous covariates

1.3 Review of concepts

We have said a lot about the inferential estimation commands elsewhere in this manual. For a quick
overview that describes what you need to know, and just what you need to know, see [LASSO] Lasso
intro. For a deeper understanding of lasso for inference, read [LASSO] Lasso inference intro. We highly
recommend reading both of those sections.

The inferential lasso estimators require you to break up your model into two parts: the part about
which you need to perform inference and the part about which you do not care. Let’s call the first part
the “inference part” and the second part the “noninference part”.

Often, the inference part is a single variable, perhaps even a single indicator variable, such as “walks
at least three miles a week”. The inference part could be more complicated than a single variable. It
might involve several variables, polynomials, or interactions. But, it will generally be relatively small.

The noninference part can be much larger. What you include there will sometimes reflect an ignorance
of how that part relates to your outcome. Often, our theory or intuition involves only a few variables, our
variables of interest. We know lots of other things affect our outcome; we just have little or no guidance
about which things are important or how they relate to our outcome. We will call the variables in this
noninference part controls. What makes lasso for inference special is that you need not understand how
those controls affect the outcome.

There are other requirements. We said that the inference part will typically be small. The number of
controls that lasso needs to include must also be small with respect to the sample size. See Solutions that
focus on the true model in [LASSO] Lasso inference intro.

Inference examples — Examples and workflow for inference 94

1.4 The primary dataset

To demonstrate the inference commands, we will mostly use one dataset—a real-world dataset that
includes children’s performance on a test of reaction time, levels of nitrogen dioxide (NO,) pollution, the
children’s physical and socioeconomic characteristics, and some other environmental factors. The data
were collected and analyzed by Sunyer et al. (2017).

Our interest is in how levels of nitrogen dioxide in the classroom affect the children’s performance on
the test, while adjusting for other factors. We will focus on two outcomes from the Attention Network
Test (ANT)—reaction time and omissions. For linear models, we will use hit reaction time—a measure
of speed in responding to stimuli. For Poisson models, we will use omissions—the number of times the
child failed to respond to a stimulus. For logit models, we will use whether there were any omissions.

We are using an extract of the data and focusing on how to use the software, so let’s not get ideas
about publishing any of this.

Let’s take a quick look at the dataset.
. use https://www.stata-press.com/data/r19/breathe
(Nitrogen dioxide and attention)
. describe
Contains data from https://www.stata-press.com/data/r19/breathe.dta
Observations: 1,089 Nitrogen dioxide and attention

Variables: 22 21 Jun 2024 12:43
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

react double %10.0g * Reaction time (ms)

correct int %10.0g * Number of correct responses

omissions byte %10.0g * Failure to respond to stimulus

no2_class float %9.0g Classroom NO2 levels (ug/m3)

no2_home float %9.0g Home NO2 levels (ug/m3)

age float %9.0g Age (years)

age0 double %4.1f Age started school

sex byte %9.0g sex Sex

grade byte %9.0g grade Grade in school

overweight byte %32.0g overwt * Overweight by WHO/CDC definition

lbweight byte %18.0g lowbw * Low birthweight

breastfeed byte %19.0f bfeed Duration of breastfeeding

msmoke byte %10.0f smoke * Mother smoked during pregnancy

meducation byte %17.0g edu Mother’s education level

feducation byte %17.0g edu Father’s education level

siblings_old byte %1.0f Number of older siblings in house

siblings_young byte %1.0f Number of younger siblings in
house

sev_home float %9.0g Home socio-economic vulnerability
index

green_home double %10.0g Home greenness (NDVI), 300m
buffer

noise_school float %9.0g School noise levels (dB)

sev_school float %9.0g School socio-economic
vulnerability index

precip double %10.0g Daily total precipitation

* indicated variables have notes

Sorted by:

Inference examples — Examples and workflow for inference 95

This is not a large dataset, just 22 variables. Regardless, we are going to use the v1 tools to create
the variable lists we need for our analysis. This may seem like a detour, but v1 is useful even for small
datasets, and it is nearly indispensable if your dataset has hundreds or even tens of thousands of variables.

Our goal is to create two lists of control covariates, for example, independent variables. One list will
contain continuous control covariates and the other will contain categorical control covariates. Why not
just one list? Because we want the categorical variables to enter our model as indicator variables for each
level (distinct value) of the categorical variable. To expand a categorical variable into indicator variables
for its levels, we must prefix it with an i ., for example, i.grade.

Starting with v1 is easy: we just type v1 set,

. vl set
Macro’s contents
Macro # Vars Description
System
$vlcategorical 10 categorical variables
$vlcontinuous 10 continuous variables
$vluncertain 2 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables
Notes

1. Review contents of vlcategorical and vlcontinuous to ensure they are
correct. Type vl list vlcategorical and type vl list vlcontinuous.

2. If there are any variables in vluncertain, you can reallocate them
to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vinames are global macros. Type the viname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

v1 has divided our 22 variables into 4 groups and placed those groups into global macros. Do not
worry about the technical term global macro. Just know that once the macro $vlcategorical has been
created, any time you type $vlcategorical, you will get the full list of categorical variables.
. display "$vlcategorical"

sex grade overweight lbweight breastfeed msmoke meducation feducation
> siblings_old siblings_young

That is convenient! vl has placed all of our categorical variables into one bin called
$vlcategorical. Now let’s follow the instructions in the notes after v1 to be sure we like what v1
did on our behalf.

Inference examples — Examples and workflow for inference 96

. vl list vlcategorical

Variable Macro Values Levels

sex | $vlcategorical O and 1
grade $vlcategorical integers >=0
overweight | $vlcategorical O and 1
lbweight | $vlcategorical O and 1
breastfeed | $vlcategorical integers >=0
msmoke | $vlcategorical O and 1

QAP PNWNNWN

meducation | $vlcategorical integers >=0
feducation | $vlcategorical integers >=0
siblings_old | $vlcategorical integers >=0
siblings_young | $vlcategorical integers >=0

Among other things, we see that sex has just two values, 0 and 1; and meducation (mother’s educa-
tion level) has four values that are integers greater than or equal to 0.

Usually with categorical variables, we intend to create indicator variables for each unique value (level)
the variable takes on. So we are looking for variables that do not fit that purpose. siblings_old and
siblings_young have five values, but even their names make one think they might be counts. Let’s
look further at siblings_old:

. tabulate siblings_old

Number of
older
siblings in

house Freq. Percent Cum.

0 564 52.17 52.17

1 424 39.22 91.40

2 84 7.77 99.17

3 8 0.74 99.91

4 1 0.09 100.00

Total 1,081 100.00

It does look like a count of siblings. We might want indicators for each count (level), or we might
want it to enter our model linearly as a continuous variable. That singleton count of 4 older siblings will
have to be dropped whenever we perform cross-validation or cross-fitting because it cannot be in both
the estimation and the validation samples. We could recode the values to represent 0, 1, 2, and 3-or-more
siblings and keep it a factor variable. After all, lasso is a technique built for handling lots of variables. It
is easier for our examples to simply redesignate the two counts of siblings as continuous:

. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.

Macro # Added/Removed
$vlcategorical -2
$vlcontinuous 2
$vluncertain 0
$vlother 0

Inference examples — Examples and workflow for inference 97

Let’s now take a look at all variables designated continuous. We will use summarize to get a bit more
detail:

. summarize $vlcontinuous

Variable Obs Mean Std. dev. Min Max
react 1,084 742.4808 145.4446 434.0714 1303.26
no2_class 1,089 30.16779 9.895886 7.794096 52.56397
no2_home 1,089 54.71832 18.04786 2.076335 118.6568

age 1,089 9.08788 .886907 7.45243 11.63313

age0 1,082 3.218022 1.293168 0 9
sev_home 1,089 .4196807 .1999143 .0645161 .9677419
green_home 1,089 .1980721 077777 .0184283 .5258679
noise_school 1,089 37.96354 4.491651 28.8 51.1
sev_school 1,089 .4096389 .2064394 .1290323 .8387097
precip 1,089 .5593205 1.2364 0 5.8
siblings_old 1,081 .573543 .6752252 0 4
siblings_y-~g 1,083 .565097 .6906831 0 6

We notice three things. First, age0 has a min of 0 and a max of 9—both integers. Did v1 set make
a mistake? Let’s look carefully:

. tabulate age0

Age started
school Freq. Percent Cum.
0.0 4 0.37 0.37
0.3 1 0.09 0.46
0.5 1 0.09 0.55
0.8 1 0.09 0.65
0.9 1 0.09 0.74
1.0 33 3.05 3.79
1.4 1 0.09 3.88
1.5 8 0.74 4.62
1.7 1 0.09 4.71
2.0 116 10.72 15.43
2.5 4 0.37 15.80
2.8 3 0.28 16.08
2.9 1 0.09 16.17
3.0 739 68.30 84.47
4.0 35 3.23 87.71
5.0 39 3.60 91.31
6.0 54 4.99 96.30
7.0 25 2.31 98.61
8.0 8 0.74 99.35
9.0 7 0.65 100.00
Total 1,082 100.00

No mistake. There are fractional values. Also, looking back at the results of our describe, we see
that age 0 is the age at which the students started school. We do want to treat that as continuous.

Second, our dependent variable, react, is in the list. It is continuous, and so it belongs there. How-
ever, we will need to take care that we do not include it among our control covariates.

Third, our covariate of interest, no2_class, is also in the list. As with react, we will need to exclude
it from the control covariates.

Inference examples — Examples and workflow for inference 98

What of those two variables that were in $vluncertain?

. vl list vluncertain

Variable | Macro Values Levels
correct $vluncertain integers >=0 41
omissions | $vluncertain integers >=0 27

v1 set knows they are integer, but one has 41 distinct values and the other has 27. v1 was unwilling
to classify them as either continuous or categorical. See [D] vl for how to change v1’s rules. We said
earlier that omissions is another outcome variable from the ANT. correct is also an outcome variable
from the ANT. Both are potential dependent variables, meaning that neither are valid controls. We will
leave them where they are.

We were fortunate that correct and omissions were already left out of $vlcategorical and
$vlcontinuous. Otherwise, it would be our job to ensure they are not included among the controls.
v1 is convenient for classifying variables, but it does not truly understand anything about the meaning
of the variables. It is our job to know which variables are actually other outcomes or transformations of
the outcomes.

Let’s now create our own two global macros. One will have continuous covariates, and we will call
that macro cc. The other will have categorical covariates, which we will treat as factor covariates, and
we will call that macro fc.

. vl create cc = vlcontinuous - (react no2_class)
note: $cc initialized with 10 variables.

. vl create fc = vlcategorical
note: $fc initialized with 8 variables.

fcis just a copy of vicategorical. We could just use vlcategorical, but it is best to create our
own macro in case we want to change it later. When we created cc, we removed our dependent variable,
react, and covariate of interest, no2_class. That gives us a list of continuous controls.

Now we have control covariate lists we can use in our inference commands.

No one at StataCorp would ever type everything we just typed interactively. We would open an editor
or the Do-file Editor and work there. I suggest you do the same thing. Click on the Do-file Editor button,

E . Then type in the Editor

describe

vl set

vl list vlcategorical

tabulate siblings_old

vl move (siblings_old siblings_young) vlcontinuous
summarize $vlcontinuous

tabulate age0

vl list vluncertain

vl create cc = vlcontinuous - (react no2_class)

vl create fc = vlcategorical

Save the file as no2.do. Then you can type do no2 to re-create your control covariate lists.
If you want to exclude the exploratory commands, just type

vl set

vl move (siblings_old siblings_young) vlcontinuous
vl create cc = vlcontinuous - (react no2_class)

vl create fc = vlcategorical

Inference examples — Examples and workflow for inference 99

2 Fitting and interpreting inferential models

2.1 Overview of inferential estimation methods

Considering only the linear models for continuous outcomes and ignoring endogeneity, there are 25
methods to fit any given model. There are three commands—dsregress, poregress, and xporegress.
The po and xpo commands allow the option semi, which adjusts how they partial out, making five
methods. Within each of these methods, there is an option allowing three ways of selecting the lasso
penalty A—selection(plugin), selection(cv), and selection(adaptive). And, for 10 of these
15 methods, there is an option (sqrtlasso) to specify that the square-root lasso rather than the standard
lasso be used to select covariates. Square-root lasso cannot be combined with selection(adaptive).

What you type differs only a little when requesting any of these 25 methods. More importantly, you
interpret the coefficient estimates, standard errors, and confidence intervals exactly the same across all
25 methods. Which is to say, you interpret them exactly as you would interpret the estimates from linear
regression.

Let’s see how to request each of these 25 methods.

Assume that our dependent variable is y. We will include two covariates of interest—d1 and d2. We
will specify 100 potential continuous control covariates—x1-x100. And, we have 30 potential factor
control variables—£1-£30. The factor variables could be ordered, unordered, or just indicators. We
specify them as i. (£1-£30) so that each level of each covariate is included as its own term. So, if £3
has four levels, then it introduces four indicator variables (covariates) into the potential controls. See
[U] 11.4.3 Factor variables. We could also introduce interactions among the factor variables, among the
continuous variables, or both. Do that if you wish.

All these commands will run if you use lassoex.dta.

To make the commands easier to read, we do not specify option rseed () to make reproducible the
commands that randomly split the samples repeatedly. If you want the results to be the same each time
you run the commands, add rseed (12345) (or whatever number you like).

. use https://www.stata-press.com/data/r19/lassoex

We can first fit the model using the cross-fit partialing-out method, the partialing-out method, and the
double-selection method. In all cases, we are using the default plugin method for choosing the included
controls via its choice of the lasso penalty parameter A.

. xporegress y dil d2, controls(x1-x100 i.(£1-£30))
. poregress y dl d2, controls(x1-x100 i.(£1-£30))
. dsregress y dl d2, controls(x1-x100 i.(£1-£30))

We can fit the same models, but this time using the cross-validation method to choose the lasso penalty
parameter A and thereby to choose the included control covariates.

. xporegress y dl d2, controls(x1-x100 i.(f1-£30)) selection(cv)
. poregress y dl d2, controls(x1-x100 i.(£f1-£30)) selection(cv)
. dsregress y dl d2, controls(x1-x100 i.(£f1-£30)) selection(cv)

Again, we can fit the same models, but this time using the adaptive method to choose the included
control covariates.

. xporegress y dl d2, controls(x1-x100 i.(£f1-£30)) selection(adaptive)
. poregress y dl d2, controls(x1-x100 i.(f1-£30)) selection(adaptive)
. dsregress y dl d2, controls(x1-x100 i.(f1-£f30)) selection(adaptive)

Inference examples — Examples and workflow for inference 100

We can rerun each of the first six methods using the square-root lasso rather than the standard lasso,
by adding the option sqrtlasso. Here is one example that uses the cross-fit partialing-out method with
plugin selection:

. xporegress y dl d2, controls(x1-x100 i.(f1-£30)) sqrtlasso

And, we can rerun any of the 10 methods that use commands poregress or xporegress, including
those with sqrtlasso, using the semi option to specify an alternate form of partialing out. Here is one
example:

. xporegress y di d2, controls(x1-x100 i.(£f1-£30)) semi

We apologize for the bewildering array of choices. Lasso and machine learning is an active area of
research, and you may want the flexibility to choose among these options. That said, if your interest is
in your research and not in researching lasso, we feel reasonably comfortable making some suggestions
based on the state of the lasso literature at the time this manual was written.

1. Use xporegress with no options to fit your model using the cross-fit partialing-out method with A,
and thereby the control covariates, selected using the plugin method.

The plugin method was designed for variable selection in this inferential framework and has the
strongest theoretical justification.

2. If you want to explore the process whereby the control covariates were selected, add option
selection(cv) to your xporegress specification.

You can then explore the path by which each lasso selected control covariates.

You are still on firm theoretical footing. Cross-validation meets the requirements of a sufficient
variable-selection method.

Cross-validation has a long history in machine learning. Moreover, what cross-validation is doing
and how it chooses the covariates is easy to explain.

3. If you do not want to explore lots of lassos and you want to fit models much more quickly, use
commands dsregress or poregress rather than using xporegress.

xporegress fits 10 lassos for the dependent variable and 10 more lassos for each covariate of interest!
That is the default; you can request more. Or you can request fewer, but that is not recommended.
So, xporegress is orders of magnitude slower than poregress and dsregress. And it has orders
of magnitude more lassos to explore. Overwhelming.

Why then is xporegress our first recommendation? It is safer if you think that the process that gen-
erated your data has lots of covariates relative to your sample size. Similarly, it is also safer if you
want to explore lots of potential controls. The number of potential controls is not as problematic as
the number of true covariates because it is the natural log of the potential control that counts. For
example, needing 10 additional true covariates is the same as requesting just over 22,000 poten-
tial controls. The jargon term for this is sparsity. xporegress has a weaker sparsity requirement
than do poregress and dsregress. See Solutions that focus on the true model in [LASSO] Lasso
inference intro.

Despite this benefit, if your model is weakly identified by the data, dsregress can be more stable
than either poregress or xporegress. dsregress uses a union of all the selected controls from
all the lassos for all of its computations after selection. Both poregress and xporegress use the
results of each lasso separately to perform parts of their computations (specifically, to compute
their moments), and then put all that together when solving the moment conditions. This makes

Inference examples — Examples and workflow for inference 101

poregress and xporegress sensitive to which controls are selected for each lasso. So if you
change your specification slightly, dsregress may be more stable. To be clear, we said more
stable, not better.

4. We have suggested xporegress without a selection option and xporegress, poregress, and
dsregress with option selection(cv). Feel free to try any of the remaining 21 methods. They all
meet the requirements of sufficient variable-selection methods, so all can be theoretically justified.

Everything we said above applies to models for binary outcomes fit using xpologit, pologit,
and dslogit; and it applies to models for count outcomes fit using xpopoisson, popoisson, and
dspoisson.

These suggestions are based on the assumption that you are not concerned that you have violated
or are near the method’s sparsity bound. See Solutions that focus on the true model in [LASSO] Lasso
inference intro for a discussion of sparsity bounds. Data that fit your model poorly can trigger a sparsity
bound sooner than data that fit well. If you are concerned, see some alternate but similar suggestions in
[LASSO] Inference requirements.

2.2 Fitting via cross-fit partialing out (xpo) using plugin

In the previous section, we recommended using the cross-fit partialing-out estimator xporegress as
your first option. We will use that method to fit a model of how levels of nitrogen dioxide (no2_class)
in a classroom affect the reaction time (react) of students. We use the dataset described in section 1.4.

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

We created a do-file in section 1.4 that collects our variables into groups that are convenient for
specifying inferential lasso models. If you have it saved, great. We will run the one from the Stata Press
website:

. do https://www.stata-press.com/data/r19/no2
(output omitted)

Recall that the purpose of the inferential lasso estimators is to estimate the relationship between one,
or a few, covariates of interest and a dependent variable, while adjusting for a possibly large set of control
variables. And by “large”, we mean perhaps many more controls than you have observations.

We now have our list of continuous control variables in global macro $cc and our list of factor-variable
control variables in global macro $fc. What does that mean? Anywhere we type $cc, Stata substitutes
the list of continuous controls, and anywhere we type $fc, Stata substitutes the list of factor controls.
Let’s display them:

. display "$cc"
no2_home age age0 sev_home green_home noise_school sev_school precip
> siblings_old siblings_young

. display "$fc"
sex grade overweight lbweight breastfeed msmoke meducation feducation

That is going to save us a lot of typing.

Inference examples — Examples and workflow for inference 102

Now we are ready to fit our model.

. xporegress react no2_class, controls($cc i.($fc)) rseed(12345)

Cross-fit fold 1
Estimating lasso
Estimating lasso
Cross-fit fold 2
Estimating lasso
Estimating lasso
Cross-fit fold 3
Estimating lasso
Estimating lasso
Cross-fit fold 4
Estimating lasso
Estimating lasso
Cross-fit fold 5
Estimating lasso
Estimating lasso
Cross-fit fold 6
Estimating lasso
Estimating lasso
Cross-fit fold 7
Estimating lasso
Estimating lasso
Cross-fit fold 8
Estimating lasso
Estimating lasso
Cross-fit fold 9
Estimating lasso
Estimating lasso

Cross-fit fold 10 of

of 10 ...

for react using plugin

for no2_class using plugin
of 10 ...

for react using plugin

for no2_class using plugin
of 10 ...

for react using plugin

for no2_class using plugin
of 10 ...

for react using plugin

for no2_class using plugin
of 10 ...

for react using plugin

for no2_class using plugin
of 10 ...

for react using plugin

for no2_class using plugin
of 10 ...

for react using plugin

for no2_class using plugin
of 10 ...

for react using plugin

for no2_class using plugin
of 10 ...

for react using plugin

for no2_class using plugin
10 ...

react using plugin

Estimating lasso for

Estimating lasso for no2_class using plugin
Cross-fit partialing-out Number of obs 1,036
linear model Number of controls 32
Number of selected controls = 10
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 22.87
Prob > chi2 = 0.0000

Robust

react | Coefficient std. err. P>|z| [95% conf. intervall
no2_class 2.316063 .4843097 4.78 0.000 1.366834 3.265293

Note:

Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each

lasso.

The construct i . ($£c) in controls () is factor-variable notation that expands each variable in $fc
into indicator variables for each distinct value of the variable. We specified rseed (12345) to set the seed
of the random-number generator so that our results are reproducible. We did this because the cross-fit
estimator uses cross-fitting and so divides the sample into random groups. If we do not set the seed, we

Inference examples — Examples and workflow for inference 103

will get slightly different results each time we run the command. There is nothing special about 12345;
choose any number you like. You will get different, but hopefully similar, results for any seed. The same
seed will always produce the same results.

Now to the output. That is a long log. xporegress is just reporting on its progress as it performs 10
cross-fits and then performs 2 lassos within each group. We see in the header that 1,036 observations
were used, that we specified 32 controls, that 10 controls were selected from the 32, and that we did
not resample. From the Wald statistic and its p-value, we see that our covariate of interest is highly
significant.

We interpret the coefficient estimates just as we would for a standard linear regression. Because this
is linear regression, that effect can be interpreted as the population average effect, the effect for any
individual, or the effect for any group. What we lose with the inferential lasso estimators is the ability to
interpret any other coefficients.

Our point estimate for the effect of nitrogen dioxide on reaction time is 2.3, meaning that we expect
reaction time to go up by 2.3 milliseconds for each microgram per cubic meter increase in nitrogen
dioxide. This value is statistically different from 0 well beyond the 5% level, in fact, beyond the 0.1%
level. Our 95% confidence interval is 1.4 to 3.3.

We also note that xporegress estimates robust standard errors, so all the associated statistics are also
robust. With xporegress, we are robust to nonnormality of the error and to heteroskedasticity.

We can see how stable the lasso selection of controls is by typing lassoinfo.

. lassoinfo

Estimate: active
Command: xporegress

No. of selected variables

Selection
Variable Model method min median max
no2_class linear plugin 5 5 5
react linear plugin 3 5 5

We see that, over the 10 cross-fits, the plugin method selected 5 controls for the lasso on the covariate
of interest—no2_class. It selected 5 controls every time. For the dependent variable, react, the plugin
method selected between 3 and 5 controls. Even though these are real data, they look to be easy for the
lasso and plugin to handle. There is nothing to interpret in this table, though if some of the lassos are
consistently selecting 0 controls, you might want to explore further. See Solutions that focus on the true
model in [LASSO] Lasso inference intro and see [LASSO] Inference requirements.

2.3 Fitting via cross-fit partialing out (xpo) using cross-validation

Continuing with the example above, we can use cross-validation to select our controls rather than
plugin. Cross-validation is a well-established method in the machine learning literature. Even so, it is
known to select more variables than are absolutely necessary. We add selection(cv) to our previous
xporegress command:

Inference examples — Examples and workflow for inference 104

. Xporegress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32
Number of selected controls = 26
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 23.34
Prob > chi2 = 0.0000

Robust
react | Coefficient std. err. z P>|z| [95% conf. intervall]
no2_class 2.348458 .4861133 4.83 0.000 1.395693 3.301222

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

If you run this command, you will see that cross-validation takes much longer than plugin. For each
cross-fit, cross-validation performs its own 10-way partition of the data and runs lassos on each of those
10 partitions for the variables react and no2_class. After all this computation, the results look re-
markably similar. Our coefficient estimate is still 2.3 and is still highly significant. Our 95% confidence
interval is 1.4 to 3.3. This point estimate and the one obtained by plugin are close and well within each
respective confidence interval.

This high degree of similarity is not always the case. Sometimes different methods produce different
results.

Given that the results are so similar, you might guess that plugin and cross-validation selected similar
controls. A quick glance at the header will dispel that thought. Cross-validation selected 26 controls, far
more than the 10 controls selected by plugin. Remember that picking the “right” model is not what these
methods are about. As long as the selected controls adequately control for everything necessary to fit the
variables of interest, they are doing their job.

For these data and this model, the results simply are not very sensitive to the number of controls
selected. This is true over a broad range—at the least from the 10 controls selected by plugin to the 26
controls selected by cross-validation.

Let’s take a quick look at the lassos:

. lassoinfo

Estimate: active
Command: xporegress

No. of selected variables

Selection
Variable Model method min median max
no2_class linear cv 9 13 16
react linear cv 6 15 19

Even within cross-fits, cross-validation shows a lot more variation than plugin. The number of se-
lected controls from the lassos on no2_class ranges from 9 to 16. The lassos for react show even more
variation, ranging from 6 to 19 selected controls. Where did the 26 controls in the output of xporegress
come from? It is a count of the union of all controls from any lasso.

Inference examples — Examples and workflow for inference 105

Let’s peer a bit deeper into the lassos by using lassoinfo:

. lassoinfo, each

Estimate: active
Command: xporegress

No. of

Dependent Selection xfold Selection selected
variable Model method no. criterion lambda variables
no2_class linear cv 1 CV min. .1801304 14
no2_class linear cv 2 CV min. .2561599 10
no2_class linear cv 3 CV min. .2181624 13
no2_class linear cv 4 CV min. .1963854 13
no2_class linear cv 5 CV min. .2352711 11
no2_class linear cv 6 CV min. .2663564 12
no2_class linear cv 7 CV min. .1293717 16
no2_class linear cv 8 CV min. .1722497 15
no2_class linear cv 9 CV min. .264197 9
no2_class linear cv 10 CV min. .1184878 16
react linear cv 1 CV min. 2.130811 19
react linear cv 2 CV min. 2.443412 16
react linear cv 3 CV min. 2.062956 17
react linear cv 4 CV min. 4.220311 13
react linear cv 5 CV min. 7.434224 8
react linear cv 6 CV min. 3.356193 14
react linear cv 7 CV min. 7.954354 6
react linear cv 8 CV min. 6.422852 8
react linear cv 9 CV min. 2.982171 15
react linear cv 10 CV min. 2.738883 18

We see that the lasso penalty parameter A and the associated number of selected variables varies
widely. This is particularly true of the lassos for react. It simply does not matter; the estimates for
no2_class, our covariate of interest, are not affected.

2.4 Fitting via double selection (ds) using cross-validation

Continuing with the example above, we will fit the model using double selection and cross-validation.
We recommend this for three reasons.

First, the double-selection method works quite a bit differently from the partialing out done by cross-
fit. Instead of working with the lasso results one at a time and then using method of moments to estimate
the parameters, double selection takes the union of selected covariates from all lassos and then just does
a linear regression of react on no2_class and that union of selected covariates. The two methods
are asymptotically equivalent if both sparsity bounds are met, but in finite samples, they can respond
differently to any violation of the conditions required by the inferential lasso estimators. See Solutions
that focus on the true model in [LASSO] Lasso inference intro for a discussion of sparsity bounds.

Second, double selection requires only two lassos for our model, making it much easier to explore the
lassos.

Inference examples — Examples and workflow for inference 106

Third, double selection is much easier to explain. We just did it above in half a sentence.

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

Estimating lasso for react using cv
Estimating lasso for no2_class using cv

Double-selection linear model Number of obs = 1,036
Number of controls = 32
Number of selected controls = 22
Wald chi2(1) = 24.17
Prob > chi2 = 0.0000
Robust
react | Coefficient std. err. z P>|z| [95% conf. intervall
no2_class 2.404191 .4890458 4.92 0.000 1.445679 3.362704

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient estimate for no2_class is now to 2.4, still almost the same as fitting by xporegress
with plugin selection. The associated confidence interval is 1.4 to 3.4. Our test against 0 was strong and
is still strong. This really is a benign dataset for these linear models.

As with cross-validation, with cross-fit the number of selected controls is large—22.

What we are seeing are incredibly stable estimates.

Inference examples — Examples and workflow for inference 107

2.5 Fitting via the other 22 methods

We will not show the results of the other 22 methods for fitting this model. Here is what you would
type for each method:
. xporegress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) rseed(12345)
. poregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)
. poregress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) rseed(12345)
. dsregress react no2_class, controls($cc i.($fc)) selection(adaptive) rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso 11/
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso ///
rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) sqrtlasso rseed(12345)

. dsregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso 11/
rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(cv) semi rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) selection(adaptive) semi /1/
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(cv) semi rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) selection(adaptive) semi 11/
rseed(12345)

. xporegress react no2_class, controls($cc i.($fc)) sqrtlasso semi rseed(12345)
. xXporegress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso semi ///
rseed(12345)

. poregress react no2_class, controls($cc i.($fc)) sqrtlasso semi rseed(12345)
. poregress react no2_class, controls($cc i.($fc)) selection(cv) sqrtlasso semi ///
rseed(12345)

By now, the commands are nearly self explanatory.

Command xporegress fits via the cross-fit partialing-out method. Command poregress fits via
the partialing-out method. Command dsregress fits via the double-selection method.

Adding option selection(cv) specifies that cross-validation select the covariates. Adding option
selection(adaptive) specifies that adaptive lasso select the covariates. No selection() op-
tion implies that the plugin method (the default) select the covariates.

Adding option sqrtlasso specifies the square-root lasso rather than standard lasso.
Adding option semi specifies an alternate way of combining the moments for the po and xpo methods.
If you are interested, run some or all of these commands.

If you do, you will find that for these data and this model, the method we choose makes little differ-
ence. The results for these 22 methods look a lot like the results for the first 3 methods. The maximum
coefficient for no2_class is 2.4, and the minimum coefficient is 2.3. The maximum standard error is
0.51, and the minimum is 0.48. All methods reject that the coefficient for no2_class is 0 well beyond
the 1% level of significance.

Inference examples — Examples and workflow for inference 108

The close similarity of the results from all 25 methods may seem surprising. Are they all selecting
the same controls? The answer is no. Recall from 2.2 Fitting via cross-fit partialing out (xpo) using
plugin that the selected number of controls is 10, whereas from 2.4 Fitting via double selection (ds)
using cross-validation, the selected number of controls is 22—over twice as many.

Let’s look at just two of the methods to see which controls they are selecting. We can easily do this
only lasso by lasso (not command by command), so we will use two double-selection methods. Double
selection creates only two lassos for our model. Comparing the cross-fit methods would require looking
at 20 lassos per method. Let’s use lassocoef to compare double selection using plugin and double
selection using cross-validation.

First, we rerun those two models and store their estimates.

. dsregress react no2_class, controls($cc i.($fc)) rseed(12345)
(output omitted)
. estimates store ds_plugin
. dsregress react no2_class, controls($cc i.($fc)) selection(cv) rseed(12345)

(output omitted)
. estimates store ds_cv

Inference examples — Examples and workflow for inference 109

Then, we compare the selected controls from each lasso.

lassocoef (ds_plugin, for(react))
> (ds_cv , for(react))
> (ds_plugin, for(no2_class))
> (ds_cv , for(no2_class))

ds_plugin ds_cv ds_plugin ds_cv
react react no2_class no2_class

age X b'd X
0.sex X b'd

grade
2nd X b'd

4th X b'd

3rd X

feducation
University X X X
Primary
<Primary X

]

age0

sev_home
siblings_young
0.lbweight

MoM oMM

meducation
1
2 X

]

no2_home
green_home
noise_school
sev_school
precip

MoM oM MM
HoM oMM M

breastfeed
No breastfeeding
>6 months X

ke

msmoke
No smoking X
_cons X X X X

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

The first two columns of x’s show which controls were selected from the lassos for the dependent
variable, react—the first column for the plugin method and the second for cross-validation. The third
and fourth columns of x’s show which controls were selected by the lassos for the covariate of interest,
no2_class.

Inference examples — Examples and workflow for inference 110

Cross-validation selected more controls than did plugin in the lassos for both the dependent variable,
react, and the covariate of interest, no2_class. That is not surprising because plugin is designed
to be cautious about adding noise through variable selection while cross-validation cares only about
minimizing the cross-validation mean squared error.

Perhaps more interesting is that for both react and no2_class, cross-validation selected a superset of
the variables selected by plugin. While not guaranteed, that result is a reflection of how the lasso works.
Plugin and cross-validation select their covariates by setting an “optimal” value of), the lasso penalty.
Plugin selects a larger A and thereby a stronger penalty that selects fewer variables. As the penalty gets
weaker, lasso can drop selected variables when adding others, but lasso is more likely to simply add
variables. So, in this case, cross-validation’s weaker penalty leads to a superset of the variables selected
by plugin. That is a bit of an oversimplification because plugin selects variables that have been weighted
by the inverse standard deviation of their scores while cross-validation does not weight the variables.
This means that the lambda for plugin and the lambda for cross-validation are on different scales.

Recall, though, that the only role of the selected controls is to adequately capture the unmodeled
correlations among the dependent variable, the variables of interest, and the model’s error.

2.6 Fitting models with several variables of interest

All 11 inferential models in Stata allow you to have more than one variable of interest. Let’s extend
our base example from section 2.2 to include both no2_class and student’s age as variables of interest.

The only trick is that we must remove our new variables of interest from our list of continuous controls.
v1 makes that easy:

. vl create cc6 = cc - (age)
note: $cc6 initialized with 9 variables.

We have now created the global macro cc6, which has the same variables as cc except that age has
been removed.

We fit the model using cross-fit partialing-out with the default plugin selection by typing

. xporegress react no2_class age, controls($ccé i.($fc)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 31
Number of selected controls = 9
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 25.24
Prob > chi2 = 0.0000

Robust
react | Coefficient std. err. z P>|z| [95% conf. intervall
no2_class 2.353826 .4892462 4.81 0.000 1.394921 3.312731
age -25.01451 11.38901 -2.20 0.028 -47.33656 -2.69245

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The coefficient for no2_class has barely changed at all from its estimate in section 2.2.

Inference examples — Examples and workflow for inference 111

Again, we interpret the coefficients on the variables of interest just as we would if they were part of a
standard linear regression. So a 1-unit change in no2_class elicits a 2.4-unit change in react. A 1-unit
change in age elicits a —25-unit change in react. Because the relationship is linear, these changes can
be interpreted as the expected change for any individual or as the expected change for any population or
subpopulation of interest.

2.7 Fitting models with factor variables of interest

Having a factor variable of interest is really no different than having several variables of interest.
Factor variables just provide a convenient way to add several indicator variables to our model.

Those who study response times for children know that they decrease (improve) as the child is exposed
over time to educational stimuli. We might then be interested in how the response times vary across the
child’s grade level. Ignoring our original interest in the effect of nitrogen dioxide for the moment, let’s
pretend our only variable of interest is grade in school.

The distribution of grades in our sample looks like this:

. tabulate grade

Grade in
school Freq. Percent Cum.
2nd 412 37.83 37.83
3rd 397 36.46 74.29
4th 280 25.71 100.00
Total 1,089 100.00

If we wish to use the levels of grade as our variables of interest, we need to remove it from our list
of factor-variable controls:

. vl create fc7 = fc - (grade)
note: $£c¢7 initialized with 7 variables.

We are not currently interested in the effect of nitrogen dioxide, so we need to add it back to the list
of continuous controls:

. vl create cc7 = cc + (no2_class)
note: $cc7 initialized with 11 variables.

Inference examples — Examples and workflow for inference 112

We can now fit our model with the levels of grade as our variables of interest. We add the option
baselevels so that we can see which level of grade has been made the base level.

. xporegress react i.grade, controls($cc7 i.($fc7)) baselevels rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 30
Number of selected controls = 5
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 16.82
Prob > chi2 = 0.0002
Robust
react | Coefficient std. err. z P>zl [95% conf. intervall
grade

2nd 0 (base)
3rd -62.07497 15.26513 -4.07 0.000 -91.99408 -32.15587
4th -92.52593 25.02151 -3.70 0.000 -141.5672 -43.48467

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

A common theme in these sections is that we interpret the results for the variables of interest just as we
would if they were part of a linear regression. This is no different for factor variables. As we would with
a simple linear regression, we interpret each of the coefficients as the increases in performance relative
to the base level for second graders. We can see that mean reaction time is 62 milliseconds faster for
third graders than it is for second graders. Fourth graders are, on average, 93 milliseconds faster than
second graders.

That common theme extends to the tools that are available after fitting a model with any of the lasso
inference commands. For example, we can use contrast to do comparisons of the grade levels that are
not against a reference category, as they were in the regression. We could use a reverse adjacent (ar.)
contrast to compare each grade to the prior grade:

. contrast ar.grade
Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2
grade
(3rd vs 2nd) 1 16.54 0.0000
(4th vs 3rd) 1 4.23 0.0397
Joint 2 16.82 0.0002
Contrast Std. err. [95% conf. intervall
grade
(3rd vs 2nd) -62.07497 15.26513 -91.99408 -32.15587
(4th vs 3rd) -30.45096 14.80702 -59.47218 -1.429727

Inference examples — Examples and workflow for inference 113

The regression showed a 62-millisecond decrease in response time when comparing third graders to
second graders, and that is reproduced by contrast. The difference with reverse-adjacent comparisons
is that the comparison group for fourth graders is now third graders, and we estimate that difference
to be a 30-millisecond decrease. It would take a bit more work to determine if the apparently slower
improvement from third to fourth grade is indeed significantly different from the improvement from
second to third grade. If you are interested, and without explanation, you could type

. contrast ar.grade, post
. lincom _blar2vsl.grade]l - _blar3vs2.gradel

You will find that, by a slim margin, we fail to distinguish between the effect of going from second to
third grade and the effect of going from third to fourth grade.

If we had a more complicated set of interest, we would find contrast indispensable. If you have factor
variables of interest, we suggest you become familiar with contrast.

What we cannot do with results from the inferential lasso models is use margins to estimate popula-
tion and subpopulation means. margins requires a full coefficient vector and variance matrix for those
coefficients. The lasso inference commands can only tell us about a subset of that coefficient vector and
associated variance matrix.

If you are epidemiologically inclined, you might wonder if the effect of grade is not just a proxy for
increasing age. Now that we have multiple variables of interest and factor variables of interest, we can
check that too:

Inference examples — Examples and workflow for inference 114

. vl create cc7b = cc7 - (age)
note: $cc7b initialized with 10 variables.

. xporegress react age i.grade, controls($cc7b i.($fc7)) baselevels rseed(12345)
(output omitted)

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 29
Number of selected controls = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(3) = 203.93
Prob > chi2 = 0.0000
Robust
react | Coefficient std. err. z P>|z| [95% conf. intervall
age -18.50751 11.16037 -1.66 0.097 -40.38143 3.366418
grade

2nd 0 (base)
3rd -67.35294 15.4679 -4.35 0.000 -97.66947 -37.03641
4th -100.7346 25.0814 -4.02 0.000 -149.8932 -51.57594

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The estimates for grade level have changed only a bit. Response times may improve with age, but
we cannot detect that at the 5% level. Regardless, the effect of educational stimulation appears to be
independent. Most importantly, we see that all of our contrast tools can be used with these estimators.

2.8 Fitting models with interactions of interest

Not surprisingly, tools for evaluating interactions for other estimation commands are also available to
evaluate interactions among our variables of interest, whether those interactions are strictly among factor
variables or are with factor variables and continuous variables. Let’s arbitrarily check for an interaction
between the child’s sex and his or her age. Again, we need to manage our list of controls by removing
sex and age from the list of factor-variable controls. And we again need to put no2_class, which is no
longer a variable of interest, back into the continuous controls.

. vl create fc8 = fc - (sex grade)
note: $£¢8 initialized with 6 variables.

. vl create cc8 = cc + (no2_class)
note: $cc8 initialized with 11 variables.

Inference examples — Examples and workflow for inference 115

We can then fit a cross-fit model of reaction time where our variable of interest is sex##grade—the
interaction of sex and grade while also including individual indicators for the levels of sex and grade.

. xXporegress react sex#iftgrade, controls($cc8 i.($£c8)) baselevels rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 28
Number of selected controls = 6
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(5) = 64.57
Prob > chi2 = 0.0000
Robust
react | Coefficient std. err. z P>zl [95% conf. intervall
sex
Male 0 (base)
Female 45.10077 13.73912 3.28 0.001 18.17259 72.02896
grade
2nd 0 (base)
3rd -65.62381 17.72386 -3.70 0.000 -100.362 -30.88568
4th -102.2437 26.5379 -3.85 0.000 -154.257 -50.23033
sex#grade
Female#3rd 3.173242 19.09434 0.17 0.868 -34.25098 40.59747
Female#4th 18.42495 19.98327 0.92 0.357 -20.74154 57.59144

Note: Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The two coefficients of the interaction sex#grade and their associated statistics do not give us much
hope that an interaction is statistically detectable. Let’s check anyway:

. contrast sex#grade
Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

sex#grade 2 0.96 0.6188

Definitely not statistically significant, at any level.
What about the individual effects of sex and grade?

. contrast sex
Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

sex 1

42.33 0.0000

Inference examples — Examples and workflow for inference 116

. contrast grade
Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

grade 2 17.83 0.0001

Both individual effects are significant at any level you would care to consider.

Some studies have found differences in some types of reaction times between the sexes, but we might
want to consider another factor—the interaction between sex and no2_class.

We can put grade back into the controls because it has no interaction with sex.

. vl create fc8b = fc - (sex)
note: $£¢8b initialized with 7 variables.

We are ready to fit a model that includes sex, no2_class, and their interaction. That can be written
in shorthand, by typing c.no2_class##i.sex. We fit the model:

. xporegress react c.no2_class##i.sex, controls($cc i.($£c8b)) rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 30
Number of selected controls = 9
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(3) = 63.42
Prob > chi2 = 0.0000
Robust
react | Coefficient std. err. z P>zl [95% conf. intervall
no2_class 1.708798 .5961435 2.87 0.004 .5403779 2.877217
sex
Female 17.47061 24.31548 0.72 0.472 -30.18686 65.12807
sex#
c.no2_class
Female 1.099669 .7737183 1.42 0.155 -.4167913 2.616129

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Everything we need to know is in this output.

The effect of no2_class is still positive, as it was for all of our earlier fits. The effect is now a bit
smaller at a 1.7-millisecond increase in response for every microgram increase in NO, per cubic meter.

There is no longer a significant difference in response times for females compared with males. The
point estimate is 17, but its z statistic is a scant 0.72.

The interaction between sex and no2_class is also not significant, though you might wish you had
more data.

Inference examples — Examples and workflow for inference 117

You might be curious if the effect of nitrogen dioxide across both males and females from this model
is similar to our earlier models without an interaction. If we assume 50% males and 50% females, we
just need to add half of the interaction term to the estimate for males.

. lincom no2_class + .5%c.no2_class#l.sex

(1) no2_class + .5*1.sex#c.no2_class = 0

react Coefficient Std. err.

z

P>|z|

[95% conf. intervall]

1 2.258632 .4800889 4.70

0.000

1.317675 3.199589

The estimate is extremely close to the point estimate and standard errors that we obtained in 2.2 Fitting
via cross-fit partialing out (xpo) using plugin—both round to 2.3 with standard errors that round to 0.48.

While we have pretended to be performing analysis, the important thing to know is that the standard

inference tools can be applied to the variables of interest.

2.9 Fitting models with a nonlinear relationship of interest

Let’s continue with our reaction-time example and put a nonlinearity in no2_class into the covari-
ates of interest. What we really mean by “nonlinear” in this context is nonlinear-but-linearizeable—

polynomials, logs, ratios, and the like.

We just want to demonstrate how to think about nonlinearities with these models, so let’s not dwell on
where the nonlinear relationship comes from. In your work, you may have some theory or precedence
for your choice of nonlinearities. For now, we know that fractional polynomials (fp) produce whole
classes of reasonable curves, so we will arbitrarily pick one of those forms that allows for two inflection
points—including one over the square root and the cube of the variable.

. generate no2fpl = no2_class”(-2)

. generate no2fp2 = no2_class™3

With those as our two covariates of interest, we fit a cross-fit model. Our controls are from the model
we fit in 2.2 Fitting via cross-fit partialing out (xpo) using plugin.

. xporegress react no2fpl no2fp2, controls($cc i.($fc)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs 1,036
linear model Number of controls 32
Number of selected controls = 11

Number of folds in cross-fit = 10

Number of resamples = 1

Wald chi2(2) = 24.55

Prob > chi2 = 0.0000

Robust

react | Coefficient std. err. z P>zl [95% conf. intervall

no2fpi -2915.067 2227.731 -1.31 0.191 -7281.339 1451.205
no2fp2 .0005923 .0001394 4.25 0.000 .0003191 .0008655

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each

lasso.

Inference examples — Examples and workflow for inference 118

We see that it is unclear if we really need two terms to model this relationship. Only one of the terms
is significant. But our nonlinearity is just a construct for demonstration and we want to see how this
works, so we are undeterred.

We could do a bit of algebra and decide what those terms imply about the relationship between nitrogen
dioxide and reaction time. Or we could just graph the relationship. Predictions in inferential models are
typically not much use, but they are perfect for our purpose.

We say predictions are not much use because the selected controls should not be used in a prediction.
They are used by xporegress solely to obtain consistent estimates of the model of interest, but they are
not themselves interpretable. So they should not be used to form predictions. We should not even use
the intercept. For xporegress and all the other inferential models, only our covariates of interest affect
the prediction. That is fine with us; that is all we want to see. We would like to get confidence intervals
t00, so let’s use predictnl to get our predictions:

. predictnl reacthat = predict(), ci(lb ub)
note: confidence intervals calculated using Z critical values.

We can then graph the prediction and its confidence interval:

. twoway rarea 1b ub no2_class, sort || line reacthat no2_class,
> sort legend(off) title("Reaction time (ms)")

Reaction time (ms)
150

100

50

504

-100+

10 20 30 40 50
Classroom NO2 levels (ug/m3)

There might be some upward curvature as nitrogen dioxide reaches its highest observed levels, but the
confidence interval is too wide to be sure. The downward bend at the lowest levels of nitrogen dioxide
is also suspect because the confidence interval is also wide in that region of the graph. We have scant
evidence that this curve is any better than a linear relationship.

If you are unfamiliar with twoway syntax, we asked for two overlaid plots: a range area for the
confidence interval from the variables 1b and ub plotted against no2_class, rarea 1b ub no2_class,
and a line of predicted reaction time from the variable reacthat against no2_class.

Unfortunately, we cannot use any information-criterion tools to compare our nonlinear fit with our ear-
lier linear fit. The inferential models cannot estimate the log likelihood or any form of residual required
to form any information-criterion measures.

Inference examples — Examples and workflow for inference 119

2.10 Controls are controls

The literature on the inferential models fit by double-selection, partialing-out, and cross-fit partialing-
out estimators refers to the “variables of interest”, but a more accurate term might be “submodel of
interest”. We say that because a maintained assumption is that the control variables are just controls and
they do not interact with the variable or variables of interest. That is to say, they can shift the expected
value of the outcome, but they cannot change the effect of the variables of interest.

If you think control variable x3 actually interacts with one of your variables of interest, say, d1, then
you will need to include that interaction in your submodel of interest. So if x3 and d1 are continuous, you
need to add c.x3#c.d1 to your submodel of interest; if x3 is an indicator or multi-value factor variable,
you need to add i .x3#c.d1; if both are factor variables, you need to add i .x3#i.d1. In these cases, x3
is not a control variable—it is part of your submodel of interest.

3 Fitting logit inferential models to binary outcomes. What is different?

Even if your current interest is logit models, we suggest you also read 2 Fitting and interpreting
inferential models. That section has many more examples and goes into more detail. If you are starting
here, we also suggest you read 1.4 The primary dataset to become familiar with the dataset and how we
are manipulating it. Section 1.4 is not essential reading, but if things become confusing, do read it. Here
we focus primarily on what is different about logit models.

Without exception, every command and example from section 2 can be run using a logit lasso infer-
ence command. Just change regress to logit in the estimation commands, and change the dependent
variable from react to the dependent variable we create below.

We will replicate a few of the analyses from section 2 using logit models and explain how the results
are interpreted with binary outcomes. Feel free to run others. Their results are interpreted in the same
way as those shown here.

Let’s continue with the dataset we have been using to measure the effect of nitrogen dioxide in the
classroom on the reaction time of school children.

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

We need to create the global macros that will hold our lists of continuous and factor-variable control
variables:

. do https://www.stata-press.com/data/r19/no2
(output omitted)

To see how these lists were created, see 1.4 The primary dataset.

This dataset does not have a binary (dichotomous) dependent variable, but it is easy enough to create
one. The variable omissions contains a count of the number of times a child failed to respond to a
stimuli. We can pretend that we only saw whether or not there were any omissions. Let’s create a
variable that is 1 when there were any omissions and is 0 otherwise:

. generate missl = omissions >= 1 if !missing(omissions)
(6 missing values generated)

Inference examples — Examples and workflow for inference 120

Then take a quick look at our new variable:

. tabulate missi

missl Freq. Percent Cum.
0 508 46.86 46.86
1 576 53.14 100.00
Total 1,084 100.00

We have 508 children who never missed a stimulus from the test and 576 who missed at least one
stimulus.

3.1 Interpreting standard odds ratios

If you are new to inferential lasso models and have not at least read 2.2 Fitting via cross-fit partialing
out (xpo) using plugin, do that now. We will only explain how to interpret the odds ratios below. Section
2.2 explains more.

We can now fit a model of how classroom nitrogen dioxide levels (no2_class) affect whether chil-
dren miss any stimuli on a reaction-time test (miss1). Our continuous controls are in the global macro
$cc and our factor-variable controls are in the global macro $fc, as they were in our very first example
in section 2.2. We use xpologit to fit the model:

. xpologit missl no2_class, controls($cc i.($fc)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 32
Number of selected controls = 5
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(1) = 11.18
Prob > chi2 = 0.0008

Robust
missl | Odds ratio std. err. z P>|z| [95% conf. intervall
no2_class 1.027338 .0082854 3.34 0.001 1.011227 1.043706

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The odds ratio forno2_class is 1.03. We interpret that ratio just as we would if this were a logistic
regression. For every unit increase in the level of nitrogen dioxide, the odds of a student missing at least
one stimulus increase by a factor of 1.03, with a confidence interval of 1.01 to 1.04. As always with these
models, we cannot estimate a constant, so we do not know the baseline odds.

At face value, that is a small odds ratio, but the range of no2_class is 7.8 to 52.6:

. summarize no2_class

Variable ‘ Obs Mean Std. dev. Min Max

no2_class ‘ 1,089 30.16779 9.895886 7.794096 52.56397

The difference is over 44 micrograms per cubic meter. What odds ratio do we obtain if we increase
nitrogen dioxide levels by 44?

Inference examples — Examples and workflow for inference 121

. lincom _b[no2_class]*44, or
(1) 44*no2_class = 0

missl | Odds ratio Std. err. z P>|z| [95% conf. intervall

(D 3.276333 1.162629 3.34 0.001 1.634306 6.568144

The odds go up by 3.3 with a confidence interval from 1.6 to 6.6.

Be careful if you do this by hand. The or option did quite a bit of work. There are several ways to
write what 1incom did behind the scenes. One way is

OR,, = 1.027338%
This follows directly from what we said about the original odds ratio being the factor by which odds
increase.

Equivalently, and what really happens behind the scenes, is

OR,, = 44
where f is the coefficient on no2_class, which is the log of the odds ratio shown on the xpologit
results. These expressions produce identical results.

We said earlier that xpologit cannot estimate a baseline odds. It cannot estimate any odds, only odds
ratios. Even so, we might consider the degree of these effects by looking at children experiencing truly
low nitrogen dioxide levels, say, below 10:

. table missl if no2_class < 10

Frequency

missl
0 24
1 10
Total 34

That gives an odds of 10/24 = 0.42, or roughly one child missing a stimulus for every two who
respond to every stimulus. If we assume that is the starting odds for a child and then increase the nitrogen
dioxide levels by 44, the odds move all the way to 3.2 x 0.42 = 1.3. At that level of nitrogen dioxide,
almost three children miss at least one stimulus for every two who respond to every stimulus.

3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

Let’s run through most of the examples that we first demonstrated with linear regression. We are
going to set the models up quickly. Read sections 2.6 through 2.9 for more about the models. We will
use the same tools; we will just ask them to report odds ratios.

In 2.6 Fitting models with several variables of interest, we added age to our covariates of interest.
That means we must pull age from our list of continuous controls.

. vl create cc31 = cc - (age)
note: $c¢31 initialized with 9 variables.

Inference examples — Examples and workflow for inference 122

We will use different global macro names throughout this section to avoid collisions with the original
examples. These globals hold the same variable lists—they just have a different name.

We fit the model:

. xpologit missl no2_class age, controls($cc31 i.($fc)) rseed(12345)
(output omitted)

Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 31
Number of selected controls = 7
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 13.58
Prob > chi2 = 0.0011

Robust
missl | Odds ratio std. err. z P>|z| [95% conf. intervall]
no2_class 1.048213 .0760006 0.65 0.516 .9093542 1.208275
age .7922585 .0647357 -2.85 0.004 .6750174 .9298628

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

There is not much to say about the results. Interpret the odds ratios as you would any logistic model
with two covariates. The odds ratio for age is 0.79 and is significant at the 5% level with a 95% confidence
interval from 0.68 to 0.93. So, older children are less likely to miss a stimulus. We also note that
no2_class is now insignificant. We are asking a lot of a binary outcome signal.

In 2.7 Fitting models with factor variables of interest, we decided that we were interested in the effect
of the grade the child was in at school and no longer interested in nitrogen dioxide.

We will set our controls to reflect this:

. vl create fc32 = fc - (grade)
note: $£¢32 initialized with 7 variables.

. vl create cc32 = cc + (no2_class)
note: $c¢¢32 initialized with 11 variables.

Inference examples — Examples and workflow for inference 123

And we fit the xpologit model:

. xpologit missl i.grade, controls($cc32 i.($£c32)) baselevels rseed(12345)

(output omitted)
Cross-fit partialing-out Number of obs = 1,036
logit model Number of controls = 30
Number of selected controls = 3
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 5.51
Prob > chi2 = 0.0637
Robust
missl | Odds ratio std. err. z P>|z| [95% conf. intervall
grade

2nd 1 (base)
3rd .6371055 .1232829 -2.33 0.020 .4360134 .9309425
4th .6156729 .1974266 -1.51 0.130 .3283953 1.154259

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The odds ratio of going from second grade, the base level, to third grade is 0.64 and is significant.
The odds ratio of going from second grade to fourth grade is 0.62 and is not statistically significant at
the 5% level.

These results are weaker than those for the linear model for reaction time. Even so, we forge on and
use contrast to look at the grade-to-grade odds ratios. contrast knows how to exponentiate results to
get odds ratios, but it is not quite as smart as lincom. We will need to tell contrast to use exponential
form (eform()) and to label the results as “Odds ratio™:

. contrast ar.grade, eform(0dds ratio)
Contrasts of marginal linear predictions

Margins: asbalanced

df chi?2 P>chi2
grade
(3rd vs 2nd) 1 5.43 0.0198
(4th vs 3rd) 1 0.02 0.8777
Joint 2 5.51 0.0637
Odds ratio Std. err. [95% conf. intervall]
grade
(3rd vs 2nd) .6371055 .1232829 .4360134 .9309425
(4th vs 3rd) .9663594 .2149063 .6249454 1.494291

The first comparison is still between second and third grade. We already discussed that comparison
when considering the output from xpologit. contrast reports the same odds ratio and the same p-
value. The second comparison is now between third and fourth grade. The point estimate is an odds ratio
0f 0.97, almost 1, and it is not a significant ratio at the 5% level.

Inference examples — Examples and workflow for inference 124

We will skip section 2.8 Fitting models with interactions of interest because it does not offer any new
tools for analyzing odds ratios. You can run that model as an inferential lasso logit model on miss1. Just
remember to add option eform(0dds ratio) to any of the contrast commands.

In 2.9 Fitting models with a nonlinear relationship of interest, we analyzed a nonlinear relationship
between reaction time and nitrogen dioxide levels. Recall from section 2.9 that we arbitrarily chose a
nonlinear representation for no2_class that allows for two inflection points—one over the square root
ofno2_class and one over the cube of the no2_class. If you have already worked through section 2.9
with your current dataset, you already have the two variables for the nonlinearity in your dataset. If not,
we will need to create them.

. generate no2fpl = no2_class”(-2)

. generate no2fp2 = no2_class™3

With these variables in place, we can fit our nonlinear relationship between miss1 and no2_class.

. xpologit missl no2fpl no2fp2, controls($cc i.($fc)) rseed(12345)
(output omitted)
convergence not achieved
gmm step failed to converge
r(498);

That did not end well. Generalized method of moments (GMM) is how pologit and xpologit com-
bine the scores from the partialing-out process to obtain the parameter estimates for the coefficients of
interest. With these data and model, GMM simply could not converge. This happens. In the other exam-
ples in this section, we have mentioned that the estimates are not as significant as they were for the linear
models on reaction time from section 2. Our binary outcome variable, miss1, has much less information
than the continuous reaction time variable.

Do we think all is lost? This is the first example of instability, so let’s try a little harder. We will warn
you that you can try pologit, but it fails with the same error.

Let’s take the advice from [LASSO] Inference requirements and try cross-validation as our selection
technique. We return to the cross-fit estimator:

. xpologit missl no2fpl no2fp2, controls($cc i.($fc)) selection(cv) rseed(12345)
(output omitted)
convergence not achieved
gmm step failed to converge
r(498);

This is tough. We cannot even try the alternate suggestion from [LASSO] Inference requirements
because we already said that pologit with plugin selection failed. We will tell you now that pologit
with cross-validation selection also fails.

Inference examples — Examples and workflow for inference 125

We did say earlier that double selection is more stable. Let’s try dslogit, first with cross-validation,

and store the results:

. dslogit missl no2fpl no2fp2, controls($cc i.($fc)) selection(cv) coef

> rseed(12345)

Estimating lasso
Estimating lasso
Estimating lasso

for missl using cv
for no2fpl using cv
for no2fp2 using cv

Double-selection logit model Number of obs = 1,036
Number of controls = 32

Number of selected controls = 23

Wald chi2(2) = 16.19

Prob > chi2 = 0.0003

Robust

missl | Coefficient std. err. z P>|z| [95% conf. interval]

no2fpl -79.45294 41.32577 -1.92 0.055 -160.45 1.544089
no2fp2 7.18e-06 2.52e-06 2.85 0.004 2.24e-06 .0000121

Note:

Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each

lasso.

. estimates stor

We have estimates. There is nothing to suggest instability in these results. The coefficient on no2fp2

e ds_cv

is tiny, but that is the cube of no2_class. It needs to be a small coefficient.

What does the plugin selection method have to say?

. dslogit missl no2fpl no2fp2, controls($cc i.($fc)) coef rseed(12345)

Estimating lasso
Estimating lasso
Estimating lasso

for missl using plugin
for no2fpl using plugin
for no2fp2 using plugin

Double-selection logit model Number of obs = 1,036
Number of controls = 32

Number of selected controls = 5

Wald chi2(2) = 14.63

Prob > chi2 = 0.0007

Robust

missl | Coefficient std. err. z P>|z| [95% conf. intervall]

no2fpil -80.76289 39.2933 -2.06 0.040 -157.7763 -3.749442
no2fp2 6.01e-06 2.35e-06 2.56 0.010 1.41e-06 .0000106

Note:

Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each

lasso.

. estimates stor

e ds_plugin

Inference examples — Examples and workflow for inference 126

Those coefficients look similar to the ones from cross-validation selection. What is more, plugin
selected only 5 controls whereas cross-validation selected 23. The double-selection results are similar
over a wide range of selected controls. We stored the results from the estimators, so let’s peek at the
controls from the two methods by using [LASSO] lassoinfo:

. lassoinfo ds_cv ds_plugin

Estimate: ds_cv
Command: dslogit

No. of

Selection Selection selected

Variable Model method criterion lambda variables
missl logit cv CV min. .0229644 6
no2fpl linear cv CV min. .0000249 17
no2fp2 linear cv CV min. 636.8366 13

Estimate: ds_plugin
Command: dslogit

No. of

Selection selected

Variable Model method lambda variables
missil logit plugin .07161 0
no2fpl linear plugin .1199154 4
no2fp2 linear plugin .1199154 4

Cross-validation is selecting many more controls for each variable’s lasso: for miss1, 6 versus 0; for
no2fpl, 17 versus 4; and for no2fp2, 13 versus 4.

Inference examples — Examples and workflow for inference 127

Let’s look more closely with lassocoef:

lassocoef (ds_plugin, for(missl))
(ds_cv , for(miss1))
(ds_plugin, for(no2fpl))
(ds_cv , for(no2fpl))
(ds_plugin, for(no2fp2))
(ds_cv , for(no2fp2))

vV VVVYV.

ds_plugin ds_cv ds_plugin ds_cv ds_plugin ds_cv
missl missil no2fpl no2fpl no2fp2 no2fp2

age X b4

grade
2nd X

4th X

3rd b4

0.overweight X X

feducation

University X X

<Primary X X
Primary X

no2fpl X
no2fp2 X
no2_home
green_home
noise_school
precip

age0
sev_home
sev_school
siblings_old
0.sex

HoX MW X
»
MoK oM X

L T T T T
"

breastfeed
<6 months
>6 months b4 bd

kel

meducation
1 b4
2 X

msmoke
No smoking X

Smoking X

_cons X X X X X bd

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

A careful perusal of the x’s shows that cross-validation selected each control that plugin selected for
all lassos. It also selected many more controls. We have seen this behavior before. At least we are not
worried that the selection method produces different results.

Inference examples — Examples and workflow for inference 128

We graphed the nonlinear effect of nitrogen dioxide on reaction time by using a linear model in sec-
tion 2.9. The path of coefficients from a logit model do not have any interpretation. Wait! The results
that we saw at the beginning of this section were interpretable. All we had to do was exponentiate the
total difference from some baseline and we obtained an odds ratio. We can do that here too.

The predict command will give us the linear predictions for just the two fractional polynomial terms.
We want a confidence interval (CI), so let’s use predictnl:

. predictnl xbhat = predict(), ci(xblb xbub)
note: confidence intervals calculated using Z critical values.

We have no intercept, so we need to pick a level of xbhat whose exponential will be our baseline
odds. Do we think the minimum value of nitrogen dioxide is reasonable? Or do we think that is an
outlier?

. summarize no2_class, detail

Classroom NO2 levels (ug/m3)

Percentiles Smallest

1% 9.474087 7.794096

5% 16.86244 7.794096
10% 18.5384 7.794096 Obs 1,089
25% 22.81843 7.794096 Sum of wgt. 1,089
50% 29.91033 Mean 30.16779
Largest Std. dev. 9.895886

75% 36.59826 52.56397
90% 42.04398 52.56397 Variance 97.92857
95% 45.97548 52.56397 Skewness .2082405
99% 52.52346 52.56397 Kurtosis 2.63782

We have five identical values of 7.8 for at least the smallest five, and they are not far from the first
percentile. If we can find the linear prediction for the minimum value of no2_class, that would be a
serviceable baseline.

. summarize xbhat if no2_class <= r(min)

Variable ‘ Obs Mean Std. dev. Min Max

xbhat ‘ 8 -1.326629 0 -1.326629 -1.326629

The r(min) in that expression was just a saved result from the previous summarize command.
It contained the minimum of no2_class. Our linear prediction that corresponds to the minimum of
no2_class is —1.3. That is our linear baseline. We could subtract —1.3 from our linear prediction
and its bounds, but the value is stored in higher precision in r (mean). Let’s subtract our baseline and
exponentiate the results to obtain odds ratios:

. generate orhat = exp(xbhat - r(mean))
. generate orlb = exp(xblb - r(mean))
. generate orub = exp(xbub - r(mean))
Let’s label the variable holding our point estimate of the odds ratios.
. label variable orhat "Odds ratio vs. lowest levels of NO2"

It is always good to label your variables. And we would like a little labeling on our graph. If you have
lost track of what we are computing, that label should be a hint.

Inference examples — Examples and workflow for inference 129

That was a bit of work. And, admittedly, it was only loosely tied to the algebra at the top of this
section. Was it worth it? What do we have?

. twoway rarea orlb orub no2_class, sort || line orhat no2_class,
> yline(1) legend(off) sort

20

Classroom NO2 levels (ug/m3)

Well, it is pretty, in a statistical way. The lowest value of the red line is exactly 1.0. It is the baseline
odds that we assigned to the lowest levels of no2_class. We did that when we subtracted the prediction
for the lowest levels of no2_class from all of our predictions. That made the lowest prediction exactly 0
and its exponential 1.0—meaning no effect. That was done by construction.

Let’s look at the other end of the graph, the rightmost portion where no2_class levels are just above
50. The red line now looks to be between 8 and 9—we will just say 8. The odds of a child missing a
stimuli when nitrogen dioxide levels are above 50 are 8 times higher than the odds when nitrogen dioxide
levels are at the minimum in the dataset. For nitrogen dioxide levels of 30, the red odds-ratio line looks
to be about 4, meaning that children facing levels of 30 have 4 times higher odds of missing a stimuli
than do children facing the lowest levels of nitrogen dioxide. And so on. The line traces out the odds
ratio for each level of nitrogen dioxide against the odds for the lowest level of nitrogen dioxide.

The blue area is the 95% confidence boundary for the odds ratio. The boundary is pretty narrow for
the majority of the curve, but it expands as nitrogen dioxide levels exceed 35 or 40. At the highest levels,
the band ranges from about 4 all the way to about 17.

We drew a black reference line at 1.0 because an odds ratio of 1.0 means no effect. At the lowest levels
of nitrogen dioxide, the lower bound of the CI is below 1.0. So at those levels, we cannot tell whether
nitrogen dioxide has an effect.

The point estimates and their CIs are in the variables orhat, orlb, and orub. You can summarize
them or look at them for specific levels of no2_class.

Making the lowest level of no2_class the reference odds was arbitrary. Rather than subtract the
mean of the linear prediction for that level of no2_class, we could have used the value at the mean of
no2_class, or the median, or any value we choose. We need not have considered no2_class at all in
setting the baseline. Any of these changes would just shift the curves up or down. Their relative positions
do not change. If you have a specific comparison in mind, change the baseline.

Inference examples — Examples and workflow for inference 130

All that said, the CIs are wide and we might be curious whether a straight line fits just as well. As we
mentioned in section 2.9, the standard AIC and BIC methods for choosing among specifications are not
possible after inferential lasso estimation. We are pretty much stuck with eyeing it. If you want to do
that, do not try with this graph. The exponential has put its own curve onto the odds ratios. Look instead
at a graph of the original predictions:

twoway rarea xblb xbub no2_class, sort || line xbhat no2_class, sort

We leave you to draw that yourself.

4 Fitting inferential models to count outcomes. What is different?

Even if your current interest is Poisson models, we suggest you also read 2 Fitting and interpreting
inferential models. That section has many more examples and goes into more detail. If you are starting
here, we also suggest you read 1.4 The primary dataset to become familiar with the dataset and how we
are manipulating it. Section 1.4 is not essential reading, but it does explain more about how we manage
the variable lists in this entry. Here we focus primarily on what is different about Poisson models.

Every command and example from section 2 can be run using a Poisson lasso inference command.
Just change regress to poisson in the estimation commands, and change the dependent variable from
react to omissions.

We will replicate a few of the analyses from section 2 using Poisson models and explain how the
results are interpreted with count outcomes. Feel free to run others. Their results are interpreted in the
same way as those shown here.

Let’s continue with the dataset we have been using to measure the effect of nitrogen dioxide in the
classroom on the reaction time of school children.

. use https://wuw.stata-press.com/data/r19/breathe, clear

(Nitrogen dioxide and attention)

We need to create the global macros that will hold our lists of continuous and factor-variable control
variables:

. do https://www.stata-press.com/data/r19/no2
(output omitted)

To see how these lists were created, see 1.4 The primary dataset.

4.1 Interpreting standard incidence-rate ratios

If you are new to inferential lasso models and have not read 2.2 Fitting via cross-fit partialing out
(xpo) using plugin, do that now. We will only explain how to interpret the incident-rate ratios below.
Section 2.2 explains more.

Our count outcome is omissions, the number of times a student failed to respond to a stimulus while
taking a test to measure reaction times. We are interested in how classroom nitrogen dioxide levels
(no2_class) affect the number of omissions.

Inference examples — Examples and workflow for inference 131

Our continuous controls are in the global macro $cc, and our factor-variable controls are in the global
macro $fc, as they were in our very first example in section 2.2. We use xpopoisson to fit the model,

. xpopoisson omissions no2_class, controls($cc i.($fc)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 32
Number of selected controls = 16

Number of folds in cross-fit = 10

Number of resamples = 1

Wald chi2(1) = 5.42

Prob > chi2 = 0.0199

Robust

omissions IRR std. err. z P>zl [95% conf. intervall
no2_class 1.022025 .0095654 2.33 0.020 1.003448 1.040946

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

We see that xpopoisson reports an IRR (incidence-rate ratio) by default, rather than a coefficient. That
is more useful for interpretation. The term “rate”, however, is less intuitive for the count of omissions.
Often, counts are taken over a time and thus are considered rates. Our count is for a fixed-length test,
so it is better to think of this as a ratio of means. Our point estimate of 1.02 means that we expect the
number of omissions to go up by a factor of 1.02 for every unit increase in the level of nitrogen dioxide
in the classroom. Our 95% confidence interval is 1.003 to 1.041, and the ratio is significantly different
from 1 at the 5% level.

That rate might seem small, but the level of no2_class ranges from 7.8 to 52.6:

. summarize no2_class

Variable ‘ Obs Mean Std. dev. Min Max

no2_class ‘ 1,089 30.16779 9.8956886 7.794096 52.56397

The difference is over 44 micrograms per cubic meter. A reasonable question would be how much a
student is affected in going from a classroom with, say, 8 micrograms to a classroom with 52 micrograms.
lincom can answer that question if we tell it that we want IRRs reported:

. lincom _b[no2_class]*44, irr
(1) 44x%no2_class = 0

omissions IRR Std. err. z P>|z| [95% conf. intervall

(€D 2.608014 1.073998 2.33 0.020 1.163535 5.845752

The ratio is 2.6 and is significant, having exactly the same z-statistic as the original estimate. That
is by construction because for the purpose of the test, we merely multiplied the underlying coefficient
by a constant. A child is expected to make 2.6 times as many errors when exposed to 52 micrograms of
nitrogen dioxide as compared with the number of errors when exposed to only 8 micrograms.

Inference examples — Examples and workflow for inference 132

That result does not rely on the starting number of 8. It depends only on the difference. We could ask
about the effect of adding 10 micrograms of nitrogen dioxide to whatever is the ambient level:

. lincom _b[no2_class]*10, irr
(1) 10*no2_class = 0

omissions IRR Std. err. z P>|z| [95% conf. intervall]

(€D) 1.243414 .1163742 2.33 0.020 1.035023 1.493764

So adding 10 micrograms increases the expected number of omissions by 1.24. If the number of
omissions was 4 before the increase, we expect just under 5 after. If it was 10, we expect 12.4 after.

Be careful if you want to take two steps of the 10-microgram increase. These are ratios, so a 20-
microgram increase leads to a 1.24% = 1.54 ratio.

We cannot estimate counts after any of the Poisson inferential lasso estimators. The theory for these
estimators does not provide for estimating an intercept.

4.2 Interpreting models with factor variables

As we did with logit models for binary outcomes, let’s run through a few of the examples that we first
demonstrated with linear regression. We are going to set the models up quickly. Read sections 2.6 and
2.7 for more about the models. We will use the same tools; we will just ask them to provide IRRs.

Continuing with the same dataset, in 2.6 Fitting models with several variables of interest we added
age to our covariates of interest. That means we must pull age from our list of continuous controls:

. vl create cc4l = cc - (age)

note: $ccé41 initialized with 9 variables.

As we did with logit models, we will use different global macro names throughout this section to
avoid collisions with the original examples. Again, these globals hold the same variable lists—they just
have a different name.

We fit the model.

. xpopoisson omissions no2_class age, controls($cc4l i.($fc)) rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 31
Number of selected controls = 15
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 29.20
Prob > chi2 = 0.0000

Robust
omissions IRR std. err. z P>|z| [95% conf. intervall
no2_class 1.023175 .005028 4.66 0.000 1.013368 1.033078
age .8075872 .0406566 -4.24 0.000 .7317068 .8913366

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Inference examples — Examples and workflow for inference 133

We now have an IRR for age as well as forno2_class. They are both interpreted as we didno2_class
above, which is to say, as you would any IRR.

In 2.7 Fitting models with factor variables of interest, we decided that we were interested in the effect
of the child’s grade in school and were no longer interested in nitrogen dioxide. Really, we just want to
demonstrate a factor-variable covariate of interest.

We will set our controls to reflect this:

. vl create fc32 = fc - (grade)
note: $£¢32 initialized with 7 variables.

. vl create cc32 = cc + (no2_class)
note: $cc32 initialized with 11 variables.

And we fit the xpopoisson model:

. Xpopoisson omissions i.grade, controls($cc32 i.($£c32)) baselevels
> rseed(12345)

(output omitted)

Cross-fit partialing-out Number of obs = 1,036
Poisson model Number of controls = 30
Number of selected controls = 11
Number of folds in cross-fit = 10
Number of resamples = 1
Wald chi2(2) = 4.74
Prob > chi2 = 0.0933
Robust
omissions IRR std. err. z P>|z| [95% conf. intervall]
grade

2nd 1 (base)
3rd .6008938 .1451159 -2.11 0.035 .3743109 .9646349
4th .443883 .1832475 -1.97 0.049 .197637 .9969392

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

The expected number of omissions of third graders is 60% of that of second graders with a 95% CI
0f 0.37 to 0.96. Fourth graders have even fewer omissions. The point estimate is 44% of the number for
second graders.

Inference examples — Examples and workflow for inference 134

contrast works with IRRs just as it did with ORs in section 3.2. Again, we just need to add the option
eform(IRR).

. contrast ar.grade, eform(IRR)
Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2
grade
(3rd vs 2nd) 1 4.45 0.0349
(4th vs 3rd) 1 1.21 0.2708
Joint 2 4.74 0.0933
IRR Std. err. [95% conf. intervall
grade
(3rd vs 2nd) .6008938 .1451159 .3743109 .9646349
(4th vs 3rd) . 7387046 .2031553 .4309005 1.266382

We specified reverse-adjacent (ar) contrasts, so comparisons will now be grade to grade rather than
against a base grade. The first comparison is still between second and third grades and, of course, gives
the same results as xpopoisson itself.

The second comparison is between third and fourth grades. We fail to find a significant difference,
though the point estimate is that fourth graders make only 74% of the omissions made by third graders.

As with the logit models, we will skip section 2.8 Fitting models with interactions of interest because
it does not offer any new tools for analyzing odds ratios. You can run that model as an inferential lasso
probit model on omissions. If you run any contrasts, be sure to add option eform (IRR).

5 Exploring inferential model lassos

Aside from the two commands we have used in the examples in this entry, [LASSO] lassoinfo and
[LASSO] lassocoef, you are unlikely to need many of the postestimation commands commonly used after
lasso. Regardless, most of them are available. You can create knot tables of coefficient selection, plot
cross-validation functions, plot coefficient paths, display lasso coefficients, and even change the penalty
parameter A that is used to select controls.

See [LASSO] lasso inference postestimation for an overview and a list of postestimation commands
that are available after the inferential lasso estimators. The entries for each command have examples that
demonstrate their use after inferential lasso estimators.

6 Fitting an inferential model with endogenous covariates

We will replicate a well-known model that was used to illustrate a two-stage least squares estimator
for handling an endogenous covariate; see Wooldridge (2010, ex. 5.3). Because the inferential lasso
estimators provide variable selection that is robust to selection mistakes, we will introduce a flexible
series expansion of the variables.

Wooldridge models the log of married women’s wages (lwage) as a function of their experience
(exper), the square of their experience, and their years of education (educ). Collectively, these are
called exogenous covariates.

Inference examples — Examples and workflow for inference 135

As is customary, education is treated as an endogenous variable. The reasoning is that we cannot
measure innate ability, and ability is likely to influence both education level and income. Some disci-
plines refer to this as unobserved confounding rather than endogeneity. Either way, you cannot just run
a regression of wages on education and experience and learn anything about the true effect of education
on wages.

You need more information from variables that you presume are not affected by the woman’s un-
measured ability—Ilet’s call them instruments. And, they also cannot belong in the model for wages.
Wooldridge used their mothers’ education (motheduc), their fathers’ education (fatheduc), and their
husbands’ education (huseduc) as instruments for the woman’s education. The instruments are also
required to be exogenous, but we will just call them instruments.

The data are from Mroz (1987).

xpoivregress and poivregress use lassos to select the exogenous covariates from a list of potential
exogenous covariates. They use lassos to select the instruments from a set of potential instruments.
This means we do not have to worry about introducing noise or weak instruments by possibly including
irrelevant exogenous covariates or instruments. Lasso will ensure that sufficient amounts of irrelevant
covariates are ignored. We are free to include the kitchen sink.

Let’s add some variables that Wooldridge kept out. He was required to be thoughtful of introducing
irrelevant covariates. We are not. To the list of potential exogenous covariates, we add the number of
children younger than 6 (kids1t6), the number of children aged 6 or older (kidsge6), the women’s
ages (age), their husbands’ ages (husage), and an indicator for living in an urban area (citt). We have
nothing to add to the instruments. Good instruments are hard to find.

To make sure the sink is full, let’s take all the exogenous variables and, instead of entering them only
linearly, enter them as linear terms, as quadratic terms, and as all possible interactions. Let’s do the same
for our list of three instruments. This is often called a series expansion, or a Taylor-series expansion.
It allows for nonlinearity in the way our exogenous covariates affect the outcome and in the way our
instruments control endogeneity. We just did second-order expansion; you can go further.

We will continue using the variable-management tool v1 to manage our lists of variables. First, we
use the Mroz dataset and then create our base list of exogenous covariates and our base list of instruments.
. use https://www.stata-press.com/data/r19/mroz, clear

. vl create exogbase = (exper age husage kidslt6 kidsge6 city)
note: $exogbase initialized with 6 variables.

. vl create instbase = (motheduc fatheduc huseduc)
note: $instbase initialized with 3 variables.

The list of exogenous covariates is now in the global macro $exogbase, and the list of instruments is
now in $instbase.

Inference examples — Examples and workflow for inference 136

With these base lists in hand, we can perform our expansions to create flexible nonlinear forms:

. vl substitute exog = c.exogbase c.exogbase#c.exogbase

. vl substitute inst = c.instbase c.instbase#c.instbase

The # is the factor-variable operator for interaction. It can interact categorical variables, continuous
variables, or both. We could have used it directly on our estimation command line, but those lines are
already long enough. We also would have to handle macro expansion by typing $exogbase and such.
v1 already knows about exogbase and instbase and knows to handle them as lists. The c. prefix
tells the # operator to treat the lists as continuous variables. # assumes categorical variables unless told
otherwise.

Putting it all together, c . exogbase means to enter all the potential exogenous covariates as themselves
(linearly). c.exogbaset#c.exogbase means to enter all possible interactions of the variables. Because
an interaction of a variable with itself is a quadratic, the quadratic (squared) terms get created as part of
the expansion.

Let’s look at the smaller of these two lists so that we can see what we have created:

. macro list inst

inst: motheduc fatheduc huseduc c.motheduc#c.motheduc
c.motheduc#c.fatheduc c.motheduc#c.huseduc
c.fatheduc#c.fatheduc c.fatheduc#c.huseduc c.huseduc#c.huseduc

That is not too bad. We count nine terms—three linear terms and six interactions (including quadratic
terms).

Macro exog has 27 terms.

Imagine what a third-order expansion would look like. You can run into the thousands of terms
quickly.

Inference examples — Examples and workflow for inference 137

Now we can use xpoivregress to estimate the coefficient on the endogenous variable educ. We
start with the plugin method to select the covariates. We do not have to specify plugin because it is the
default. Specifying the rest of the model is easy because of the macro we created:

. xpoivregress lwage (educ = $inst), controls($exog) rseed(12345)

Cross-fit fold 1 of 10 ...
Estimating lasso for lwage using plugin
Estimating lasso for educ using plugin

Cross-fit fold 2 of 10 ...
Estimating lasso for lwage using plugin
Estimating lasso for educ using plugin

(output omitted)

Cross-fit partialing-out Number of obs = 428
IV linear model Number of controls = 27
Number of instruments = 9

Number of selected controls = 4

Number of selected instruments = 3

Number of folds in cross-fit = 10

Number of resamples = 1

Wald chi2(1) = 10.84

Prob > chi2 = 0.0010

Robust
lwage | Coefficient std. err. z P>|z| [95% conf. intervall
educ .0727853 .0221045 3.29 0.001 .0294612 .1161094

Endogenous: educ

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

In the header, we see that 4 of 27 controls were selected, and 3 of 9 possible instruments were selected.
This is a sparse representation of the model.

We estimate that every year of education increases the log of wages by 0.073. Because wages are
logged, we interpret that as a rate of change, so each year of education increases wages by 7.3%. That is
close to Wooldridge’s estimate of 8%, and his estimate is well within our 95% CI of 2.8% to 11.6%.

Inference examples — Examples and workflow for inference 138

Let’s see how the results compare if we select using cross-validation:

. xpoivregress lwage (educ = $inst), controls($exog) selection(cv) rseed(12345)

Cross-fit fold 1 of 10 ...
Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Cross-fit fold 2 of 10 ...
Estimating lasso for lwage using cv

(output omitted)

Cross-fit partialing-out Number of obs = 428
IV linear model Number of controls = 27
Number of instruments = 9

Number of selected controls = 20

Number of selected instruments = 7

Number of folds in cross-fit = 10

Number of resamples = 1

Wald chi2(1) = 7.68

Prob > chi2 = 0.0056

Robust
lwage | Coefficient std. err. z P>|z]| [95% conf. intervall
educ .0645424 .0232832 2.77 0.006 .0189082 .1101765

Endogenous: educ

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Cross-validation selected 20 controls compared with the 4 selected by plugin. It selected 7 instruments
compared with the 3 selected by plugin. Our point estimate of the change in wages for each additional
year of education is 6.5% with a CI of 1.9% to 11.0%. The coefficient estimate from both cross-validation
and plugin are significant at the 5% level. Despite having slightly different coefficient estimates, plugin
and cross-validation lead to the same inferences.

References

Mroz, T. A. 1987. The sensitivity of an empirical model of married women’s hours of work to economic and statistical
assumptions. Econometrica 55: 765-799. https://doi.org/10.2307/1911029.

Sunyer, J., E. Suades-Gonzalez, R. Garcia-Esteban, 1. Rivas, J. Pujol, M. Alvarez-Pedrerol, J. Forns, X. Querol, and
X. Basagana. 2017. Traffic-related air pollution and attention in primary school children: Short-term association.
Epidemiology 28: 181-189. https://doi.org/10.1097/EDE.0000000000000603.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see

[LASSO] Lasso intro — Introduction to lasso

[LASSO] Lasso inference intro — Introduction to inferential lasso models

https://doi.org/10.2307/1911029
https://doi.org/10.1097/EDE.0000000000000603
https://www.stata.com/bookstore/cspd.html

Inference requirements — Requirements for inference

Description

The ds, po, and xpo commands, like other estimation procedures, require certain conditions be met
so that their inferential results are valid. In addition, the plugin and CV selection methods have distinct
properties and may perform differently under some conditions.

Remarks and examples

We assume you have read [LASSO] Lasso inference intro.

We fit a model with, for example, dsregress with the default plugin selection method, and then we
refit the model using Cv. We get slightly different results. Which is correct?

Plugin and CV are more than just different numerical techniques for model estimation. They make
different assumptions, have different requirements, and have different properties. Asking which is correct
has only one answer. Each is correct when their assumptions and requirements are met.

In terms of practical advice, we have two alternative recommendations.
The first one involves lots of computer time.

1. Fit the model with xpo and the default plugin.

2. Fit the model with xpo and CV.

3. Compare results. If they are similar, use the results from step 1.
This alternative will save computer time.

1. Fit the model with ds with the default plugin.
Fit it again with ds but with CV.
Fit it again with po with the default plugin.
Fit it again with po but with CV.

A I

Compare results. If they are similar, you are likely on solid ground. If so, perform step 6.
6. Fit the model again with xpo with the default plugin and use those results.

You can combine these two recommendations. Start with the alternative, and if it fails at step 5, follow
the first set of recommendations.

Also see

[LASSO] Lasso inference intro — Introduction to inferential lasso models

[LASSO] lasso — Lasso for prediction and model selection

139

lasso — Lasso for prediction and model selection

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see
Description

lasso selects covariates and fits linear, logistic, probit, Poisson, and Cox proportional hazards mod-
els. Results from lasso can be used for prediction and model selection.

lasso saves but does not display estimated coefficients. The postestimation commands listed in
[LASSO] lasso postestimation can be used to generate predictions, report coefficients, and display mea-
sures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

For a description of the lasso-fitting procedure, see [LASSO] lasso fitting.

Quick start

Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)
lasso linear y1 x1-x100

Same as above, but force x1 and x2 to be in the model while 1asso selects from x3 to x100
lasso linear y1 (x1 x2) x3-x100

Same as above, but fit an adaptive lasso with three steps
lasso linear y1 (x1 x2) x3-x100, selection(adaptive, steps(3))

Fit a logistic model for binary outcome y2, and set a random-number seed for reproducibility
lasso logit y2 x1-x100, rseed(1234)

Fit a Poisson model for count outcome y3 with exposure time
lasso poisson y3 x1-x100, exposure(time) rseed(1234)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.
lasso linear y2 x1-x100, selection(cv, alllambdas)

Turn off the early stopping rule, and iterate over A’s until a minimum is found or until the end of the A
grid is reached

lasso linear y1 x1-x100, stop(0)

Same as above, but extend the A grid to smaller values
lasso linear y1 x1-x100, stop(0) grid(100, ratio(le-5))

Fit a Cox proportional hazards model for t with failure indicator fail, and select covariates from x1 to
x100 using CV

stset t, failure(fail)
lasso cox x1-x100

Same as above, but select covariates by minimizing the Bayesian information criterion (BIC) function
lasso cox x1-x100, selection(bic)

140

lasso — Lasso for prediction and model selection 141

Menu

Statistics > Lasso > Lasso

Syntax

For linear, logit, probit, and Poisson models

lasso model depvar | (alwaysvars) | othervars [if] [in] [weight] [, options]

For Cox models

lasso cox [(alwaysvars) | othervars [if | [in] [, options |

model is one of 1linear, logit, probit, or poisson.

alwaysvars are variables that are always included in the model.

othervars are variables that 1asso will choose to include in or exclude from the model.

options

Description

Model
*noconstant
selection (sel_method)

offset (varname,)
exposure (varname,)

* cluster (clustvar)

Optimization
[no]log
rseed (#)
grid(#, [, ratio(#) min(#) |)

stop(#)
cvtolerance (#)
bictolerance (#)
tolerance (#)
dtolerance (#)

penaltywt (matname)

suppress constant term

selection method to select a value of the lasso
penalty parameter * from the set of possible \’s

include varname, in model with coefficient constrained to 1

include In(varname,) in model with coefficient constrained
to 1 (poisson model only)

specify cluster variable clustvar

display or suppress an iteration log

set random-number seed

specify the set of possible A’s using a logarithmic grid with
#, grid points

tolerance for stopping the iteration over the A grid early

tolerance for identification of the CV function minimum

tolerance for identification of the BIC function minimum

convergence tolerance for coefficients based on their values

convergence tolerance for coefficients based on deviance

programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

lasso — Lasso for prediction and model selection 142

sel_method

Description

cv [s cv_()pts]

adaptive [, adapt_opts cv_()pls]

*plugin [R plugin_()pts]

bic [, bz'c_()pls]

select A* using CV; the default
select * using an adaptive lasso
select * using a plugin iterative formula

select A* using BIC function

none do not select *

cv_opts Description

folds(#) use # folds for Cv

alllambdas fit models for all \’s in the grid or until the stop (#) tolerance is reached;
by default, the CV function is calculated sequentially by A, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select *

stopok when the CV function does not have an identified minimum and the stop (#)
stopping criterion for A was reached at)y, set the selected A" to be
Astops the default

strict do not select A* when the CV function does not have an identified minimum,;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop (#)
stopping criterion for A was not reached, set the selected * to be the
minimum of the A grid, \,;,; this is a looser alternative to the default
stopok and is rarely use

adapt_opts Description

steps (#) use # adaptive steps (counting the initial lasso as step 1)

unpenalized use the unpenalized estimator to construct initial weights

ridge use the ridge estimator to construct initial weights

power (#) raise weights to the #th power

plugin_opts

Description

heteroskedastic
homoskedastic

assume model errors are heteroskedastic; the default
assume model errors are homoskedastic

lasso — Lasso for prediction and model selection 143

bic_opts Description

alllambdas fit models for all A’s in the grid or until the stop (#) tolerance is reached;
by default, the BIC function is calculated sequentially by A, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop (#)
stopping criterion for A was reached at A\, set the selected * to be
Agiops the default

stop?
strict do not select A* when the BIC function does not have an identified minimum;

this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop (#)
stopping criterion for A was not reached, set the selected * to be the
minimum of the A grid, \,;,; this is a looser alternative to the default

stopok and is rarely use
postselection use postselection coefficients to compute BIC

stop?

*noconstant, cluster(), and selection(plugin) are not allowed with lasso cox.
You must stset your data before using lasso cox; see [ST] stset.

alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed with all se/_method options. fweights are allowed when
selection(plugin), selection(bic), or selection(none) is specified. See [U] 11.1.6 weight. For lasso cox,
weights must be specified when you stset your data.

penaltywt (matname) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Lasso estimation consists of three steps that the software performs automatically. Understanding the
steps is important for understanding how to specify options. A grid for A is used for selection methods
cv, adaptive, bic, and none. selection(adaptive) resets the grid in the second and subsequent
lassos. selection(plugin) bypasses steps 1 and 2. It does not require a A grid.

Step 1: Set \ grid

A grid for) is set. Either the default grid can be used or grid options can be specified to modify the
default. The maximum A in the grid is Ay, It is automatically set to the smallest A yielding a model
with all coefficients zero. The minimum A in the grid is Ay, Typically, estimation ends before A
is reached when a minimum of the CV or BIC function is found. If A
minimum, you may want to make \
setting the ratio Agy;, /A

gmin
emin 18 reached without finding a
emin SMaller. You can do this by setting Ay, or, alternatively, by

gmax t0 @ smaller value. See the grid () option below.

Step 2: Fit the model for next A in grid

For each A in the grid, the set of nonzero coefficients is estimated. Estimation starts with Ay, and
iterates toward A,,;,. The iteration stops when a minimum of the CV or BIC function is found, the
stop(#) stopping tolerance is met, or A, is reached. When the deviance changes by less than
a relative difference of stop(#), the iteration over A ends. To turn off this stopping rule, specify

stop(0). See the optimization options below.
Step 3: Select *

A X denoted by * is selected. selection(sel_method) specifies the method used to select A*. The
allowed sel_methods are cv (the default), adaptive, plugin, bic, and none:

lasso — Lasso for prediction and model selection 144

cv, the default, uses CV to select A*. After a model is fit for each A, the CV function is computed.
If a minimum of the CV function is identified, iteration over the A grid ends. To compute the CV
function for additional A’s past the minimum, specify the suboption alllambdas. When you specify
this option, step 2 is first done for all A’s until the stopping tolerance is met or the end of the grid
is reached. Then, the CV function is computed for all \’s and searched for a minimum. See the
suboptions for selection(cv) below.

adaptive also uses CV to select *, but multiple lassos are performed. In the first lasso, a * is
selected, and penalty weights are constructed from the coefficient estimates. Then, these weights are
used in a second lasso where another * is selected. By default, two lassos are performed, but more
can be specified. See the suboptions for selection(adaptive) below.

plugin computes A* based on an iterative formula. Coefficient estimates are obtained only for this
single value of \.

bic selects A* by using the BIC function. It selects A* with the minimum BIC function value.

none does not select a A*. Neither the CV function nor the BIC function is computed. Models are fit
for all A’s until the stopping tolerance is met or the end of the grid is reached. lasso postestimation
commands can be used to assess different A\’s and select *.

A longer description of the lasso-fitting procedure is given in [LASSO] lasso fitting.

Model

noconstant omits the constant term. Note, however, when there are factor variables among the oth-
ervars, lasso can potentially create the equivalent of the constant term by including all levels of a
factor variable. This option is likely best used only when all the othervars are continuous variables
and there is a conceptual reason why there should be no constant term. This option is not allowed
with lasso cox.

selection(cv), selection(adaptive), selection(plugin), selection(bic), and
selection(none) specify the selection method used to select *. These options also allow
suboptions for controlling the specified selection method. selection(plugin) is not allowed with
lasso cox.

selection(cv [, cv_opts]) is the default. It selects * to be the A that gives the minimum of the
cvV function. It is widely used when the goal is prediction. lasso postestimation commands can
be used after selection(cv) to assess alternative * values.

cv_opts are folds (#), alllambdas, serule, stopok, strict, and gridminok.
folds (#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that models be fit for all A’s in the grid or until the stop (#) tolerance is
reached. By default, models are calculated sequentially from largest to smallest A, and the CV
function is calculated after each model is fit. If a minimum of the CV function is found, the
computation ends at that point without evaluating additional smaller A’s.

alllambdas computes models for these additional smaller A’s. Because computation time
is greater for smaller A, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the CV function is wanted for
assurance that a true minimum has been found. Regardless of whether al1lambdas is specified,
the selected A* will be the same.

lasso — Lasso for prediction and model selection 145

serule selects A* based on the “one-standard-error rule” recommended by Hastie, Tibshirani,
and Wainwright (2015, 13—14) instead of the A that minimizes the CV function. The one-
standard-error rule selects the largest A for which the CV function is within a standard error
of the minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have an
identified minimum. A minimum is identified at * when the CV function at both larger and
smaller adjacent \’s is greater than it is at A*. When the CV function has an identified minimum,
these options all do the same thing: the selected * is the A that gives the minimum. In some
cases, however, the CV function declines monotonically as A gets smaller and never rises to
identify a minimum. When the CV function does not have an identified minimum, stopok
and gridminok make alternative selections for *, and strict makes no selection. You may
specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative *
can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the
stop (#) stopping tolerance for A was reached, the selected A" is Ay, the A that met the
stopping criterion. Ay, is the smallest A for which coefficients are estimated, and it is as-
sumed that A\, has a CV function value close to the true minimum. When no minimum is
identified and the stop (#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the CV function has no identified
minimum and the stop(#) stopping criterion was not met, A the minimum of the A
grid, is the selected *.

gmin>

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or Ay, is selected. With gridminok, either the identified minimum or A, or

Agmin 18 selected, in this order.

selection(adaptive |, adapt_opts cv_opts|) selects * using the adaptive lasso selection
method. It consists of multiple lassos with each lasso step using CV. Variables with zero coeffi-
cients are discarded after each successive lasso, and variables with nonzero coefficients are given
penalty weights designed to drive small coefficient estimates to zero in the next step. Hence, the
final model typically has fewer nonzero coefficients than a single lasso. The adaptive method has
historically been used when the goal of lasso is model selection. As with selection(cv), lasso
postestimation commands can be used after selection(adaptive) to assess alternative *.

adapt_opts are steps (#), unpenalized, ridge, and power (#).

steps (#) specifies that adaptive lasso with # lassos be done. By default, # = 2. That is, two
lassos are run. After the first lasso estimation, terms with nonzero coefficients j3; are given
penalty weights equal to 1/|3;|, terms with zero coefficients are omitted, and a second lasso
is estimated. Terms with small coefficients are given large weights, making it more likely
that small coefficients become zero in the second lasso. Setting # > 2 can produce more
parsimonious models. See Methods and formulas.

unpenalized specifies that the adaptive lasso use the unpenalized estimator to construct the initial
weights in the first lasso. This option is useful when CV cannot find a minimum. unpenalized
cannot be specified with ridge.

lasso — Lasso for prediction and model selection 146

ridge specifies that the adaptive lasso use the ridge estimator to construct the initial weights in
the first lasso. ridge cannot be specified with unpenalized.

power (#) specifies that the adaptive lasso raise the weights to the #th power. The default is
power (1). The specified power must be in the interval [0.25, 2].

cv_options are all the suboptions that can be specified for selection(cv), namely, folds(#),
alllambdas, serule, stopok, strict, and gridminok. The options alllambdas, strict, and
gridminok apply only to the first lasso estimated. For second and subsequent lassos, gridminok
is the default. When ridge is specified, gridminok is automatically used for the first lasso.

selection(plugin [, plugin_opts]) selects A* based on a “plugin” iterative formula dependent
on the data. The plugin method was designed for lasso inference methods and is useful when
using lasso to manually implement inference methods, such as double-selection lasso. The plugin
estimator calculates a value for A* that dominates the noise in the estimating equations, which
makes it less likely to include variables that are not in the true model. See Methods and formulas.
This option is not allowed with lasso cox.

selection(plugin) does not estimate coefficients for any other values of A, so it does not require
a A grid, and none of the grid options apply. It is much faster than the other selection methods
because estimation is done only for a single value of A. It is an iterative procedure, however, and
if the plugin is computing estimates for a small A (which means many nonzero coefficients), the
estimation can still be time consuming. Because estimation is done only for one A, you cannot
assess alternative * as the other selection methods allow.

plugin_opts are heteroskedastic and homoskedastic.

heteroskedastic (1inear models only) assumes model errors are heteroskedastic. It is the
default. Specifying selection(plugin) for linear models is equivalent to specifying
selection(plugin, heteroskedastic).

homoskedastic (1inear models only) assumes model errors are homoskedastic. See Methods
and formulas.

selection(bic [, bic_opts|) selects * by using the BIC function. It selects the * with the mini-
mum BIC function value.

bic_opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all A’s in the grid or until the stop (#) tolerance is
reached. By default, models are calculated sequentially from largest to smallest A, and the BIC
function is calculated after each model is fit. If a minimum of the BIC function is found, the
computation ends at that point without evaluating additional smaller A’s.

alllambdas computes models for these additional smaller A’s. Because computation time
is greater for smaller A, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected A* will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have an
identified minimum. A minimum is identified at A* when the BIC function at both larger and
smaller adjacent \’s is greater than it is at A*. When the BIC function has an identified minimum,
these options all do the same thing: the selected A* is the A that gives the minimum. In some
cases, however, the BIC function declines monotonically as A gets smaller and never rises to
identify a minimum. When the BIC function does not have an identified minimum, stopok

lasso — Lasso for prediction and model selection 147

and gridminok make alternative selections for *, and strict makes no selection. You may
specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative *
can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the
stop (#) stopping tolerance for A was reached, the selected A" is Ay, the A that met the
stopping criterion. A, is the smallest A for which coefficients are estimated, and it is
assumed that A has a BIC function value close to the true minimum. When no minimum
is identified and the stop (#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified
minimum and the stop (#) stopping criterion was not met, then A the minimum of the
A grid, is the selected A*.

gmin>

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or Ay, is selected. With gridminok, either the identified minimum or Ay, or
A is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function. By
default, the penalized coefficients are used.

gmin

selection(none) does notselecta *. Lasso is estimated for the grid of values for A, but no attempt
is made to determine which A should be selected. The postestimation command lassoknots can
be run to view a table of A’s that define the knots (the sequential sets of nonzero coefficients) for
the estimation. The lassoselect command can be used to select a value for A*, and lassogof
can be run to evaluate the prediction performance of *.

When selection(none) is specified, neither the CV function nor the BIC function is computed. If
you want to view the knot table with values of the CV function shown and then select A*, you must
specify selection(cv). Similarly, if you want to view the knot table with values of the BIC func-
tion shown, you must specify selection(bic). There are no suboptions for selection(none).

offset (varname,) specifies that varname, be included in the model with its coefficient constrained to
be 1.

exposure (varname,) can be specified only for the poisson model. It specifies that In(varname,) be
included in the model with its coefficient constrained to be 1.

cluster (clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how
the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood
function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the sub-
sample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are kept
together in the same subsample. This option is not allowed with lasso cox.

[no]1log displays or suppresses a log showing the progress of the estimation.

lasso — Lasso for prediction and model selection 148

rseed(#) sets the random-number seed. This option can be used to reproduce results for
selection(cv) and selection(adaptive). The other selection methods, selection(plugin),
selection(bic), and selection(none), do not use random numbers. rseed (#) is equivalent to
typing set seed # prior to running lasso. See [R] set seed.

gridg#g [, ratio(#) min(#)]) specifies the set of possible \’s using a logarithmic grid with #, grid
points.

#, is the number of grid points for A. The default is #, = 100. The grid is logarithmic with the ith grid
point (i = 1,...,n = #) givenby In\; = [(i — 1)/(n —)] In7 + In Ay, Where Ao = Ag
is the maximum, Ay, = A, = min(#) is the minimum, and 7 = Ay /Agmax = ratio(#) is the

ratio of the minimum to the maximum.

ratio(#) specifies Aypin/Agmax- The maximum of the grid, Ay, is set to the smallest A for which
all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).
Agmin 18 then set based on ratio(#). When p < N, where p is the total number of othervars
and alwaysvars (not including the constant term) and NV is the number of observations, the default
value of ratio (#) is le—4. When p > N, the default is 1e—2.

min(#) sets A By default, A
data.

is based on ratio(#) and A which is computed from the

gmin*® gmin gmax >
stop (#) specifies a tolerance that is the stopping criterion for the A iterations. The default is 1e—5. This
suboption does not apply when the selection method is selection(plugin). Estimation starts with
the maximum grid value, A, and iterates toward the minimum grid value, A,;,. When the relative
difference in the deviance produced by two adjacent A grid values is less than stop (#), the iteration
stops and no smaller \’s are evaluated. The value of A that meets this tolerance is denoted by A

Typically, this stopping criterion is met before the iteration reaches A

stop*
gmin®

Setting stop (#) to a larger value means that iterations are stopped earlier at a larger A,,. To pro-
duce coefficient estimates for all values of the A grid, stop(0) can be specified. Note, however,
that computations for small \’s can be extremely time consuming. In terms of time, when using
selection(cv), selection(adaptive), or selection(bic), the optimal value of stop(#) is
the largest value that allows estimates for just enough \’s to be computed to identify the minimum of
the CV or BIC function. When setting stop (#) to larger values, be aware of the consequences of the
default * selection procedure given by the default stopok. You may want to override the stopok
behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum Cv
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller \’s with a relative difference in the CV function greater than #. For
nonlinear models, at least five smaller \’s are required. The default is le—3. Setting # to a bigger
value makes a stricter criterion for identifying a minimum and brings more assurance that a declared
minimum is a true minimum, but it also means that models may need to be fit for additional smaller
A, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information
about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum BIC
function. A minimum is identified when the BIC function rises above a nominal minimum for at least
two smaller A\’s with a relative difference in the BIC function greater than #. The default is le—2.
Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more

lasso — Lasso for prediction and model selection 149

assurance that a declared minimum is a true minimum, but it also means that models may need to be
fit for additional smaller A, which can be time consuming. See Methods and formulas in [LASSO] lasso
for more information about this tolerance and the other tolerances.

tolerance (#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-
vergence is achieved when the relative change in each coefficient is less than this tolerance. The
default is tolerance(le-7).

dtolerance (#) is ararely used option that changes the convergence criterion for the coefficients. When
dtolerance (#) is specified, the convergence criterion is based on the change in deviance instead of
the change in the values of coefficient estimates. Convergence is declared when the relative change
in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-
ifying this option and instead using the default tolerance(le-7) criterion or specifying a smaller
value for tolerance (#).

The following option is available with 1asso but is not shown in the dialog box:

penaltywt (matname) is a programmer’s option for specifying a vector of weights for the coefficients
in the penalty term. The contribution of each coefficient to the lasso penalty term is multiplied by its
corresponding weight. Weights must be nonnegative. By default, each coefficient’s penalty weight
is 1.

Remarks and examples

We assume you have read the lasso introduction [LASSO] Lasso intro.

Remarks are presented under the following headings:

Lasso fitting and selection methods
selection(cv): Cross-validation

The CV function

Penalized and postselection coefficients
predict

Selecting lambda by hand using lassoselect
More lasso examples

Lasso fitting and selection methods
Lasso finds a vector of coefficient estimates, (3, such that

1 YAVYA / b
S (¥ = X8 (y—Xg) +A;\/ﬁjl
is minimized for a given value of A. The first thing to note is that for every A there is a 3. The second
thing is that some of the coefficients, 3, will be zero. The third thing is that the larger the value of A,
the fewer number of nonzero coefficients there will be.

The goal is to select a A such that the set of variables corresponding to the nonzero coefficients for
that A\ has some sort of desirable property. We term the selected A*. But remember whenever we talk
about the selected *, we are really thinking about the properties of the corresponding set of variables
with nonzero coefficients.

Different criteria can be used to select *. The lasso command has options for four different se-
lection methods: selection(cv), selection(adaptive), selection(plugin), selection(bic),
and selection(none).

lasso — Lasso for prediction and model selection 150

selection(cv) comes in two variants: the default, which selects A* as the value of A that minimizes
the CV function; and selection(cv, serule), which selects a A* that is one standard error from the
minimum in the direction of larger \’s (so fewer selected variables than using the minimum in most
cases).

selection(adaptive) fits multiple lassos, typically just two, with each lasso using CV. The selected
A* is the X selected by the last lasso. See Adaptive lasso in [LASSO] lasso examples.

selection(plugin) selects A* based on an iterative formula. It comes in two variants, the default
selection(plugin, heteroskedastic) and selection(plugin, homoskedastic). Itis intended
to be used as a tool for implementing inferential models. It is not intended to be used for prediction. See
[LASSO] Lasso inference intro.

selection(bic) selects the A* that minimizes the BIC function. Zhang, Li, and Tsai (2010) show
that the A selected by minimizing the BIC will select a set of covariates close to the true set under the
conditions described in their article. See BIC in [LASSO] lasso examples.

selection(none) doesnotselect A*. Afterward, you can select A using the command lassoselect.
See Selecting lambda by hand using lassoselect below.

We will first explain CV.

selection(cv): Cross-validation

We will illustrate CV using Stata’s auto dataset. This is an unrealistic dataset to use with lasso because
the number of variables and the number of observations are small. Lasso was invented with the idea of
using hundreds or thousands of variables. See [LASSO] lasso examples for examples with a large dataset.
The small size of the auto dataset, however, is convenient because it does not produce lots of output, and
it illustrates some important concepts perfectly.

We load the data.

. sysuse auto
(1978 automobile data)

We want to model the variable mpg, which is a car’s miles per gallon. Choices for type of lasso
model are linear, logit, probit, poisson, and cox. Obviously, 1inear is the only appropriate type
of model for mpg. We follow mpg in the command specification with all the other numeric variables
in the dataset. foreign and rep78 are categorical variables, so we specify them using factor-variable
operator i. to create indicators for their categories. We do not specify the selection() option because
selection(cv) is the default.

lasso — Lasso for prediction and model selection 151

Before we run lasso, we set the random-number seed. CV uses random numbers, so if we want to be
able to reproduce our results, we must first set the seed.

. set seed 1234

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement

10-fold cross-validation with 100 lambdas ...

Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 33.97832
Grid value 2: lambda = 4.274392 no. of nonzero coef. = 2
Folds: 1...5....10 CVF = 31.62288
(output omitted)
Grid value 44: lambda = .0858825 no. of nonzero coef. = 10
Folds: 1...5....10 CVF = 13.39785
Grid value 45: lambda = .0782529 no. of nonzero coef. = 11
Folds: 1...5....10 CVF = 13.45168
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 69
No. of covariates = 15
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda 4.69114 0 -0.0018 33.97832
41 lambda before .1135316 8 0.6062 13.3577
* 42 selected lambda .1034458 8 0.6066 13.3422
43 lambda after .0942559 9 0.6060 13.36279
45 last lambda .0782529 11 0.6034 13.45168

* lambda selected by cross-validation.

. estimates store autolasso

After 1lasso finished, we typed estimates store autolasso to keep the results in memory. This
lasso was quick to compute, but lassos with lots of observations and lots of variables can take some time
to compute, so it is a good idea to store them.

lasso almost always produces a long iteration log. In this example, it iterated from grid value 1 with
A = 4.691140 to grid value 45 with A = 0.078253. By default, selection(cv) sets up a grid of 100
A’s, which are spaced uniformly on a logarithmic scale. It ended at grid value 45 and did not do any
calculations for the 55 smallest A\ gird points.

If we look at the output table, we see that the A at grid value 1 has 0 nonzero coefficients corresponding
to it. This is how the first A is calculated. It is the smallest A that gives 0 nonzero coefficients. The A at
grid value 100 is set by the grid () suboption ratio (#), which specifies the ratio of the last (minimum)
A to the first (maximum) A. The default for ratio (#) in this case is 1le—4.

lasso — Lasso for prediction and model selection 152

For each value of A, coefficients are estimated. The entire list of \’s can be viewed at any time using
the postestimation command lassoknots with the option alllambdas. It shows what happened at

every iteration.

. lassoknots, alllambdas

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,
ID lambda coef. error or left (U)nchanged
1 4.69114 0 33.97832 U
2 4.274392 2 31.62288 A weight length
3 3.894667 2 28.65489 U
4 3.548676 2 26.0545 U
5 3.233421 2 23.8774 U
6 2.946173 2 22.07264 U
7 2.684443 2 20.57514 U
8 2.445964 2 19.30795 U
9 2.228672 2 18.23521 U
10 2.030683 2 17.43067 U
11 1.850282 2 16.78884 i)
12 1.685908 2 16.32339 U
13 1.536137 2 15.97483 U
14 1.399671 2 15.70143 U
15 1.275328 3 15.48129 A 5.rep78
16 1.162031 3 15.34837 U
17 1.0588 3 15.30879 U
18 .9647388 3 15.30897 U
19 .8790341 4 15.3171 A turn
20 .8009431 5 15.32254 A gear_ratio
21 . 7297895 6 15.31234 A price
22 .664957 6 15.28881 U
23 .6058841 6 15.26272 U
24 .552059 6 15.20981 U
25 .5030156 6 15.1442 U
26 .4583291 6 15.04271 U
27 .4176124 6 14.92838 U
28 .3805129 6 14.877 U
29 .3467091 6 14.83908 i)
30 .3159085 7 14.77343 A O0.foreign
31 .287844 8 14.67034 A 3.rep78
32 .2622728 8 14.53728 i)
33 .2389732 8 14.35716 U
34 .2177434 8 14.15635 U
35 .1983997 8 13.95308 U
36 .1807744 8 13.77844 U
37 .1647149 8 13.62955 i)
38 .1500821 8 13.519 U
39 .1367492 8 13.43867 U
40 .1246008 8 13.39141 U
41 .1135316 8 13.3577 U
* 42 .1034458 8 13.3422 U
43 .0942559 9 13.36279 A 1.rep78
44 .0858825 10 13.39785 A headroom
45 .0782529 11 13.45168 A displacement

* lambda selected by cross-validation.

lasso — Lasso for prediction and model selection 153

As)\ gets smaller, there are more nonzero coefficients. As the nonzero coefficients change, variables
are added to the model. Sometimes, variables are removed from the model. That is, a coefficient once
nonzero becomes zero at a smaller \. In this example, once added to the model, no variable was ever
removed. When there are more potential variables, you will typically see some variables removed as
other variables are added.

Usually, the number of nonzero coefficients increases monotonically as A gets smaller, but not always.
Occasionally, the net number of variables in the model goes down, rather than up, in an iteration to a
smaller \.

The A’s at which variables are added or removed are called knots. By default, lassoknots shows
only the knots—and the A that minimizes the CV function if it is not a knot. This A is denoted by A* and
is indicated in the table with an *.

. lassoknots
No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,
D lambda coef. error or left (U)nchanged
2 | 4.274392 2 31.62288 | A weight length
15 1.275328 3 15.48129 | A 5.rep78
19 .8790341 4 15.3171 A turn
20 .8009431 5 15.32254 | A gear_ratio
21 . 7297895 6 15.31234 | A price
30 .3159085 7 14.77343 | A O.foreign
31 .287844 8 14.67034 | A 3.rep78
* 42 .1034458 8 13.3422 U
43 .0942559 9 13.36279 | A 1.rep78
44 .0858825 10 13.39785 | A headroom
45 .0782529 11 13.45168 A displacement

* lambda selected by cross-validation.

The CV function

After coefficients are estimated for each), the value of the CV function is calculated. CV is done by
dividing the data randomly into folds, by default, 10 of them. (This is the step where random numbers
are used.)

One fold is chosen, and then a linear regression is fit on the other nine folds using the variables in the
model for that A\. Then, with these new coefficient estimates, a prediction is computed for the data of the
chosen fold. The mean squared error (MSE) of the prediction is computed. This process is repeated for
the other nine folds. The 10 MSEs are then averaged to give the value of the CV function. On the output,
the CV function is labeled CV mean prediction error.

By default, selection(cv) looks for a minimum of the CV function and then stops once it has found
one. We see that models for three A’s past the minimum were fit. For 1inear models, selection(cv)
needs to see three smaller \’s with larger values of the CV function to declare that it has found a minimum.
It sets the selected A* to the A that gave the minimum and stops.

lasso — Lasso for prediction and model selection

154

We can plot the CV function using cvplot.

. cvplot
Cross-validation plot
)\CV
35
S 30
3
=
2
c
S 254
©
h=]
©
>
2 204
o
O
15
T T T
10 1 1
A

Acv = .1 is the cross-validation minimum A; # coefficients = 8.

If we want to see more values of the CV function, we can run lasso again using selection(cv,

alllambdas).

. set seed 1234

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement, selection(cv, alllambdas)

Evaluating up to 100 lambdas in grid ...

Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
Grid value 2: lambda = 4.274392 no. of nonzero coef. = 2
(output omitted)
Grid value 76: lambda = .004375 no. of nonzero coef. = 13
Grid value 77: lambda = .0039863 no. of nonzero coef. = 13
. change in deviance stopping tolerance reached
10-fold cross-validation with 77 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70...
Fold 2 of 10: 10....20....30....40....50....60....70...
(output omitted)
Fold 9 of 10: 10....20....30....40....50....60....70...
Fold 10 of 10: 10....20....30....40....50....60....70...
. cross-validation complete
Lasso linear model No. of obs = 69
No. of covariates = 15
Selection: Cross-validation No. of CV folds 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda 4.69114 0 -0.0018 33.97832
41 lambda before .1135316 8 0.6062 13.3577
* 42 selected lambda .1034458 8 0.6066 13.3422
43 lambda after .0942559 9 0.6060 13.36279
7 last lambda .0039863 13 0.5765 14.36306

* lambda selected by cross-validation.

lasso — Lasso for prediction and model selection 155

The iteration log is in a different order than it was earlier. Here we see messages about all the grid
values first and then the folds of the CV. Earlier, we saw grid values and then folds, and then grid values
and then folds, etc. With alllambdas, coefficient vectors for all the A’s are estimated first, and then CV
is done. When we are not going to stop when a minimum is found, this is a slightly faster way of doing
the computation.

The selected A* and the values of the CV function and R? are exactly the same—if we set the random-
number seed to the same value we used before. Had we forgotten to set the random-number seed or set
it to a different value, the values of the CV function and R? would be slightly different, and frequently,
even the selected * is different.

Let’s plot the CV function again with these additional \’s.

. cvplot
Cross-validation plot
)‘CV

35
S 30
3
=
2
c
S 25
]
k=]
©
2
? 204
o
O

15

[
10 1 1 01

A

Acv = .1 is the cross-validation minimum A; # coefficients = 8.

The suboption alllambdas lied to us. It did not give us all X’s. There are 100 A’s in the grid. It
showed us 77 of them this time, not all 100.

There is another rule that determines when the iteration over A’s ends. It is the stopping tolerance set
by the option stop (#). When the deviance calculated from the estimated coefficients changes little from
one A to the next, the iteration stops. The idea behind this stopping rule is that it means the CV function
would flatten out at this point, and there is no reason to continue estimating coefficients for smaller \’s.
If you really want to see the smallest A, specify stop(0) like so:

. lasso linear ..., selection(cv, alllambdas) stop(0)

Note that stop(#) is not specified as a suboption of the selection(cv) option. The stop(#)
stopping rule has nothing to do with CV. It is based solely on the change in deviance produced by the
coefficient estimates.

Why do we have all these rules for ending the iteration over A as soon as possible? The reason is
because the smaller the A, the longer the computation time. If you have lots of observations and lots
of variables, you still see the iteration log going slower and slower with each successive A. There is no
point in burning lots of computer time—except if you want to draw a prettier picture of the CV function.

Advanced note: If you want more evidence that the identified minimum is the true minimum, you are
better off setting the option cvtolerance (#) to a larger value than specifying alllambdas. You will
get assurance in much shorter time.

lasso — Lasso for prediction and model selection 156

Another advanced note: Setting stop(0) without specifying alllambdas is sometimes useful. See
[LASSO] lasso fitting for details.

Penalized and postselection coefficients

We have discussed how lasso fitting and CV works without even mentioning the purpose of lasso. But
you read [LASSO] Lasso intro, right? The purposes of lasso are covered there. We are assuming here
that our purpose for this lasso is to build a predictive model for mpg.

To get predictions after lasso, we use predict, just as we use predict after regress. But we have
two choices after lasso. After lasso, we can use penalized coefficients to compute our predictions, or
we can use postselection coefficients.

Actually, there are three types of coefficients after lasso. What we refer to as standardized,
penalized, and postselection.

Before we minimize the objective function

1 » .
S ¥ = X8 (y—Xﬂ>+A;\ﬂjl

we standardize the columns of X (that is, the potential variables in the model) so that they each have
mean 0 and standard deviation 1. Otherwise, the term

> 18]
j=1

would be dependent on the scales of the variables.

standardized refers to the coefficients of the standardized variables exactly as estimated by the
minimization of the objective function.

When we are doing lasso for prediction, we are not supposed to care about the values of the coefficients
or look at them. (Read [LASSO] Lasso intro!) However, even we could not follow our own advice, so
we developed a command, lassocoef, especially for listing the coefficients.

lasso — Lasso for prediction and model selection 157

Let’s list the coefficients of the standardized variables.

. lassocoef, display(coef, standardized)

active

0.foreign 1.49568
rep78

3 -.3292316

5 1.293645

weight | -.2804677

turn | -.7378134

gear_ratio 1.378287

price | -.2809065

length | -2.942432

_cons 0

Legend:

b - base level
e - empty cell
o - omitted

The coefficients of the standardized variables seem to be the same order of magnitude as we expect.

penalized refers to the coefficients from the minimization of the objective function with the stan-
dardization unwound. standardized, strictly speaking, gives the penalized coefficients of the stan-
dardized variables. penalized gives the penalized coefficients of the unstandardized variables. Let’s
list them.

. lassocoef, display(coef, penalized)

active

0.foreign 3.250554

rep78
3 -.6641369
5 3.533896
weight | -.0003563
turn -.167352
gear_ratio 3.000733
price | -.0000972
length | -.1303001

_cons 42.62583

Legend:
b - base level
e - empty cell
o - omitted

lasso — Lasso for prediction and model selection 158

The third type, postselection, is computed by taking the selected variables, estimating a linear

regression with them, and using those coefficients.

. lassocoef, display(coef, postselection)

active

0.foreign 4.769344
rep78

3 -1.010493

5 4.037817

weight -.000157

turn | -.2159788

gear_ratio 3.973684

price | -.0000582

length | -.1355416

_cons 40.79938

Legend:

b - base level
e - empty cell
o - omitted

We can duplicate these results with regress.

. regress mpg Obn.foreign 3bn.rep78 5bn.rep78 weight turn gear_ratio

> price length

Source SS df MS Number of obs = 69

F(8, 60) = 22.14

Model 1748.04019 8 218.505024 Prob > F = 0.0000

Residual 592.162704 60 9.86937839 R-squared = 0.7470

Adj R-squared = 0.7132

Total 2340.2029 68 34.4147485 Root MSE 3.1416

mpg | Coefficient Std. err. t P>t [95% conf. intervall
foreign

Domestic 4.769344 1.596469 2.99 0.004 1.575931 7.962757
rep78

3 -1.010493 .8775783 -1.15 0.254 -2.765911 . 7449251

5 4.037817 1.262631 3.20 0.002 1.512178 6.563455

weight -.000157 .0021651 -0.07 0.942 -.0044878 .0041739

turn -.2159788 .1886946 -1.14 0.257 -.5934242 .1614665

gear_ratio 3.973684 1.603916 2.48 0.016 . 7653732 7.181994

price -.0000582 .0001996 -0.29 0.772 -.0004574 .0003411

length -.1355416 .0695304 -2.28 0.026 -.2546201 -.0164632

_cons 40.79938 9.206714 4.43 0.000 22.38321 59.21555

What are you doing looking at the p-values! If we are not supposed to look at the coefficients, surely
this applies many times over to p-values. We looked, too. And we see that the lasso selected a bunch
with big p-values. Lasso does not care about p-values. Its sole goal is to build a model that is good for
prediction, and it thought these variables would help do that. Maybe it is just fitting random noise, and
CV as a selection method is known to do that. Adding extra variables that are fitting only random noise
is called “overselecting”.

lasso — Lasso for prediction and model selection 159

We want to point out that although rep78 has five categories, lasso selected only two of them,
rep78 = 3 and rep78 = 5, to be in the final model. See Factor variables in lasso in [LASSO] lasso
examples and [LASSO] Collinear covariates.

predict

The options penalized and postselection carry over to predict. We can
predict yhat, penalized
Or we can
predict yhat, postselection
If we simply type
predict yhat
we get penalized.

For linear models, postselection coefficients give predictions that are theoretically slightly better than
those given by penalized coefficients. In practice, however, the difference in the prediction is small.

For logit, probit, Poisson, and Cox models, there is no theory for the postselection predictions. Only
the penalized predictions have a theoretical basis. So the default, penalized, is recommended for these
models.

See [LASSO] lasso postestimation.

Selecting lambda by hand using lassoselect

We can change the selected A* if we want. It is easy to do. Recall that we stored our original lasso
results in memory using

. estimates store name

We can then compare these results with those from other lassos. We show examples of this in
[LASSO] lasso examples. Note, however, that estimates store only saves them in memory. To save
the results to disk, use

. estimates save filename
See [LASSO] estimates store.
We restore our previous results.

. estimates restore autolasso
(results autolasso are active now)

lasso — Lasso for prediction and model selection 160

Let’s run lassoknots again with options to show R2. There are two types of R? available. See
[LASSO] lassokneots for a discussion. The one labeled out-of-sample is the better one to look at.

. lassoknots, display(cvmpe r2 osr2)

CV mean OQut-of-
pred. sample In-sample
ID lambda error R-squared R-squared
2 | 4.274392 31.62288 0.0676 0.1116
15 | 1.275328 15.48129 0.5435 0.6194
19 .8790341 15.3171 0.5484 0.6567
20 .8009431 15.32254 0.5482 0.6627
21 .7297895 15.31234 0.5485 0.6684
30 .3159085 14.77343 0.5644 0.7030
31 .287844 14.67034 0.5675 0.7100
* 42 .1034458 13.3422 0.6066 0.7422
43 .0942559 13.36279 0.6060 0.7431
44 .0858825 13.39785 0.6050 0.7439
45 .0782529 13.45168 0.6034 0.7449

* lambda selected by cross-validation.

That A with ID = 15 looks almost as good as the one CV picked. Let’s select it.

. lassoselect id = 15
ID = 15 1lambda = 1.275328 selected

The new selected A* is shown on cvplot.

. cvplot

Cross-validation plot

Ais Acy
35

304
254

20+

Cross-validation function

154 \#

10 1 1
A

Acy = .1 is the cross-validation minimum A; # coefficients = 8.
Ais = 1.3 is the lassoselect specified A; # coefficients = 3.

lasso — Lasso for prediction and model selection 161

We can look at the coefficients and compare them with the earlier results.

. lassocoef autolasso ., display(coef, postselection)

autolasso active

0.foreign 4.769344

rep78
3 -1.010493
5 4.037817 2.782347
weight -.000157 -.0024045
turn | -.2159788
gear_ratio 3.973684
price | -.0000582
length | -.1355416 -.1120782

_cons 40.79938 49.23984

Legend:
b - base level
e - empty cell
o - omitted

The earlier lasso was stored as autolasso. When we use lassoselect, it is just like running a new
lasso. New estimation results are created. The period (.) used as an argument to lassocoef means
the current estimation results. If we want to compare these results with others in the future, we can use
estimates store and store them under a new name. Then we can use this name with lassocoef.

Our new selected * certainly gives a more parsimonious model. Too bad we do not have any theo-
retical basis for choosing it.

More lasso examples

We have yet to give examples for many important features. They include using split samples to
evaluate predictions, fitting logit, probit, Poisson, and Cox models, and selecting A* using adaptive lasso.

In [LASSO] lasso examples, we illustrate these capabilities using a dataset with lots of variables. We
also show how to use the v1 commands, a system for managing large variable lists.

Stored results

lasso stores the following in e ():

Scalars
e(N) number of observations
e(N_clust) number of clusters
e(k_allvars) number of potential variables
e(k_nonzero_sel) number of nonzero coefficients for selected model
e(k_nonzero_cv) number of nonzero coefficients at CV mean function minimum
e(k_nonzero_serule) number of nonzero coefficients for one-standard-error rule
e(k_nonzero_min) minimum number of nonzero coefficients among estimated \’s
e(k_nonzero_max) maximum number of nonzero coefficients among estimated A’s
e(k_nonzero_bic) number of nonzero coefficients at BIC function minimum
e(lambda_sel) value of selected *
e(lambda_gmin) value of A at grid minimum

e(lambda_gmax) value of A at grid maximum

lasso — Lasso for prediction and model selection 162

e(lambda_last)
e(lambda_cv)
e(lambda_serule)
e(lambda_bic)
e(ID_sel)
e(ID—cv)
e(ID_serule)
e(ID_bic)
e(cvm_min)
e(cvm_serule)
e(devratio_min)
e(devratio_max)
e(L1_min)
e(L1_max)
e(L2_min)
e(L2_max)
e(ll_sel)
e(n_lambda)
e(n_fold)
e(stop)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(allvars)
e(allvars_sel)
e(alwaysvars)
e(othervars_sel)
e(post_sel_vars)
e(clustvar)

e(lasso_selection)

e(sel_criterion)
e(plugin_type)
e(model)
e(title)
e(rngstate)
e(properties)
e(predict)
e(marginsnotok)
Matrices
e(b)

e(b_standardized)
e(b_postselection)

Functions
e(sample)

Matrices
r(table)

value of last A computed

value of A at CV mean function minimum

value of X\ for one-standard-error rule

value of A at BIC function minimum

ID of selected *

ID of A at CV mean function minimum

ID of X for one-standard-error rule

ID of A at BIC function minimum

minimum CV mean function value

CV mean function value at one-standard-error rule

minimum deviance ratio

maximum deviance ratio

minimum value of £, -norm of penalized unstandardized coefficients
maximum value of £, -norm of penalized unstandardized coefficients
minimum value of £,-norm of penalized unstandardized coefficients
maximum value of £,-norm of penalized unstandardized coefficients
log-likelihood value of selected model

number of \’s

number of CV folds

stopping rule tolerance

lasso

command as typed

name of dependent variable

names of all potential variables
names of all selected variables
names of always-included variables
names of other selected variables

all variables needed for postlasso
name of cluster variable

selection method

criterion used to select *

type of plugin A

linear, logit, probit, poisson, or cox
title in estimation output
random-number state used

b

program used to implement predict
predictions disallowed by margins

penalized unstandardized coefficient vector
penalized standardized coefficient vector
postselection coefficient vector

marks estimation sample

In addition to the above, the following is stored in r () :

matrix containing the coefficients with their standard errors, test statistics, p-values, and

confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

lasso — Lasso for prediction and model selection 163

Methods and formulas

This section provides the methods and formulas for lasso and elasticnet.

Methods and formulas are presented under the following headings:
Lasso and elastic-net objective functions
Coordinate descent
Grid of values for A
How to choose the penalty parameter
How CV is performed
Adaptive lasso
Plugin estimators
BIC

Lasso and elastic-net objective functions

lasso and elasticnet estimate the parameters by finding the minimum of a penalized objective
function.

The penalized objective function of the lasso for the 1inear, logit, probit, or poisson model is
N P
Q= W, f(y;, By +x;8") +/\Z"‘€j|ﬁj| (1)
j=1

i=1

where N is the number of observations, w0, is the normalized observation-level weight, f(-) is the like-
lihood contribution for the regress, logit, probit, or poisson model, 3, is the intercept, x; is the
1 x p vector of covariates, 3 is the 1 x p vector of coefficients, A is the lasso penalty parameter, which
must be greater than or equal to 0, and «; are coefficient-level weights (which by default are all 1).

The normalized weights @, sum to 1. That is,

~ w;

W =N
Ziil w;

where w; is the original observation-level weight. If weights are not specified with lasso, w; = 1 and
w; = 1/N.

When the model is linear,
f(By +x;8) = %(yz — By —x;8')?
When the model is logit,
F(By +x;8) = —y;(Bo +x,8") + In{1 + exp(5y + x;8') }
When the model is probit,
f(By +x:8) = —y; n{ (B, +x,8)} — (1 —y;) In{1 — (5, +x;8) }
When the model is poisson,

f(Bo +x,8) = —y;(By +x:8") + exp(By +x,8")

lasso — Lasso for prediction and model selection 164

The penalized objective function of the lasso for the cox model is

Ny P

Qu=—>_> [Xzﬂ’ ~In { >, exp(xﬂ)}] + A8
j=14€D; LeER; j=1

where j indexes the ordered failure times ¢(;), j = 1,..., Ny D; is the set of observations that fail at

t(j)> and R is the set of observations k that are at risk at time ¢ ;) (that is, all k such that ¢, <t < ¢,

and ¢, is the entry time for the kth observation). The first term in)}, is the weighted negative partial

log-likelihood function of the Cox proportional hazards model. There is no constant term 3, because the

constant term is absorbed in the baseline hazard function.

Ties are handled using the Breslow approximation (Breslow 1974). The other methods of handling
ties that are options for st cox—the Efron method, the exact marginal-likelihood method, and the exact
partial-likelihood method—are not available with lasso cox.

The penalized objective function of elastic net for the 1inear, logit, probit, and poisson models
is
l1—a

N P
an:Zﬂjzf(yz:ﬁ0+x1/8/)+)\ZKJ{Tﬁ$+a‘ﬁ]‘} (2)
i=1 =1

where « is the elastic-net penalty parameter and « can take on values only in [0, 1].

The penalized objective function of elastic net for the cox model is

Ny b —
Qu=->.> @, [xiﬁ’ —In { >, eXp(Xgﬁ')H +AD K {ITQ BF + |5j|}
=1

j=14€eD; (ER,

Some values for o and A cause elastic net to reduce to the objective function of another estimator of
interest. There are three special cases to note:

1. Lasso is a special case of elastic net. When a = 1, the objective function in (2) reduces to the
lasso objective function in (1).

2. Ridge regression is a special case of the elastic net. When o = 0 and A > 0, (2) reduces to the
objective function for the ridge-regression estimator.

3. When A = 0 in (2), there is no penalty term, and (), reduces to the objective function for the
unpenalized maximum-likelihood estimator.

When 0 < o < 1and A > 0, (2) is the objective function for an elastic-net estimator that does not
reduce to a special case.

We discuss methods that apply to the lasso estimator and to the elastic-net estimator in this section
because the same algorithm is used to estimate the coefficients. We discuss the optimization procedure
in terms of the elastic-net objective function (), because it reduces to the lasso estimator when a = 1.

We discuss the methods for ridge regression in Methods and formulas in [LASSO] elasticnet because
a different algorithm is used to estimate the coefficients.

By default, the coefficient-level weights are 1 in (1) and (2). They may be specified using the option
penaltywt (). Ifthe cluster() option is specified, the log likelihood is computed as the sum of log
likelihood at the cluster levels. This option is not allowed for the cox model.

The penalized objective function of the lasso with cluster is
N,

clust T; »
QL= Z {Z@uf(yitaﬁo +thﬁ/)} 4)‘Z’{j‘ﬂﬂ
1 gt

i=1 t=

lasso — Lasso for prediction and model selection 165

where N, is the total number of clusters and 7} is the number of observations in cluster i. For the ¢th

lus
observation in cluster 4, w;, is its normalized observational level weight, y;, is the dependent variable,
and x,, are the covariates.

The normalized weights %it are defined as

—~

Wit

= &N, T, —~
Ez‘:dlusl Zt;1 Wi

&N

it

where w;, are the cluster-level normalized weights. For fweights, w;, = w;,/ ZtT: | Wy Foriweights,
Wy = w;y /T
The penalized objective function of elastic net with cluster is

N,

clust T,
Qen = Z { Wit f (Yst, Bo + Xitﬁ/)} + A
i 1

=1 t=

P 11—«
ﬁ:j{ 5 5]2'+0¢|5j|}
-1

J

Coordinate descent

lasso and elasticnet use the coordinate descent algorithm to minimize (), for given values of A
and a.

The coordinate descent algorithm for lasso problems was first applied to lasso as a “shooting algo-
rithm” in Fu (1998). Daubechies, Defrise, and Mol (2004) also discussed using coordinate descent for
lasso. The combination of Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), and Hastie,
Tibshirani, and Wainwright (2015) provide a complete introduction to using the coordinate descent al-
gorithm for lasso and elastic net, and these references detail the formulas implemented in lasso and
elasticnet.

The numerical problem is made much easier and more stable by standardizing all the covariates to
have mean 0 and standard deviation 1. The standardization also removes 3, from the problem when the
model is regress.

Minimization problems are solved by finding the parameter values that set the first derivative equa-
tions to 0. The first derivative equations are known as score equations in statistics. When the score
equations for all the elements in 3 are well defined, we frequently use a version of Newton’s method
that produces a series of updated guesses for 3 that get increasingly close to solving the score equations.
When the updated guess is close enough to solving the score equations, the algorithm converges and we
have our estimates.

Unfortunately, @), is not always differentiable. When A > 0 and the kth element in 3 is 0, Q). is
not differentiable. Convex analysis provides a way of getting a generalized score equation for the kth
clement of 3 that handles the case in which 3, is 0. It is not feasible to write down equations for all p
generalized score equations at the same time. It is too complicated.

In general terms, coordinate descent is a solve-and-replace algorithm that repeatedly solves each gen-
eralized score equation for a new coefficient value until a minimum of @), is found. For those familiar
with the Gauss—Seidel algorithm, coordinate descent is basically Gauss—Seidel on the generalized score
equations. Quandt (1984) discusses the Gauss—Seidel algorithm.

lasso — Lasso for prediction and model selection 166

To be more specific, we provide an outline of the implemented coordinate descent algorithm.
Step 1: Specify initial values.
a. Set each coefficient to an initial value ,(A‘i'k = v;,. We refer to B as the current coefficient vector.

b. Initialize each coefficient in the previous coefficient vector E to be a missing value.

c. Initialize the difference, A, between the current and the previous coefficient vectors to be a missing
value.

Step 2: As long as A is larger than tolerance (#), do the following.

a. Set each coefficient in the current coefficient vector to the value that sets its generalized score
equation to 0. In other words, set

—~

ﬁk = gk(y7x7317 . --Bk7175k+17 . Bp)

where g, (v, X, Bl, e ﬂA,ﬁl, 5k IRTRR Bp) is the expression for @ that sets the generalized score
equation with respect to Bk to 0.

b. Let A be the largest of the relative differences between B and E
c. Set B = B

The algorithm converges when step 2 finishes and B contains the values that minimize @, for given
values of A and .

When the model is regress, Hastie, Tibshirani, and Wainwright (2015, eq. 4.4) provide a formula for

9 (y, X, /31, -+« Br—15Bg+15 - - - Bp). This coordinate descent algorithm is discussed in Hastie, Tibshirani,
and Wainwright (2015, chap. 4 and 5).

When the model is logit, probit, poisson, or cox the objective function can be minimized by
extensions to the method of iteratively reweighted least squares discussed by Nelder and Wedderburn
(1972). See Hastie, Tibshirani, and Wainwright (2015, chap. 3) and Friedman, Hastie, and Tibshirani
(2010) for details.

Grid of values for)\

For any given value of 0 < o < 1, letting A decrease from oo to 0 creates a vector of coefficient paths.
When) is large enough, all the coefficients are 0. Holding « fixed and decreasing A from a large value
to 0 induces coefficient paths in which each coefficient emerges from 0. In a particular lasso example,
we see the following:

lasso — Lasso for prediction and model selection 167

Coefficient paths

Standardized coefficients

A

In this example, there are fewer covariates than observations, so at A = 0, each coefficient path has
the value of its unpenalized estimate.

The convention that has emerged following Hastie, Tibshirani, and Wainwright (2015) is to consider
a few candidate values for o and a grid of 100 or so candidate values for A\. The default number of
grid points is 100, and it can be changed by specifying option grid (#). The candidate values for o are
specified by option alpha() in elasticnet.

The largest value in the grid is the smallest value for which all the coefficients are zero, and we denote

itby Agpax- The smallest value in the grid is Ay, Where Agyin = 7Agma, and 7 is set by the option grid (,
ratio(#)). The grid is logarithmic with the ¢th grid point given by In\; = [(¢ — 1)/(n — 1)]In7 +
In Agyax» Where n is the number of grid points.

How to choose the penalty parameter

To use a lasso, we need to decide which value of A is best. We denote the selected A\ as *.

Some methods for choosing * are designed or advertised as facilitating the ability of the lasso as
a covariate selection technique. Some authors seem to advocate using the covariates selected by lasso
as if this estimate always picked out the true covariates. Unfortunately, the lasso estimate of which
covariates to include is too noisy to be treated as without error in subsequent steps, unless all the not-zero
coefficients are sufficiently large. This “beta-min” condition is widely viewed as too strong for applied
work. See Leeb and Potscher (2008), Belloni and Chernozhukov (2011), Belloni, Chernozhukov, and
Hansen (2014a), and Chernozhukov et al. (2018) for discussions that have led to the rejection of beta-
min assumptions. See Remarks and examples in [LASSO] Lasso inference intro for an introduction to
commands that produce reliable inference without a beta-min condition.

The four methods for selecting A* for lasso are CV, adaptive lasso, plugin estimators, and BIC.

CV finds the * that will produce coefficient estimates that predict best out of sample. When * is
selected by CV and the nonzero coefficients are used for covariate selection, the process tends to select
some covariates that do not belong in the model—in addition to ones that belong. See Biihlmann and
van de Geer (2011, sec. 2.5.1) for a discussion and further references. This is due to its larger bound
on the number of covariates it will find. See Chetverikov, Liao, and Chernozhukov (2019) and their
sparsity-bound results.

lasso — Lasso for prediction and model selection 168

Adaptive lasso was derived by Zou (2006) and refined by Biihlmann and van de Geer (2011) to pro-
vide more reliable covariate selection. As mentioned above, it will not provide mistake-free covariate
selection without the widely rejected “beta-min” condition. See section 7.8.6 of Biihlmann and van de
Geer (2011) for a discussion of the versions of the beta-min and section 7.10 for a frank conclusion on
the difficulty of the problem. While it is not mistake free, covariate selection based on the adaptive lasso
will produce a more parsimonious model than covariate selection based on a * selected by CV.

The plugin estimators were designed to pick A* to produce accurate results for the subsequently es-
timated lasso coefficients. See Bickel, Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2011),
Belloni, Chernozhukov, and Hansen (2014a, 2014b). These estimators for A* are primarily used as part
of estimation methods that are robust to the covariate selection mistakes a lasso makes with any choice
of A*. Plugin estimators for A* select a more parsimonious model than does CV. Simulations indicate
that plugin-based lassos select fewer covariates than adaptive lasso when there are small coefficients in
the true model, but there are no formal results.

BIC selects the A* that will produce coefficient estimates that minimize the BIC. Our simulations show
that BIC avoids the overselection problem seen in CV and is often faster. BIC tends to select models similar
to those of the plugin method but can be applied to a more general class of models.

CV is implemented for lasso, elasticnet, and sqrtlasso. Adaptive lasso is implemented for
lasso. Plugin estimators are implemented for 1asso and for sqrtlasso. BIC is implemented for 1lasso,
elasticnet, and sqrtlasso.

How CV is performed

CV finds the model that minimizes an out-of-sample prediction error, also known as the CV function.
We denote the CV function for the model with parameters 6 by V(). Formally, CV finds

0 = arg min,_o{CV(0)}

For lasso or sqrtlasso, © is the set of A grid values. For elasticnet, © is the set of all pairs
(A, @), where A is in the A grid and « is one of the specified candidate values.

The value of Cv(6) for each § € © is stored in the estimation results after CV is performed. This
allows postestimation commands like cvplot to plot or display values of the CV function for ranges of
0 values.

Here is how cV(60) is computed.
1. Randomly partition the data into K folds.
2. Do the following for each fold k € {1,..., K}.
a. Estimate the parameters of the model for specified # using the observations not in fold k.

b. Use the estimates computed in step 2a to fill in the out-of-sample deviance for the observations
in fold k.

3. For each model 6, compute the mean of the out-of-sample deviance.
4. The value of § € © with the smallest mean out-of-sample deviance minimizes the CV function.

For the cox model, we use the approach in van Houwelingen et al. (2006) to compute the deviance in
step 2b. Especially,

Devy = Dev{#*(\)} — Dev*{A*(\)}

lasso — Lasso for prediction and model selection 169

where é‘k(A) are the estimates obtained in step 2a, Dev{é‘k()\)} is the deviance using the full sample
and 6% (), and Dev *{6%(\)} is the deviance using the observations not in the kth fold and 6% ().

For the details of deviance, see Methods and formulas in [LASSO] lassogof.

Adaptive lasso

Adaptive lasso is a sequence of CV lassos, each at least as parsimonious as the previous one. Mechan-
ically, adaptive lasso is implemented in the following way.

Step A:

Get the initial coefficient estimates and denote them B By default, these estimates come from
a cross-validated lasso. Optionally, they come from an unpenalized model or from a ridge
estimator with A selected by Cv. Zou (2006, 1423) recommends ridge when collinearity is a
problem.

Step B:
a. Exclude covariates for which Bj =0.

b. Construct coefficient level weights for included covariates, x; = 1/ |B] %, where d is the power
to which the weight is raised. By default, § = 1. To specify another value for ¢, use option
selection(adaptive, power (#)).

Each adaptive step selects either the covariates selected by the previous step or a proper subset of
them.

The option selection(adaptive, step(#)) counts all lassos performed. So the default # = 2
means one adaptive step is done.

Plugin estimators

Heuristically, we get good lasso coefficient estimates when * is large enough to dominate the noise
that is inherent in estimating the coefficients when the penalty-loadings r; are at their optimal levels.
Plugin estimators use the structure of the model and advanced theoretical results to find the smallest A
that dominates the noise, given estimates of the penalty loadings.

For simplicity and compatibility with the rest of the documentation, we did not divide A by /Vin (1).
Multiply our formulas for A by N to compare them with those in the cited literature.

As discussed by Bickel, Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2011), Belloni et al.
(2012), and Belloni, Chernozhukov, and Wei (2016), the estimation noise is a function of the largest of
the absolute values of the score equations of the unpenalized estimator. In particular, when the penalty
loadings £; are at optimal values, A" is chosen so that

) .

N

Z (Y, %:8)

P ()* > cmaxlgjgp

where c is a constant, and
N
1
AT Z yz? xzﬁ
N

is the jth score from the unpenalized estimator at the true coefficients 3,. The optimal values of the
penalty loadings normalize the scores of the unpenalized estimator to have unit variance.

lasso — Lasso for prediction and model selection 170

Belloni and Chernozhukov (2011), Belloni et al. (2012), and Belloni, Chernozhukov, and Wei (2016)
derive values for A* and estimators for r; for a variety of models. This firm theoretical structure keeps
the lasso with a plugin estimator from including too many irrelevant covariates and provides it with a
fast rate of convergence.

In all the implemented methods described below, we use the following notation:
¢ = 1.1 per the recommendation of Belloni and Chernozhukov (2011);
N is the sample size;

~ = 0.1/ In[max{p, N'}| is the probability of not removing a variable when it has a coefficient of
Zero;

p is the number of candidate covariates in the model.
Two plugin estimators are implemented for lasso linear:
e selection(plugin, homoskedastic)
The errors must be homoskedastic, but no specific distribution is assumed.

The formula for * is

N @ 1< N 1)
homoskedastic \/N 2 D

0 is an estimator of the variance of the error term. This estimator is implemented in algorithm 1.
In the linear homoskedastic case, there is no need to estimate the penalty loadings ;; they are
implied by 6.

e selection(plugin, heteroskedastic)
The errors may be heteroskedastic and no specific distribution is assumed.
The formula for A is

c

- Y
)‘heteroskedastic = ﬁv o ! (1 2p>

In the linear-heteroskedastic case, penalty loadings are estimated by

Algorithm 2 is used to estimate the ;.

lasso — Lasso for prediction and model selection 171

One plugin estimator is implemented for 1asso logit:

1.1
1— ==
2max{N,pln N}

C

)\ L= —
logit 2\/N

This value is from the notes to table 2 in Belloni, Chernozhukov, and Wei (2016), divided by N
as noted above. Belloni, Chernozhukov, and Wei (2016) use the structure of the binary model
to bound the £, so they are not estimated. This bound is why c is divided by 2.

q)fl

One plugin estimator is implemented for lasso poisson and lasso probit:

c _ v
A= — ot (1 — 7)
VN 2p
K are estimated in algorithm 3.

All three algorithms used the normalized covariates that each x; has mean 0 and variance 1.

Algorithm 1: Estimate &

This iterative algorithm estimates o; it is adopted from Belloni and Chernozhukov (2011, 20-21).
The algorithm depends on a starting value for & denoted by &, a convergence tolerance v = le-8, and
a maximum number of iterations M = 15.

We set 5, to be the square root of the mean of the squared residuals from a regression of y on the five
covariates in x that have the five highest univariate correlations with y.

Set the iteration counter k¥ = 1 and the absolute value of the difference between the current and the
previous estimate of ¢ to be a missing value.

1. Let A, = (¢d;,_,/VN) @11 —v/2p).

2. Compute the lasso estimates Bk using A -
~ N 3

3. Letd, = \/(1/N) =N, (4 — x.B,)%.

4. If |64, — 01| <wvork > M, set ¢ = G;, and stop; otherwise, set k = k + 1 and go to step 1.

Algorithm 2: Estimate linear-heteroskedastic penalty loadings

This iterative algorithm estimates the penalty loadings «; for the linear-heteroskedastic model; it is
adopted from Belloni, Chernozhukov, and Hansen (2014b, 640). The algorithm depends on a conver-
gence tolerance v = 1e—8 and a maximum number of iterations M/ = 15.

1. Get initial values:

a. Let €, be the residuals from the regression of y on the five covariates in x that have the highest
univariate correlations with y.

b. Let iy ; = \/ 1/N sz\; L (@; ;€;,)? be the initial penalty loading for each covariate j.
c. Let A =c/VN® (1 —~/2p).
d. Set the iteration counter to k = 1.

2. Compute the lasso estimates Bk using) and the penalty loadings %;_; ;. Let 5 be the number of
nonzero coefficients in this lasso.

lasso — Lasso for prediction and model selection 172

3. Let €, be the residuals from the postlasso regression of y on the § covariates that have nonzero
lasso coefficients.

4. For each of the j covariates in the original model, compute the penalty loading

1 N
s = || s D (@)
J N—5; g

5. If maxy_ ., |Ry ; — Ry | < vork > M,set k; = Ky ; for each j and stop; otherwise, set

k

=k + 1 and go to step 2.

Algorithm 3: Estimate penalty loadings for Poisson and probit

This is the algorithm used for Poisson and probit models.

In the Poisson case, references to the unpenalized quasi—-maximum likelihood (QML) estimator are to
the unpenalized Poisson QML estimator. In the probit case, references to the unpenalized QML estimator
are to the unpenalized probit QML estimator.

In the Poisson case, h;(y;, iiN) is the contribution of observation 7 to the unpenalized Poisson-score

equation using covariates X; and coefficients B. In the probit case, h;(y;, ilﬁ) is the contribution of

observation i to the unpenalized probit-score equation using covariates X, and coefficients 3.

On exit, A contains the penalty value, and the penalty loadings are in (5, ..., &,).

1. Set A\ =c/VN® [l —~/(2p)].

2. Find the five covariates with highest correlations with y. Denote the vector of them by X, and let

Xo

; be the ith observation on this vector of variables.

3. Estimate the coefficients Eo on X, by unpenalized QML.

4. Foreachj e {1,...,p},set

. 1 o~
KRo,j = T\/-Zhj(ymxoqﬂoy
i=1

5. Set £ = 1 and do the following loop. (It will be executed at most 15 times.)

a.

b.

Using A and loadings {K},_; 1, ..., Rj_1,}, solve the lasso to get estimates Ek

Let X, be the covariates with nonzero coefficients in 3, .

c. Estimate the coefficients ﬁk on X, by unpenalized QML.

Foreach j € {1,...,p}, set

y 1 & .
Rj = Nzhj(yiaxkilak)2
p

Setk=Fk+ 1.

If k > 15 or the variables in X;, are the same as those in X;,_;, set each &; = £, ; and exit;
otherwise, go to step Sa.

lasso — Lasso for prediction and model selection 173

BIC

lasso and elasticnet compute the BIC function for each vector of coefficients corresponding to
each \. The BIC function is defined as

BIC = —2InL(y, B, + x3') + kInN

where InL(y, 8, +x3) is the log-likelihood function, k is the number of nonzero coefficients, and NV is
the number of observations.

When the model is linear,
N
InL(y, By +xB') = — {1112774‘ In {ij(yz —Bo _xzﬂ/)z} + 1]
i=1
When the model is logit,
N
InL(y, fo +x6') = Y _w; [y; (B +x:8) — {1+ exp(By + x,8")}]
i=1
When the model is probit,
N
InL(y, By +xB8') = > wi [y, n{@(By +x,8)} + (1 —y;) In {1 — B(B, +x,8)}]
i=1
When the model is poisson,
N
InL(y, By +xB') = Y _wi {=exp(Fy +x,8") + (By + %8)y; — In(y:))}
i=1

When the model is cox,

InL(y,xB") Z Z w} {x 8 — {Z wy exp(xelg/)}}

j=1i€D; (ER,

The weights w are normalized to sum to V. That is,

where w; is the original observation-level weight.

When the selection(bic, postselection) option is specified, the postselection coefficients are
used to compute the BIC. By default, penalized coefficients are used.

lasso — Lasso for prediction and model selection 174

References

Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments
with an application to eminent domain. Econometrica 80: 2369-2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2011. “High dimensional sparse econometric models: An Introduction”. In Inverse
Problems of High-Dimensional Estimation, edited by P. Alguier, E. Gautier, and G. Stoltz, 121-156. Berlin: Springer.
https://doi.org/10.1007/978-3-642-19989-9 3.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014a. High-dimensional methods and inference on structural and
treatment effects. Journal of Economic Perspectives 28: 29-50. https://doi.org/10.1257/jep.28.2.29.

. 2014b. Inference on treatment effects after selection among high-dimensional controls. Review of Economic
Studies 81: 608—650. https://doi.org/10.1093/restud/rdt044.

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many con-
trols. Journal of Business and Economic Statistics 34: 606—-619. https://doi.org/10.1080/07350015.2016.1166116.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov. 2009. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics
37: 1705-1732. https://doi.org/10.1214/08-A0S620.

Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics 30: 89-99. https://doi.org/10.2307/
2529620.

Biithlmann, P., and S. van de Geer. 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications. Berlin:
Springer.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. B. Hansen, W. K. Newey, and J. M. Robins. 2018. Dou-
ble/debiased machine learning for treatment and structural parameters. Econometrics Journal 21: C1-C68. https:
//doi.org/10.1111/ectj.12097.

Chetverikov, D., Z. Liao, and V. Chernozhukov. 2019. On cross-validated lasso in high dimensions. arXiv:1605.02214
[math.STT], https://doi.org/10.48550/arXiv.1605.02214.

Daubechies, 1., M. Defrise, and C. D. Mol. 2004. An iterative thresholding algorithm for linear inverse problems with
a sparsity constraint. Communications on Pure and Applied Mathematics 57: 1413—1457. https://doi.org/10.1002/cpa.
20042.

Friedman, J. H., T. J. Hastie, H. H6fling, and R. J. Tibshirani. 2007. Pathwise coordinate optimization. Annals of Applied
Statistics 1: 302-332. https://doi.org/10.1214/07-AOAS131.

Friedman, J. H., T. J. Hastie, and R. J. Tibshirani. 2010. Regularization paths for generalized linear models via coordinate
descent. Journal of Statistical Software 33: art. 1. https://doi.org/10.18637/jss.v033.101.

Fu, W. J. 1998. Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical Statistics 7:
397-416. https://doi.org/10.1080/10618600.1998.10474784.

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations.
Boca Raton, FL: CRC Press. https://doi.org/10.1201/b18401.

Leeb, H., and B. M. Pétscher. 2008. Sparse estimators and the oracle property, or the return of Hodges’ estimator. Journal
of Econometrics 142: 201-211. https://doi.org/10.1016/j.jeconom.2007.05.017.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society, A ser.,
135: 370-384. https://doi.org/10.2307/2344614.

Quandt, R. E. 1984. “Computational problems and methods”. In Handbook of Econometrics, edited by Z. Griliches and
M. D. Intriligator, vol. 2: 699-764. Amsterdam: Elsevier. https://doi.org/10.1016/S1573-4412(83)01016-8.

van Houwelingen, H. C., T. Bruinsma, A. A. M. Hart, L. J. van’t Veer, and L. F. A. Wessels. 2006. Cross-validated Cox
regression on microarray gene expression data. Statistics in Medicine 25: 3201-3216. https://doi.org/10.1002/sim.
2353.

Zhang, Y., R. Li, and C.-L. Tsai. 2010. Regularization parameter selections via generalized information criterion. Journal
of the American Statistical Association 105: 312—323. https://doi.org/10.1198/jasa.2009.tm08013.

Zou, H. 2006. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101: 1418-1429.
https://doi.org/10.1198/016214506000000735.

https://doi.org/10.3982/ECTA9626
https://doi.org/10.1007/978-3-642-19989-9_3
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.1093/restud/rdt044
https://doi.org/10.1080/07350015.2016.1166116
https://doi.org/10.1214/08-AOS620
https://doi.org/10.2307/2529620
https://doi.org/10.2307/2529620
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097
https://doi.org/10.48550/arXiv.1605.02214
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1214/07-AOAS131
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/10618600.1998.10474784
https://doi.org/10.1201/b18401
https://doi.org/10.1016/j.jeconom.2007.05.017
https://doi.org/10.2307/2344614
https://doi.org/10.1016/S1573-4412(83)01016-8
https://doi.org/10.1002/sim.2353
https://doi.org/10.1002/sim.2353
https://doi.org/10.1198/jasa.2009.tm08013
https://doi.org/10.1198/016214506000000735

lasso — Lasso for prediction and model selection 175

Also see

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction
[LASSO] elasticnet — Elastic net for prediction and model selection

[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] Lasso intro — Introduction to lasso

[LASSO] sqrtlasso — Square-root lasso for prediction and model selection
[R] logit — Logistic regression, reporting coefficients

[R] poisson — Poisson regression

[R] probit — Probit regression

[R] regress — Linear regression

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands

lasso postestimation — Postestimation tools for lasso for prediction

Postestimation commands predict stcurve Remarks and examples
Methods and formulas References Also see

Postestimation commands

The following postestimation commands are of special interest after lasso, sqrtlasso, and
elasticnet:

Command Description
bicplot plot Bayesian information criterion function
coefpath plot path of coefficients
cvplot plot cross-validation function
lassocoef display selected coefficients
lassogof goodness of fit after lasso for prediction
lassoinfo information about lasso estimation results
lassoknots knot table of coefficient selection and measures of fit
lassoselect select alternative A* (and o for elasticnet)
* stcurve plot the survivor, failure, hazard, or cumulative hazard function

*stcurve is appropriate only after lasso cox or elasticnet cox.

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample
estimates cataloging estimation results

etable table of estimation results

predict linear predictions

176

lasso postestimation — Postestimation tools for lasso for prediction 177

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions; probabilities when
the model is logit or probit; number of events when the model is Poisson; or hazard ratios and baseline

survivor, cumulative hazard, and hazard functions when the model is Cox.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [nype] newvar [if | [in] [, statistic options]
statistic Description
Main
xb linear predictions; the default for the 1inear model
pr probability of a positive outcome; the default for the logit and probit models
n number of events; the default for the poisson model
ir incidence rate; optional for the poisson model
hr predicted hazard ratio, also known as the relative hazard; the default for
the cox model
basesurv baseline survivor function
basechazard baseline cumulative hazard function
basehc baseline hazard contributions

pr is allowed only when the model is logit or probit.
n and ir are allowed only when the model is poisson.

hr, basesurv, basechazard, and basehc are allowed only when the model is cox.

options Description
Main
penalized use penalized coefficients; the default
postselection use postselection (unpenalized) coefficients
nooffset ignore the offset or exposure variable (if any)
Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the

estimation sample. Starred statistics are calculated only for the estimation sample, even when e (sample) is not specified.

nooffset is allowed only with unstarred statistics.

lasso postestimation — Postestimation tools for lasso for prediction 178

Options for predict

Main

xb, the default for the 1inear model, calculates linear predictions.

pr, the default for and only allowed with the 1ogit and probit models, calculates the probability of a
positive event.

n, the default for and only allowed with the poisson model, calculates the number of events, which is
exp(x;3) if neither offset () nor exposure () was specified when the model was fit; exp(x;3 +
offset;) if offset () was specified; or exp(x;3) x exposure, if exposure () was specified.

ir applies to the poisson model only. It calculates the incidence rate exp(x3’), which is the predicted
number of events when exposure is 1. Specifying ir is equivalent to specifying n when neither
offset () nor exposure () was specified when the model was fit.

hr, the default for the cox model, calculates the relative hazard (hazard ratio), that is, the exponentiated
linear prediction exp(x3’).

basesurv applies to the cox model only. It calculates the baseline survivor function. In the null model,
this is equivalent to the Kaplan—Meier product-limit estimate.

basechazard applies to the cox model only. It calculates the cumulative baseline hazard.

basehc applies to the cox model only. It calculates the baseline hazard contributions. These are used to
construct the product-limit type estimator for the baseline survivor function generated by basesurv.

penalized specifies that penalized coefficients be used to calculate predictions. This is the default.
Penalized coefficients are those estimated by lasso in the calculation of the lasso penalty. See Methods
and formulas in [LASSO] lasso.

postselection specifies that postselection coefficients be used to calculate predictions. Postselection
coefficients are calculated by taking the variables selected by lasso and refitting the model with the
appropriate ordinary estimator: linear regression for linear models, logistic regression for logit
models, probit regression for probit models, Poisson regression for poisson models, and Cox re-
gression for cox models.

nooffset is relevant only if you specified offset () or exposure () when you fit the model. It modi-
fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x3 rather than x3" + offset or 3" + In(exposure). For the poisson model,
specifying predict ..., nooffset is equivalent to specifying predict ..., ir. This option is not
allowed when basesurv, basechazard, or basehc is specified.

lasso postestimation — Postestimation tools for lasso for prediction 179

stcurve

Description for stcurve

stcurve plots the survivor, failure, hazard, or cumulative hazard function after lasso cox or
elasticnet cox.

Menu for stcurve

Statistics > Survival analysis > Regression models > Plot survivor or related function

Syntax for stcurve

stcurve [, penalized postselection Stcurve_options]

Options for stcurve

penalized, the default, specifies that penalized coefficients be used to calculate predictions. Penalized
coefficients are those estimated by lasso in the calculation of the lasso penalty. See Methods and
formulas in [LASSO] lasso.

postselection specifies that postselection coefficients be used to calculate predictions. Postselection
coefficients are calculated by taking the variables selected by lasso and refitting the model with stcox.

stcurve_options are options available for stcurve; see Options in [ST] stcurve.

Remarks and examples

By default, predict after lasso uses the penalized coefficient estimates to predict the outcome.
Specifying the postselection option causes predict to use the postselection coefficients to calcu-
late predictions. Postselection coefficients are calculated by taking the variables selected by lasso and
refitting the model with the unpenalized estimator.

stcurve after lasso cox or elasticnet cox also uses the penalized coefficients by default. Spec-
ifying the postselection option causes stcurve to use the postselection coefficients.

Belloni and Chernozhukov (2013) and Belloni et al. (2012) provide results under which predictions
using postselection coefficients perform at least as well as predictions using penalized coefficients. Their
results are only for linear models. Their conditions essentially limit the cases to ones in which the co-
variates selected by the lasso are close to the set of covariates that best approximates the outcome. Said
plainly, this means that under the conditions for which lasso provides valid predictions, the postselection
coefficients should do slightly better than the penalized coefficients in most cases; in other cases, they
should be about the same.

Rather than relying on theorems, standard practice in prediction applications uses split-sample tech-
niques to find which of several models produces the best predictions. One standard practice in prediction
applications is to randomly split the sample into training and testing samples. When you use the training
data, the coefficients for several competing predictors are computed. When you use the testing data, an
out-of-sample prediction error is computed for each of the predictors whose coefficients were estimated
on the training data. The predictor with the smallest out-of-sample prediction error is preferred. This
practice is illustrated in [LASSO] lassogof.

lasso postestimation — Postestimation tools for lasso for prediction 180

Methods and formulas

Below, we discuss the methods and formulas for the predictions of baseline survivor function, baseline
cumulative hazard function, and baseline hazard contributions after lasso cox or elasticnet cox.

—~/ —~
Define z; = x;3 + offset;, where 3 is either the penalized or the postselection coefficients. The
estimated baseline hazard contribution is obtained at each failure time as hj =1- dj, where dj is the

solution to (2)
exp(z,)
> AP > exp(z)
keD, ? (R,

(Kalbfleisch and Prentice 2002, eq. 4.34, 115), where j indexes the ordered failure times ¢; (j =

., D); D; is the set of d; observations that fail at ¢;; d; is the number of failures at ¢;; and R;
is the set of observations £ that are at risk at time ¢; (that is, all & such that ¢, <¢; <, and ¢y, is the
entry time for the kth observation).

The estimated baseline survivor function is

Soty =TI &

e

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor
function calculation; yet the values of @; are set at their starting values and are not iterated. Equivalently,

=2

Jit;<t ZZER exp(zé)

For an application of this formula in the context of lasso cox, see Ternés, Rotolo, and Michiels (2017).

References

Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments
with an application to eminent domain. Econometrica 80: 2369-2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2013. Least squares after model selection in high-dimensional sparse models. Bernoulli
19: 521-547. https://doi.org/10.3150/11-BEJ410.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Ternes, N., F. Rotolo, and S. Michiels. 2017. Robust estimation of the expected survival probabilities from high-
dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials. BMC Medical Re-
search Methodology 17(art. 83). https://doi.org/10.1186/s12874-017-0354-0.

Also see

[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] elasticnet — Elastic net for prediction and model selection
[LASSO] lasso — Lasso for prediction and model selection

[LASSO] sqrtlasso — Square-root lasso for prediction and model selection

[U] 20 Estimation and postestimation commands

https://doi.org/10.3982/ECTA9626
https://doi.org/10.3150/11-BEJ410
https://doi.org/10.1186/s12874-017-0354-0

lassocoef — Display coefficients after lasso estimation results

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see
Description

lassocoef displays a table showing the selected variables after one or more lasso estimation results.
It can also display the values of the coefficient estimates. When used with stored results from two or
more lassos, it can be used to view the overlap between sets of selected variables.

After ds, po, and xpo commands, and after telasso, lassocoef can be used to view coefficients
for a single lasso or for multiple lassos displayed side by side.

Quick start

Display the selected variables after lasso, sqrtlasso, or elasticnet
lassocoef

Display the values of the postselection coefficients after lasso, sqrtlasso, or elasticnet

lassocoef, display(coef, postselection)

Display the penalized coefficients of the standardized variables after lasso, sqrtlasso, or elasticnet
sorted by their absolute values in descending order

lassocoef, display(coef, standardized) sort(coef, standardized)

Compare which variables were selected from three different runs of 1asso, where the estimation results
are stored under the names mylassol, mylasso2, and mylasso3

lassocoef mylassol mylasso2 mylasso3
Same as above, but display the penalized coefficients of the unstandardized variables sorted by the values
of the penalized coefficients of the standardized variables
lassocoef mylassol mylasso2 mylasso3, display(coef, penalized) ///
sort (coef, standardized)
After fitting a 1asso logit model, display the exponentiated postselection coefficients, which are odds
ratios, and specify their display format
lassocoef, display(coef, postselection eform format (%6.2f))
After any of the ds or po commands, display the selected variables in the lasso for the dependent vari-
able y
lassocoef (., for(y))
Same as above, but display the penalized coefficients of the standardized variables in the lasso for y
sorted by their absolute values

lassocoef (., for(y)), display(coef, standardized) ///
sort (coef, standardized)

181

lassocoef — Display coefficients after lasso estimation results 182

Same as above, but compare the lasso for y from the results stored in mydsregress with the lasso for y
from the results stored in myporegress

lassocoef (mydsregress, for(y)) (myporegress, for(y)), ///
display(coef, standardized) sort(coef, standardized)
After xpologit without resample, compare the variables selected by the lassos for x in each of the 10
cross-fit folds
lassocoef (myxpo, for(x) xfold(1)) ///

(myxpo, for(x) xfold(2)) ///
’(myxpo, for(x) xfold(10))

After xpologit with resample, compare the variables selected by the lassos for x in each of the 10
cross-fit folds in the first resample

lassocoef (myxpo, for(x) xfold(1) resample(1)) ///
(myxpo, for(x) xfold(2) resample(1)) ///

(myxpo, for(x) xfold(10) resample(1))

After telasso, display the selected variables in the lasso for the outcome variable y at treatment levels 1
and 0

lassocoef (., for(y) tlevel(1)) (., for(y) tlevel(0))

Menu

Statistics > Postestimation

lassocoef — Display coefficients after lasso estimation results 183

Syntax

For current estimation results
After lasso, sqrtlasso, or elasticnet

lassocoef [, options]
After ds or po
lassocoef (., for(varspec)) [, options|
After xpo without resample
lassocoef (., for(varspec) xfold(#)) [, options]
After xpo with resample
lassocoef (., for(varspec) xfold(#) resample(#)) [, options|
After telasso for the outcome variable
lassocoef (., for(varspec) tlevel (#)) [s options]
After telasso for the treatment variable
lassocoef (., for(varspec)) [, options|
After telasso for the outcome variable with cross-fitting but without resample
lassocoef (., for(varspec) tlevel(#) xfold(#)) [, options]
After telasso for the treatment variable with cross-fitting but without resample
lassocoef (., for(varspec) xfold(#)) |, options |
After telasso for the outcome variable with cross-fitting and resample
lassocoef (., for(varspec) tlevel (#) xfold(#) resample(#)) [s options]
After telasso for the treatment variable with cross-fitting and resample

lassocoef (., for(varspec) xfold(#) resample(#)) [, options]

For multiple stored estimation results

lassocoef [estspecl [estspec?...|] |, options]

lassocoef — Display coefficients after lasso estimation results 184

estspec for lasso, sqrtlasso, and elasticnet is
name
estspec for ds and po models is
(name, for (varspec))
estspec for xpo without resample is
(name, for(varspec) xfold(#))
estspec for xpo with resample is
(name, for (varspec) xfold(#) resample(#))
estspec for the treatment model in telasso is
(name, for(varspec))
estspec for the outcome model at the treatment level # in telasso is
(name, for (varspec) tlevel (#))
estspec for the treatment model in telasso with cross-fitting but without resample is
(name, for(varspec) xfold(#))

estspec for the outcome model at the treatment level # in telasso with cross-fitting but without
resample is

(name, for (varspec) tlevel (#) xfold(#))

estspec for the treatment model in telasso with resample is
(name, for(varspec) xfold(#) resample(#))

estspec for the outcome model at the treatment level # in telasso with resample is
(name, for(varspec) tlevel (#) xfold(#) resample(#))

name is the name of a stored estimation result. Either nothing or a period (.) can be used to specify
the current estimation result. _all or * can be used to specify all stored estimation results when
all stored results are lasso, sqrtlasso, or elasticnet.

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

lassocoef — Display coefficients after lasso estimation results 185

options Description

Options
display(x) indicate selected variables with an x; the default
display(u) same as display(x), except variables unavailable to be

selected indicated with a u
display(coef [, coef_di_opts]) display coefficient values

sort (none) order of variables as originally specified; the default

sort (names) order by the names of the variables

sort (coef |, coef_sort_opts|) ordefi by the absolute values of the coefficients in descending
order

nofvlabel display factor-variable level values rather than value labels

nolegend report or suppress table legend

nolstretch do not stretch the width of the table to accommodate long

variable names

collect is allowed; see [U] 11.1.10 Prefix commands.

nofvlabel, nolegend, and nolstretch do not appear in the dialog box.

coef_di_opts Description

standardized display penalized coefficients of standardized variables; the default

penalized display penalized coefficients of unstandardized variables

postselection display postselection coefficients of unstandardized variables

eform display exp(b) rather than the coefficient b

format (% fmt) use numerical format % fint for the coefficient values

coef_sort_opts Description

standardized sort by penalized coefficients of standardized variables

penalized sort by penalized coefficients of unstandardized variables

postselection sort by postselection coefficients of unstandardized variables
Options

display (displayspec) specifies what to display in the table. The default is display(x).

Blank cells in the table indicate that the corresponding variable was not selected by the lasso or was
not specified in the model.

For some variables without fitted values, a code that indicates the reason for omission is reported in
the table.

Empty levels of factors and interactions are coded with the letter e.

Base levels of factors and interactions are coded with the letter b. Base levels can be set on alwaysvars
(variables always included in the lasso) but not on othervars (the set of variables from which lasso
selects).

lassocoef — Display coefficients after lasso estimation results 186

Variables omitted because of collinearity are coded with the letter o. Lasso does not label as omit-
ted any othervars because of collinearity. Collinear variables are simply not selected. Variables in
alwaysvars can be omitted because of collinearity. See Remarks and examples in [LASSO] Collinear
covariates.

display (x) displays an x in the table when the variable has been selected by the lasso; that is, it has
a nonzero coefficient.

display(u) is the same as display(x), except that when a variable was not specified in the model,
u (for unavailable) is displayed instead of a blank cell.

display(coef [, standardized penalized postselection eform format (fin?) |)
specifies that coefficient values be displayed in the table.

standardized specifies that the penalized coefficients of the standardized variables be displayed.
This is the default when display (coef) is specified without options. Penalized coefficients of
the standardized variables are the coefficient values used in the estimation of the lasso penalty.
See Methods and formulas in [LASSO] lasso.

penalized specifies that the penalized coefficients of the unstandardized variables be displayed.
Penalized coefficients of the unstandardized variables are the penalized coefficients of the stan-
dardized variables with the standardization removed.

postselection specifies that the postselection coefficients of the unstandardized variables be
displayed. Postselection coefficients of the unstandardized variables are obtained by fitting
an ordinary model (regress for lasso linear, logit for lasso logit, probit for lasso
probit, and poisson for lasso poisson) using the selected variables. See Methods and
formulas in [LASSO] lasso.

eform displays coefficients in exponentiated form. For each coefficient, exp(b) rather than b
is displayed. This option can be used to display odds ratios or incidence-rate ratios after the
appropriate estimation command.

format (% fint) specifies the display format for the coefficients in the table. The default is
format (%9.0g).

sort (sortspec) specifies that the rows of the table be ordered by specification given by sortspec.

sort (none) specifies that the rows of the table be ordered by the order the variables were specified
in the model specification. This is the default.

sort (names) orders rows alphabetically by the variable names of the covariates. In the case of factor
variables, main effects and nonfactor variables are displayed first in alphabetical order. Then, all
two-way interactions are displayed in alphabetical order, then, all three-way interactions, and so
on.

sort(coef |, standardized penalized postselection|) orders rows in descending order by
the absolute values of the coefficients. When results from two or more estimation results are dis-
played, results are sorted first by the ordering for the first estimation result with rows representing
coefficients not in the first estimation result last. Within the rows representing coefficients not in
the first estimation result, the rows are sorted by the ordering for the second estimation result with
rows representing coefficients not in the first or second estimation results last. And so on.

standardized orders rows in descending order by the absolute values of the penalized coeffi-
cients of the standardized variables. This is the default when sort (coef) is specified without
options.

lassocoef — Display coefficients after lasso estimation results 187

penalized orders rows in descending order by the absolute values of the penalized coefficients
of the unstandardized variables.

postselection orders rows in descending order by the absolute values of the postselection co-
efficients of the unstandardized variables.

nofvlabel displays factor-variable level numerical values rather than attached value labels. This option
overrides the fvlabel setting. See [R] set showbaselevels.

nolegend specifies that the legend at the bottom of the table not be displayed. By default, it is shown.

nolstretch specifies that the width of the table not be automatically widened to accommodate long
variable names. When nolstretch is specified, names are abbreviated to make the table width no
more than 79 characters. The default, 1stretch, is to automatically widen the table up to the width
of the Results window. To change the default, use set 1stretch off.

Required options for estspec after telasso, ds, po, and xpo:

for (varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation com-
mand fit using the option selection(cv), selection(adaptive), or selection(bic). For
all commands except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either
depvar, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred (varname). The lasso
for depvar is specified with its varname. Each of the endogenous variables have two lassos, spec-
ified by varname and pred (varname). The exogenous variables of interest each have only one
lasso, and it is specified by pred (varname) .

For telasso, varspec is either the outcome variable or the treatment variable.
This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds (#) was specified. For each variable to be fit with a lasso, K lassos are done, one
for each cross-fit fold, where K is the number of folds. This option specifies which fold, where
#=1,2,..., K. xfold(#) isrequired after an xpo command and after telasso when the option
xfolds (#) was specified.

resample (#) specifies a particular lasso after an xpo estimation command or after telasso fit using
the option resample (#). For each variable to be fit with a lasso, R x K lassos are done, where R
is the number of resamples and K is the number of cross-fitting folds. This option specifies which
resample, where # = 1,2,..., R. resample(#), along with xfold (#), is required after an xpo
command and after telasso with resampling.

tlevel (#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

Remarks and examples

lassocoef lists the variables selected by a lasso and optionally lists the values of their coefficients.
It is useful for comparing the results of multiple lassos. It shows how much overlap there is among the
sets of selected variables from the lassos.

By default, lassocoef indicates only whether a variable was selected, marking a selected variable
with an x. The option display (coef, coef_type) can be used to display the values of the coefficients.

lassocoef — Display coefficients after lasso estimation results 188

Lassos store three different types of coefficients (coef—_types). We refer to them as standardized,
penalized, and postselection.

Before a lasso is fit, the potential variables in the model are standardized so that they each have mean
0 and standard deviation 1. standardized refers to the coefficients of the standardized variables exactly
as estimated by the minimization of the objective function.

penalized refers to the coefficients from the minimization of the objective function with the stan-
dardization unwound. standardized, strictly speaking, gives the penalized coefficients of the standard-
ized variables. penalized gives the penalized coefficients of the unstandardized variables.

postselection coefficients are computed by taking the selected variables and, for a linear lasso,
estimating an ordinary least-squares linear regression with them, and using those coefficients. For a logit
lasso, a logistic regression gives the postselection coefficients; for a probit lasso, a probit regression gives
them; and for a Poisson lasso, a Poisson regression gives them.

lassocoef also hasa sort (coef, coef_type) option, which controls the order in which the variables
are listed. The most useful ordering is sort (coef, standardized). It sorts the listing by the absolute
values of the standardized coefficients with the largest displayed first. Variables with larger absolute
values of their standardized coefficients take up a larger share of the lasso penalty, and so in this sense,
they are “more important” for prediction than variables with smaller values.

b Example 1: lasso

We will show some uses of lassocoef after 1asso.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the v1
variable lists active.
. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with v1)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

lassocoef — Display coefficients after lasso estimation results 189

We fit the lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)

10-fold cross-validation with 100 lambdas ...

Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331
(output omitted)
Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 914
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553
* 24 | selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

By default, after only one lasso, lassocoef lists the variables selected by the lasso.

. lassocoef

active

0.gender
0.93

0.q94

0.95

2.96

0.q7
(output omitted)

ql1l
q139 X

_cons b4

Ea I B T B

]

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

lassocoef is intended to be used to compare multiple lassos. So let’s store the results of this lasso
before we fit another. See [LASSO] estimates store for more on storing and saving lasso results.

. estimates store lassocv

lassocoef — Display coefficients after lasso estimation results 190

We fit an adaptive lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous,
> selection(adaptive) rseed(1234)

(output omitted)
Lasso linear model No. of obs = 914
No. of covariates = 277
Selection: Adaptive No. of lasso steps = 2
Final adaptive step results
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
29 first lambda 52.54847 0 -0.0011 18.3349
82 lambda before .3794425 40 0.4077 10.84767
* 83 | selected lambda .3457338 41 0.4077 10.84764
84 lambda after .3150198 42 0.4074 10.85301
128 last lambda .0052548 62 0.3954 11.07398

* lambda selected by cross-validation in final adaptive step.

. estimates store lassoadaptive

Adaptive lasso selected 41 variables. Lasso selected 64. We can compare both the differences in se-
lection and differences in the values of the coefficients. We use lassocoef with display(coef,
standardized) to list the values of the standardized coefficients. We specify sort(coef,
standardized) to sort them so that the largest ones in absolute value from the first lasso are shown
first. The option nofvlabel means that numerical values for the factor-variable levels are displayed
rather than value labels.

. lassocoef lassocv lassoadaptive, display(coef, standardized)
> sort(coef, standardized) nofvlabel nolegend

lassocv lassoadaptive
0.q19 | -.8228234 -.9542076
0.988 . 7464342 .8650972
3.q156 | -.6770033 -.770628
0.948 | -.6055556 -.7086328
0.q973 | -.5962807 -.7036719
0.985 | -.5855315 -.684066
q31 .5843145 . 7228376
0.q101 .5565875 .6682665
(output omitted)
0.q75 | -.0056084
q63 | -.0055279
0.955 | -.0054106
0.951 .0043129
0.q77 .0019468
0.q115 .0005097
_cons 0 3.55e-15

Most of the differences occur in the coefficients with the smallest absolute values.

lassocoef — Display coefficients after lasso estimation results 191

Let’s fit another lasso. Note that we omitted the variable list idemographics from the potential

variables this time.

. lasso linear ql104 $ifactors $vlicontinuous, selection(cv) rseed(1234)
(output omitted)

Lasso linear model No. of obs 916
No. of covariates 269

Selection: Cross-validation No. of CV folds 10
No. of Out-of- CV mean

nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9127278 0 -0.0020 18.33925

24 lambda before .1074109 57 0.3406 12.06842

* 25 selected lambda .0978688 62 0.3407 12.06704

26 lambda after .0891744 70 0.3400 12.07962

28 last lambda .0740342 78 0.3361 12.15082

* lambda selected by cross-validation.

. estimates store lassocv2

The option display (u) puts a u next to the variables that were unavailable to be selected.

. lassocoef lassocv lassocv2, display(u)

lassocv lassocv2

0.gender

MoMoM oM
e e e e

(output omitted)

q100
No
q21
qb52
_cons X

L B

Legend:
b - base level
e - empty cell
o — omitted
x - estimated
u - not selected for estimation

If display(u) was not specified, there would be empty space in place of the u’s. So this option is useful
for distinguishing whether a variable was not selected or simply not included in the model specification.

d

lassocoef — Display coefficients after lasso estimation results 192

b Example 2: poivregress

We want to show you some differences that arise when you fit models containing endogenous variables
using poivregress and xpoivregress.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r19/mroz2, clear

set v1 variable lists,

. vl create vars = (kidslt6 kidsge6 age husage city exper)
note: $vars initialized with 6 variables.

. vl substitute vars2 = c.vars c.vars#c.vars

. vl create iv = (huseduc motheduc fatheduc)
note: $iv initialized with 3 variables.

. vl substitute iv2 = c.iv c.iv#c.iv

and fit our model using poivregress.

. poivregress lwage (educ = $iv2), controls($vars2) selection(cv) rseed(12345)

Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Estimating lasso for pred(educ) using cv

Partialing-out IV linear model Number of obs = 428
Number of controls = 27

Number of instruments = 9

Number of selected controls = 16

Number of selected instruments = 4

Wald chi2(1) = 11.10

Prob > chi2 = 0.0009

Robust
lwage | Coefficient std. err. z P>|z| [95% conf. interval]
educ .0765154 .0229707 3.33 0.001 .0314936 .1215371

Endogenous: educ

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

estimates store poivregresscv

We use lassoinfo to see the lassos fit by poivregress.

lassoinfo poivregresscv

Estimate: poivregresscv
Command: poivregress

No. of

Selection Selection selected

Variable Model method criterion lambda variables
lwage linear cv CV min. .0353704 3

educ linear cv CV min. .0530428 10
pred(educ) linear cv CV min. .013186 12

lassocoef — Display coefficients after lasso estimation results 193

We have two lassos for educ, the endogenous variable in the model. One is named educ and the other
pred(educ). To compare the coefficient estimates for these two lassos, we type

. lassocoef (poivregresscv, for(educ)) (poivregresscv, for(pred(educ))),
> display(coef, standardized) sort(coef, standardized) nolegend

poivregresscv poivregresscv
educ pred(educ)
c.huseduc#c.huseduc 1.047956
c.motheduc#c.fatheduc .5574474
c.kidsge6#c.kidsge6 -.2293016 -.274782
c.kidslt6#c.kidslt6 .1175937
c.kidsge6#c.exper .1087689 .2928483
c.motheduc#c.motheduc .0813009
c.huseduc#c.fatheduc .0411326
c.city#c.exper .0207999 .1020498
c.husage#c.exper .0077213
c.kidsgeb#c.city -.0017114
kidslt6 .5342914
c.kidslt6#c.kidsge6 -.2364133
kidsge6 -.2129479
husage -.2091804
c.husage#c.city .1396385
c.exper#c.exper -.133589
c.kidslt6#c.exper -.1322304
c.city#c.city .1320515
c.kidslt6#c.city .0237243
_cons 0 1.78e-15

b Example 3: xporegress

The xpo commands fit many lassos. For each lasso fit by a po command, the corresponding xpo
command fits xfolds (#) X resample(#) lassos. Cross-fitting randomly creates different divisions of
the data for each resample. We expect that lasso will select different variables for different cross-fit folds
and resamples. See [LASSO] Inference examples for a description of the data and model.

We load the data, set v1 variable lists, fit our model using xporegress with the options xfolds(3)
and resample(2), and then store the results with estimates store.

lassocoef — Display coefficients after lasso estimation results 194

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

. vl set
(output omitted)

. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.

(output omitted)

. vl create mycontinuous = vlcontinuous - (react no2_class)
note: $mycontinuous initialized with 10 variables.

. vl substitute mycontrols = i.vlcategorical mycontinuous

. xporegress react no2_class, controls($mycontrols) xfolds(3) resample(2)
> selection(cv) rseed(12345)
Resample 1 of 2 ...
Cross-fit fold 1 of 3
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32
Number of selected controls = 27
Number of folds in cross-fit = 3
Number of resamples = 2
Wald chi2(1) = 20.99
Prob > chi2 = 0.0000

Robust
react | Coefficient std. err. z P>zl [95% conf. intervall
no2_class 2.332193 .5090902 4.58 0.000 1.334394 3.329991

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

estimates store xpocv

lassocoef — Display coefficients after lasso estimation results 195

For each cross-fit fold and each resample, xporegress fits lassos. It fit six lassos for the dependent
variable, react, and six for the variable of interest, no2_class. To see how the variables selected differ
for different folds and for different resamples, we type

lassocoef (xpocv, for(react) resample(1) xfold(1))

> (xpocv, for(react) resample(1l) xfold(2))
> (xpocv, for(react) resample(l) xfold(3))
> (xpocv, for(react) resample(2) xfold(1))
> (xpocv, for(react) resample(2) xfold(2))
> (xpocv, for(react) resample(2) xfold(3))
> , sort(coef, standardized)
Xpocv Xpocv Xpocv Xpocv Xpocv Xpocv
react_1_1 react_2_1 react_3_1 react_1_2 react_2_2 react_3_2
grade
2nd X X X X X b
sex
Male X X X X X X
grade
4th X X X X X X
age X X X b4 b4 X
feducation
University X X X X X X
age0 X X X X b4
meducation
Primary X X X X b4 X
breastfeed
2 bd X X
0.msmoke X X b4
feducation
Primary X X X b4
<Primary X bd
sev_school X bq
meducation
<Primary X X X X
(output omitted)
0.overweight X
precip X
green_home X
Legend:
b - base level

e - empty cell
o - omitted
x - estimated

lassocoef — Display coefficients after lasso estimation results 196

Even though we had lassocoef display x’s, we specified the sort (coef, standardized) option so
that the table is ordered by the most important variables from the lasso in the first column.
N
Stored results

lassocoef stores the following inr () :

Macros
r (names) names of results used
Matrices
r(coef) matrix M: n X m
M][i, j] = ith coefficient estimate for model j;¢=1,...,n;5=1,...,m
Also see

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models
[LASSO] lassoinfo — Display information about lasso estimation results
[

CAUSAL] telasso postestimation — Postestimation tools for telasso

lasso examples — Examples of lasso for prediction

Description Remarks and examples References Also see

Description

This entry contains more examples of lasso for prediction. It assumes you have already read
[LASSO] Lasso intro and [LASSO] lasso.

Remarks and examples

Remarks are presented under the following headings:

Overview

Using vl to manage variables
Using splitsample

Lasso linear models
Adaptive lasso
Cross-validation folds

BIC

More potential variables than observations
Factor variables in lasso
Lasso logit and probit models
Lasso Poisson models

Lasso Cox models

Overview

In the examples of this entry, we use a dataset of a realistic size for lasso. It has 1,058 observations
and 172 variables. Still, it is a little on the small side for lasso. Certainly, you can use lasso on datasets of
this size, but lasso can also be used with datasets that have thousands or tens of thousands of variables.

The number of variables can even be greater than the number of observations. What is essential for
lasso is that the set of potential variables contains a subset of variables that are in the true model (or
something close to it) or are correlated with the variables in the true model.

As to how many variables there can be in the true model, we can say that the number cannot be greater
than something proportional to v/N/ Inq, where N is the number of observations, p is the number of
potential variables, and ¢ = max{N, p}. We cannot, however, say what the constant of proportionality
is. That this upper bound decreases with ¢ can be viewed as the cost of performing covariate selection.

Using vl to manage variables

We will show how to use commands in the v1 system to manage large numbers of variables. v1 stands
for “variable lists”. The idea behind it is that we might want to run a lasso with hundreds or thousands or
tens of thousands of variables specified as potential variables. We do not want to have to type all these
variable names.

Many times, we will have a mix of different types of variables. Some we want to treat as continuous.
Some we want to treat as categorical and use factor-variable operators with them to create indicator
variables for their categories. See [U] 11.4.3 Factor variables.

197

lasso examples — Examples of lasso for prediction 198

The first goal of the v1 system is to help us separate variables we want to treat as categorical from
those we want to treat as continuous. The second goal of the system is to help us create named variable
lists we can use as arguments to lasso or any other Stata command simply by referring to their names.

The purpose here is to illustrate the power of v1, not to explain in detail how it works or show all of
its features. For that, see [D] vl

We load the dataset we will use in these examples.

. use https://www.stata-press.com/data/r19/fakesurvey
(Fictitious survey data)

It is simulated data designed to mimic survey data. It has 1,058 observations and 172 variables.

. describe

Contains data from https://www.stata-press.com/data/r19/fakesurvey.dta

Observations: 1,058 Fictitious survey data
Variables: 172 14 Jun 2024 15:31
Variable Storage Display Value
name type format label Variable label
id str8 %9s Respondent ID
gender byte %8.0g gender Gender
age byte %8.0g Age (y)
ql byte %10.0g Question 1
q2 byte %8.0g Question 2
q3 byte %8.0g yesno Question 3
(output omitted)
q160 byte %8.0g yesno Question 160
qlél byte %8.0g yesno Question 161
check8 byte %8.0g Check 8

Sorted by: id

The variables are a mix. Some we know are integer-valued scales that we want to treat as continuous
variables in our models. There are a lot of 0/1 variables, and there are some with only a few categories
that we will want to turn into indicator variables. There are some with more categories that we do not
yet know whether to treat as categorical or continuous.

The first v1 subcommand we run is v1 set. Nonnegative integer-valued variables are candidates for
use as factor variables. Because factor variables cannot be negative, any variable with negative values
is classified as continuous. Any variable with noninteger values is also classified as continuous.

vl set has two options, categorical (#) and uncertain(#), that allow us to separate out the
nonnegative integer-valued variables into three named variable lists: vlcategorical, vluncertain,
and vlcontinuous.

lasso examples — Examples of lasso for prediction 199

When the number of levels (distinct values), L, is

2 < L < categorical(#)

the variable goes in vlcategorical. When

categorical (#) < L < uncertain(#)

the variable goes in vluncertain. When

L > uncertain(#)

the variable goes in vlcontinuous.

The defaults are categorical (10) and uncertain(100). For our data, we do not like the defaults,
so we change them. We specify categorical(4) and uncertain(19). We also specify the option
dummy to create a variable list, vldummy, consisting solely of 0/1 variables. Let’s run v1 set with these

options.
. vl set, categorical(4) uncertain(19) dummy
Macro’s contents
Macro # Vars Description
System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 20 continuous variables
$vluncertain 27 perhaps continuous, perhaps categorical variables
$vlother 9 all missing or constant variables
Notes

. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.

If there are any variables in vluncertain, you can reallocate them
to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

. Use vl move to move variables among classifications. For example,

type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

vlinames are global macros. Type the viname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

lasso examples — Examples of lasso for prediction 200

The vluncertain variable list contains all the variables we are not sure whether we want to treat as
categorical or continuous. We use v1 1ist to list the variables in vluncertain.

. vl list vluncertain

Variable | Macro Values Levels
ql12 | $vluncertain integers >=0 5
q18 | $vluncertain integers >=0 7
923 | $vluncertain integers >=0 10
927 | $vluncertain integers >=0 8
q28 | $vluncertain integers >=0 15
935 | $vluncertain integers >=0 7
939 | $vluncertain integers >=0 5
q54 | $vluncertain integers >=0 10
963 | $vluncertain integers >=0 7
966 | $vluncertain integers >=0 5
980 | $vluncertain integers >=0 5
981 | $vluncertain integers >=0 5
q92 | $vluncertain integers >=0 5
q93 | $vluncertain integers >=0 7
q99 | $vluncertain integers >=0 5

q103 | $vluncertain integers >=0 7
q107 | $vluncertain integers >=0 18
ql11 | $vluncertain integers >=0 7
ql12 | $vluncertain integers >=0 7
q119 | $vluncertain integers >=0 8
q120 | $vluncertain integers >=0 7
ql24 | $vluncertain integers >=0 14
q127 | $vluncertain integers >=0 5
q132 | $vluncertain integers >=0 7
q135 | $vluncertain integers >=0 10
q141 | $vluncertain integers >=0 12
q157 | $vluncertain integers >=0 7

We are going to have to go through these variables one by one and reclassify them. We know we have
several seven-level Likert scales in these data. We tabulate one of them.

. tabulate ql18

Question 18 Freq. Percent Cum.
Very strongly disagree 139 13.15 13.15
Strongly disagree 150 14.19 27.34
Disagree 146 13.81 41.15
Neither agree nor disagree 146 13.81 54.97
Agree 174 16.46 71.43
Strongly agree 146 13.81 85.24
Very strongly agree 156 14.76 100.00
Total 1,057 100.00

lasso examples — Examples of lasso for prediction 201

We look at all the variables with seven levels, and they are all Likert scales. We want to treat them as
continuous in our models, so we move them out of vluncertain and into vlcontinuous.

. vl move (q18 935 963 993 q103 qi111 112 q120 q132 q157) vlcontinuous
note: 10 variables specified and 10 variables moved.

Macro # Added/Removed
$v1ldummy 0
$vlcategorical 0
$vlcontinuous 10
$vluncertain -10
$vlother 0

When variables are moved into a new v1 system-defined variable list, they are automatically moved out
of their current system-defined variable list.

In our examples, we have three variables we want to predict: q104, a continuous variable; q106, a 0/1
variable; and q107, a count variable. Because we are going to use the variables in vlcategorical and
vlcontinuous as potential variables to select in our lassos, we do not want these dependent variables
in these variable lists. We move them into vlother, which is intended as a place to put variables we do
not want in our models.

. vl move (q104 q106 q107) vlother
note: 3 variables specified and 3 variables moved.

Macro # Added/Removed
$v1ldummy -1
$vlcategorical 0
$vlcontinuous -1
$vluncertain -1
$vlother 3

Notice the parentheses around the variable names when we used v1 move. The rule for v1 is to use
parentheses around variable names and to not use parentheses for variable-list names.

The system-defined variable lists are good for a general division of variables. But we need further
subdivision for our models. We have four demographic variables, which are all categorical, but we want
them included in all lasso models. So we create a user-defined variable list containing these variables.

. vl create demographics = (gender q3 g4 qg5)
note: $demographics initialized with 4 variables.

We want to convert the variables in vldummy and vlcategorical into indicator variables. We create
anew variable list, factors, containing the union of these lists. Because we want to handle the variables
in demographics separately, we remove them from factors.

. vl create factors = vldummy + vlcategorical
note: $factors initialized with 114 variables.

. vl modify factors = factors - demographics
note: 4 variables removed from $factors.

The v1 substitute command allows us to apply factor-variable operators to a variable list. We turn
the variables in demographics and factors into factor variables.

lasso examples — Examples of lasso for prediction 202

. vl substitute idemographics = i.demographics

. vl substitute ifactors = i.factors

We are done using v1 and we save our dataset. One nice feature of v1 is that the variable lists are
saved with the data.

label data "Fictitious survey data with v1"

save fakesurvey_vl
file fakesurvey_vl.dta saved

We are now ready to run some lassos.

Using splitsample

Well, almost ready. We want to evaluate our lasso predictions on a sample that we did not use to fit
the lasso. So we decide to randomly split our data into two samples of equal sizes. We will fit models
on one, and we will use the other to test their predictions.

Let’s load the version of our dataset that contains our variable lists. We first increase maxvar because
we are going to create thousands of interactions in a later example.
clear all

set maxvar 10000

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with v1)

Variable lists are not automatically restored. We have to run v1 rebuild to make them active.

. vl rebuild
Rebuilding vl macros
Macro’s contents
Macro # Vars Description
System
$v1ldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables
User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We now use splitsample to generate a variable indicating the two subsamples.

set seed 1234
splitsample, generate(sample) nsplit(2)
label define svalues 1 "Training" 2 "Testing"

label values sample svalues

lasso examples — Examples of lasso for prediction 203

Lasso linear models

When fitting our lasso model, we can now specify variables succinctly using our v1 variable lists.
Variable lists are really global macros—we bet you already guessed this. Listing them under the header
“Macro” in v1 output was a real tip-off, right? Because they are global macros, when we use them as
arguments in commands, we put a $ in front of them.

We put parentheses around idemographics. This notation means that we want to force these vari-
ables into the model regardless of whether lasso wants to select them. See Syntax in [LASSO] lasso.

We also set the random-number seed using the rseed () option so that we can reproduce our results.

We fit 1lasso on the first subsample.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous

> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93341
(output omitted)
Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10 CVF = 12.17933
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991
* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.

. estimates store linearcv

After the command finished, we used estimates store to store the results in memory so that we can
later compare these results with those from other lassos. Note, however, that estimates store only
saves them in memory. To save the results to disk, use

. estimates save filename

See [LASSO] estimates store.

The minimum of the cross-validation (CV) function was found to be at A = 0.1682318. It selects *
as this A, which corresponds to 49 variables in the model, out of 277 potential variables.

lasso examples — Examples of lasso for prediction 204

After fitting a lasso using CV to select A, it is a good idea to plot the CV function and look at the shape
of the curve around the minimum.

. cvplot

Cross-validation plot
174
16
154

14

Cross-validation function

13

12

1 1
A

Acv = .17 is the cross-validation minimum A; # coefficients = 49.

By default, the 1asso command stops when it has identified a minimum. Computation time in-
creases as A’s get smaller, so computing the CV function for smaller \’s is computationally expensive.
We could specify the option selection(cv, alllambdas) to compute models for more small \’s. See
[LASSO] lasso and [LASSO] lasso fitting for details and a description of less computationally intensive
options to get more assurance that lasso has identified a minimum.

We can also get a plot of the size of the coefficients as they become nonzero and change as A gets
smaller. Typically, they get larger as A gets smaller. But they can sometimes return to 0 after being
nonzero.

. coefpath

Coefficient paths

Standardized coefficients
o
I

0 5 10 15
L1-norm of standardized coefficient vector

We see four lines that do not start at 0. These are lines corresponding to the four variables in
idemographics that we forced into the model.

lasso examples — Examples of lasso for prediction 205

Adaptive lasso

We are now going to run an adaptive lasso, which we do by specifying the option
selection(adaptive).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(4321) selection(adaptive)

Lasso step 1 of 2:
10-fold cross-validation with 100 lambdas ...

Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 17.012

(output omitted)
Grid value 24: lambda = .1056545 no. of nonzero coef. = 78
Folds: 1...5....10 CVF = 12.40012

. cross-validation complete ... minimum found

Lasso step 2 of 2:

Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 48.55244 no. of nonzero coef. = 4

(output omitted)
Grid value 100: lambda = .0048552 no. of nonzero coef. = 59

10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100

(output omitted)

Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
. cross-validation complete

Lasso linear model No. of obs = 458

No. of covariates = 277

Selection: Adaptive No. of lasso steps = 2
Final adaptive step results

No. of Out-of- CV mean

nonzero sample prediction

ID Description lambda coef. R-squared error

25 first lambda 48.55244 4 0.0101 17.01083

7 lambda before .3847698 46 0.3985 10.33691

* 78 | selected lambda .3505879 46 0.3987 10.33306

79 lambda after .3194427 47 0.3985 10.33653

124 last lambda .0048552 59 0.3677 10.86697

* lambda selected by cross-validation in final adaptive step.

. estimates store linearadaptive

Adaptive lasso performs multiple lassos. In the first lasso, a A* is selected, and penalty weights are
constructed from the coefficient estimates. Then these weights are used in a second lasso, where another
A* is selected. We did not specify how many lassos should be performed, so we got the default of two.
We could specify more, but typically the selected * does not change after the second lasso, or it changes
little. See the selection(adaptive) option in [LASSO] lasso.

lasso examples — Examples of lasso for prediction 206

We can see details of the two lassos by using lassoknots and specifying the option steps to see all
steps of the adaptive lasso.

. lassoknots, steps

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,
Step D lambda coef. error or left (U)nchanged
1

1 .8978025 4 17.012 | A 1.93 1.94
1.95 1.gender

2 .8180442 7 16.91096 | A 0.919 0.985
3.q156

3 . 7453714 8 16.66328 | A 0.q101

4 .6791547 9 16.33224 | A 0.988

(output omitted)

23 .1159557 74 12.35715 | A 3.96 0.940
0.g82 0.q98
0.q128 2.q134
0.q148 q157

24 .1056545 78 12.40012 | A 2.96 0.99
1.934 4.q155

2

25 48.55244 4 17.01083 A 1.q3 1.q94
1.95 1.gender

26 | 44.23918 6 16.94087 | A 0.q19 0.985

(output omitted)
76 .4222844 45 10.33954 | A 0.q44
7 .3847698 46 10.33691 A ql11
* 78 .3505879 46 10.33306 | U
79 .3194427 47 10.33653 | A 0.997
80 .2910643 48 10.3438 | A 0.q138
(output omitted)
112 .0148272 59 10.7663 | A q70
124 .0048552 59 10.86697 | U

* lambda selected by cross-validation in final adaptive step.

Notice how the scale of A changes in the second lasso. That is because of the penalty weights generated
by the first lasso.

The ordinary lasso selected 49 variables, and the adaptive lasso selected 46. It is natural to ask how
much these two groups of variables overlap. When the goal is prediction, however, we are not supposed to
care about this. Ordinary lasso might select one variable, and adaptive lasso might instead select another
that is highly correlated to it. So it is wrong to place importance on any particular variable selected or
not selected. It is the group of variables selected as a whole that matters.

Still, we cannot resist looking, and the lassocoef command was designed especially for this pur-
pose. We specify lassocoef with the option sort (coef, standardized). This sorts the listing by
the absolute values of the standardized coefficients with the largest displayed first. lassocoef can list
different types of coefficients and display them in different orderings. See [LASSO] lassocoef.

lasso examples — Examples of lasso for prediction 207

. lassocoef linearcv linearadaptive, sort(coef, standardized)

linearcv linearadaptive
ql9
No X X
q85
No X X
q5
Yes X X
3.q156 X X
qlo1
No X X
(output omitted)
q160
No X X
age X X
q53 X X
2.q105 X
ql102
No X X
qlb4
No X X
qlil X X
ql42
No X X
0.955 X
0.q97 X
q65
4 X X
1.q110 X X
q70 X
q44
No X
(output omitted)
1
Legend:
b - base level
e - empty cell
o - omitted
X - estimated

We see that the adaptive lasso did not select four variables that the lasso did, and it selected one that the
lasso did not. All the differences occurred among the variables with smaller standardized coefficients.

lasso examples — Examples of lasso for prediction 208

The most important question to ask is which performed better for out-of-sample prediction. lassogof
is the command for that. We specify the over () option with the name of our sample indicator variable,
sample. We specify the postselection option because for linear models, postselection coefficients
are theoretically slightly better for prediction than the penalized coefficients (which lassogof uses by
default).

. lassogof linearcv linearadaptive, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs
linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493
linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

The ordinary lasso did a little better in this case than the adaptive lasso.

Cross-validation folds

CV works by dividing the data randomly into K folds. One fold is chosen, and then a linear regression
is fit on the other K — 1 folds using the variables in the model for that A. Then using these new coefficient
estimates, a prediction is computed for the data of the chosen fold. The mean squared error (MSE) of the
prediction is computed. This process is repeated for the other K — 1 folds. The K MSEs are then averaged
to give the value of the CV function.

Let’s increase the number of folds from the default of 10 to 20 by specifying selection(cv,
folds(20)).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous

> if sample == 1, selection(cv, folds(20)) rseed(9999)
20-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10....15....20 CVF = 17.08362
(output omitted)
Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10....15....20 CVF = 12.12667
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 20
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda .8978025 4 0.0059 17.08362
19 lambda before .1682318 49 0.2999 12.03169
* 20 selected lambda .1532866 55 0.3002 12.02673
21 lambda after .139669 62 0.2988 12.05007
23 last lambda .1159557 74 0.2944 12.12667

* lambda selected by cross-validation.

. estimates store linearcv2

lasso examples — Examples of lasso for prediction 209

Which performs better for out-of-sample prediction?

. lassogof linearcv linearcv2, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs
linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493
linearcv2
Training 8.545785 0.5126 502
Testing 14.7507 0.2594 488

The first lasso with 10 folds did better than the lasso with 20 folds. This is generally true. More than 10
folds typically does not yield better predictions.

We should mention again that CV is a randomized procedure. Changing the random-number seed can
result in a different * being selected and so give different predictions.

BIC

We are now going to select A* by minimizing the BIC function, which we do by specifying the option
selection(bic).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous

> if sample == 1, selection(bic)

Evaluating up to 100 lambdas in grid ...

Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
BIC = 2618.642

Grid value 2: lambda = .8180442 no. of nonzero coef. = 7
BIC = 2630.961

Grid value 3: lambda = .7453714 no. of nonzero coef. = 8
BIC = 2626.254

Grid value 4: lambda = .6791547 no. of nonzero coef. = 9
BIC = 2619.727

Grid value 5: lambda = .6188205 no. of nonzero coef. = 10
BIC = 2611.577

Grid value 6: lambda = .5638462 no. of nonzero coef. = 13
BIC = 2614.155

Grid value 7: lambda = .5137556 no. of nonzero coef. = 13
BIC = 2597.164

Grid value 8: lambda = .468115 no. of nonzero coef. = 14
BIC = 2588.189

Grid value 9: lambda = .4265289 no. of nonzero coef. = 16
BIC = 2584.638

Grid value 10: lambda = .3886373 no. of nonzero coef. = 18
BIC = 2580.891

Grid value 11: lambda = .3541118 no. of nonzero coef. = 22
BIC = 2588.984

Grid value 12: lambda = .3226535 no. of nonzero coef. = 26
BIC = 2596.792

Grid value 13: lambda = .2939899 no. of nonzero coef. = 27
BIC = 2586.521

Grid value 14: lambda = .2678726 no. of nonzero coef. = 28
BIC = 2578.211

Grid value 15: lambda = .2440755 no. of nonzero coef. = 32

BIC = 2589.632

lasso examples — Examples of lasso for prediction 210

Grid value 16: lambda = .2223925 no. of nonzero coef. = 35
BIC = 2593.753
Grid value 17: lambda = .2026358 no. of nonzero coef. = 37
BIC = 2592.923
Grid value 18: lambda = .1846342 no. of nonzero coef. = 42
BIC = 2609.975
Grid value 19: lambda = .1682318 no. of nonzero coef. = 49
BIC = 2639.437
. selection BIC complete ... minimum found
Lasso linear model No. of obs = 458
No. of covariates = 277

Selection: Bayesian information criterion

No. of

nonzero In-sample
ID Description lambda coef. R-squared BIC
1 first lambda .8978025 4 0.0308 2618.642
13 lambda before .2939899 27 0.3357 2586.521
* 14 | selected lambda .2678726 28 0.3563 2578.211
15 lambda after .2440755 32 0.3745 2589.632
19 last lambda .1682318 49 0.4445 2639.437

* lambda selected by Bayesian information criterion.

. estimates store linearbic

The minimum of the BIC function was found to be at A = 0.268. It selects * as this A\, which
corresponds to 28 variables in the model out of 277 potential variables.

After fitting a lasso using BIC, it is a good idea to plot the BIC function and look at the shape of the
curve around the minimum.

. bicplot

BIC plot

Asic
2640

2620

2600

Bayesian information criterion

2580

1 1

Agc = .27 is the BIC minimum A; # coefficients = 28.

We see that the BIC function rises sharply once it hits the minimum. By default, the lasso command
stops when it has identified a minimum.

So far, we have fit lasso linear models using CV, an adaptive lasso, and BIC. Which one performs
better in the out-of-sample prediction?

lasso examples — Examples of lasso for prediction 211

. lassogof linearcv linearadaptive linearbic, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs
linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493
linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494
linearbic
Training 9.740229 0.4421 508
Testing 13.44496 0.3168 503

The BIC lasso performs the best.

More potential variables than observations
Lasso has no difficulty fitting models when the number of potential variables exceeds the number of
observations.

We use v1 substitute to create interactions of all of our factor-variable indicators with our contin-
uous variables.

. vl substitute interact = i.factors##c.vlcontinuous

We fit the lasso.

. lasso linear q104 ($idemographics) $interact if sample == 1, rseed(1234)
note: 1.q32#c.q70 omitted because of collinearity with another variable.
note: 2.q34#c.q63 omitted because of collinearity with another variable.

(output omitted)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 1.020288 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93478
(output omitted)
Grid value 34: lambda = .2198144 no. of nonzero coef. = 106
Folds: 1...5....10 CVF = 12.91285
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 458
No. of covariates = 7,227
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda 1.020288 4 0.0146 16.93478
29 lambda before .2773743 80 0.2531 12.83525
* 30 selected lambda .2647672 85 0.2545 12.81191
31 lambda after .2527331 89 0.2541 12.81893
34 last lambda .2198144 106 0.2486 12.91285

* lambda selected by cross-validation.

. estimates store big

lasso examples — Examples of lasso for prediction 212

There were 7,227 potential covariates in our model, of which lasso selected 85. That seems signifi-
cantly more than the 49 selected by our earlier lasso.

Let’s see how they do for out-of-sample prediction.

. lassogof linearcv big, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs
linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493
big
Training 6.705183 0.6117 490
Testing 17.00972 0.1403 478

Our model with thousands of potential covariates did better for in-sample prediction but significantly
worse for out-of-sample prediction.

Factor variables in lasso

It is important to understand how lasso handles factor variables. Let’s say we have a variable, region,
that has four categories representing four different regions of the country. Other Stata estimation com-
mands handle factor variables by setting one of the categories to be the base level; it then makes indicator
variables for the other three categories, and they become covariates for the estimation.

Lasso does not set a base level. It creates indicator variables for all levels (1.region, 2.region,
3.region, and 4.region) and adds these to the set of potential covariates. The reason for this should
be clear. What if 1.region versus the other three categories is all that matters for prediction? Lasso
would select 1.region and not select the other three indicators. If, however, 1.region was set as a
base level and omitted from the set of potential covariates, then lasso would have to select 2.region,
3.region, and 4.region to pick up the 1.region effect. It might be wasting extra penalty on three
coefficients when only one was needed.

See [LASSO] Collinear covariates.

lasso examples — Examples of lasso for prediction 213

Lasso logit and probit models

lasso will also fit logit, probit, Poisson, and Cox models.

We fit a logit model.
. lasso logit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .1155342 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.384878
(output omitted)
Grid value 27: lambda = .010285 no. of nonzero coef. = 88
Folds: 1...5....10 CVF = 1.147343
. cross-validation complete ... minimum found
Lasso logit model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of-
nonzero sample CV mean
ID Description lambda coef. dev. ratio deviance
1 first lambda .1155342 0 -0.0004 1.384878
22 lambda before .0163767 65 0.1857 1.127315
* 23 | selected lambda .0149218 69 0.1871 1.125331
24 lambda after .0135962 73 0.1864 1.126333
27 last lambda .010285 88 0.1712 1.147343

* lambda selected by cross-validation.

. estimates store logit

Logit and probit lasso models are famous for having CV functions that are more wiggly than those for
linear models.

. cvplot
Cross-validation plot

1.4+

1.3

1.2

Cross-validation function

1.1

A

Acv = .015 is the cross-validation minimum A; # coefficients = 69.

lasso examples — Examples of lasso for prediction 214

This curve is not as smoothly convex as was the CV function for the linear lasso shown earlier. But it is
not as bad as some logit CV functions. Because the CV functions for nonlinear models are not as smooth,
lasso has a stricter criterion for declaring that a minimum of the CV function is found than it has for
linear models. lasso requires that five smaller \’s to the right of a nominal minimum be observed with
larger CV function values by a relative difference of cvtolerance (#) or more. Linear models only
require three such \’s be found before declaring a minimum and stopping.

Let’s now fit a probit model.

. lasso probit q106 $idemographics $ifactors $vlcontinuous

> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .1844415 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.384877
(output omitted)
Grid value 26: lambda = .0180201 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 1.152188
. cross-validation complete ... minimum found
Lasso probit model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of-
nonzero sample CV mean
ID Description lambda coef. dev. ratio deviance
1 first lambda .1844415 0 -0.0004 1.384877
21 lambda before .0286931 61 0.1820 1.132461
* 22 selected lambda .0261441 64 0.1846 1.128895
23 lambda after .0238215 70 0.1841 1.129499
26 last lambda .0180201 87 0.1677 1.152188

* lambda selected by cross-validation.

. estimates store probit

lasso examples — Examples of lasso for prediction 215

lassocoef can be used to display coefficient values. Obviously, logit and probit coefficient values
cannot be compared directly. But we do see similar relative scales.

. lassocoef logit probit, sort(coef, standardized) display(coef, standardized)

logit probit
ql42
No -.50418 -.3065817
qlb54
No .3875702 -.2344515
q90
No .3771052 -.2288992
q8
No .3263827 -.200673
(output omitted)
q37
No .0128537 -.0062874
2.q158 .0065661 .0012856
3.965 .0062113
3.q110 .0055616
q120 .0044864
0.q146 -.004312
q95
3 .0030261

Legend:

b - base level
e - empty cell
o - omitted

The probit lasso selected five fewer variables than logit, and they were the five variables with the smallest

absolute values of standardized coefficients.

We look at how they did for out-of-sample prediction.

. lassogof logit probit, over(sample)

Penalized coefficients

Deviance

Name sample Deviance ratio Obs
logit

Training .8768969 0.3674 499

Testing 1.268346 0.0844 502
probit

Training .8833892 0.3627 500

Testing 1.27267 0.0812 503

Neither did very well. The out-of-sample deviance ratios were notably worse than the in-sample values.
The deviance ratio for nonlinear models is analogous to R? for linear models. See Methods and formulas
for [LASSO] lassogof for the formal definition.

lasso examples — Examples of lasso for prediction 216

We did not specify the postselection option in this case because there are no theoretical grounds
for using postselection coefficients for prediction with nonlinear models.

Lasso Poisson models

Next, we fit a Poisson model.

. lasso poisson q107 $idemographics $ifactors $vlcontinuous

> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .5745539 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 2.049149
(output omitted)
Grid value 21: lambda = .089382 no. of nonzero coef. = 66
Folds: 1...5....10 CVF = 1.653376
. cross-validation complete ... minimum found
Lasso Poisson model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of-
nonzero sample CV mean
ID Description lambda coef. dev. ratio deviance
1 first lambda .5745539 0 -0.0069 2.049149
16 lambda before .1423214 37 0.1995 1.629222
* 17 selected lambda .129678 45 0.1999 1.628315
18 lambda after .1181577 48 0.1993 1.62962
21 last lambda .089382 66 0.1876 1.653376
* lambda selected by cross-validation.
We see how it does for out-of-sample prediction.
. lassogof, over(sample)
Penalized coefficients
Deviance
sample Deviance ratio Obs
Training 1.289175 0.3515 510
Testing 1.547816 0.2480 502

Its in-sample and out-of-sample predictions are fairly close. Much closer than they were for the logit and
probit models.

Lasso Cox models

lasso will also fit Cox proportional hazards models. We illustrate lasso cox with an example that
predicts risk of death for stage I lung adenocarcinoma patients. Lung adenocarcinoma is one of the most
common non-small-cell lung cancers.

lasso examples — Examples of lasso for prediction 217

Stage I adenocarcinoma indicates that the tumor size is relatively small, and cancer has not spread
to other distant organs. Stage I adenocarcinoma patients usually have varied survival outcomes even
though they are in the early cancer development stage. For example, Yu et al. (2016) show that, in one
cohort, more than 50% of stage I adenocarcinoma patients died within 5 years after the initial diagnosis,
while about 15% of the patients survived for more than 10 years.

Histopathology image features are indispensable for prognostic analysis. Examples of the histopathol-
ogy image features include image granularity, image intensity, cell size and shape, pixel intensity of the
cell, cell texture, area occupied by cells, neighboring relation of the cells, nucleus size and shape, and
nucleus texture. We can use lasso cox to extract the top histopathology image features that distinguish
short-term survivors from long-term survivors.

We have a fictitious survival dataset (lungcancer.dta) inspired by Yu et al. (2016). The variable t
records either the time of death or censoring in months for stage I adenocarcinoma lung cancer patients.
The indicator variable died is 1 or O if the patient died or is censored, respectively. There are 500
histopathology image features, histfeaturel to hisfeature500, and only 250 patients. The analysis
aims to classify a new patient into a low-risk or high-risk group, given the histopathology image features.

We first load the dataset and then type stset to show it has already been stset.
. use https://www.stata-press.com/data/r19/lungcancer
(Fictitious data on stage I adenocarcinoma lung cancer)

. stset
-> stset t, failure(died)
Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, t]
Exit on or before: failure

250 total observations
0 exclusions

250 observations remaining, representing
211 failures in single-record/single-failure data
18,465.093 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 260

Next, we need to split the entire sample into training and testing data. The training data will be used
for estimation, and the testing data will be used to measure the prediction performance. These steps are
typically used in the microarray survival literature; for an application to the performance of a Cox model
with lasso, see Sohn et al. (2009).

We use splitsample to split the data into two parts. The generate (group) option creates a new
variable group for the identification of the training and testing data. That is, group equals 1 if it belongs
to the training data or 0 if it belongs to the testing data. The split (0.6 0.4) option specifies that 60%
of the entire data be used as training data and 40% of them be used as testing data. To make the results
reproducible, we specify the rseed () option.

. splitsample, generate(group) split(0.6 0.4) rseed(12345)

For the convenience of later use, we separately save the training data (lungcancer_training.dta)
and the testing data (lungcancer_testing.dta).

lasso examples — Examples of lasso for prediction 218

. preserve

. keep if group ==
(100 observations deleted)

. save lungcancer_training
file lungcancer_training.dta saved

. restore
. preserve

. keep if group ==
(150 observations deleted)

. save lungcancer_testing
file lungcancer_testing.dta saved

. restore

We are now ready to fit a 1asso cox model using only the training data. By default, we use cross-
validation. We specify rseed () to make the results reproducible.
. use lungcancer_training, clear
(Fictitious data on stage I adenocarcinoma lung cancer)
. lasso cox histfeaturex, rseed(12345671)

Failure _d: died
Analysis time _%: t

10-fold cross-validation with 100 lambdas ...

Grid value 1: lambda = .3539123 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 8.922501
Grid value 2: lambda = .3378265 no. of nonzero coef. = 1
Folds: 1...5....10 CVF = 8.917438
(output omitted)
Grid value 30: lambda = .0918411 no. of nonzero coef. = 45
Folds: 1...5....10 CVF = 8.042941
Grid value 31: lambda = .0876668 no. of nonzero coef. = 48
Folds: 1...5....10 CVF = 8.039609
Grid value 32: lambda = .0836822 no. of nonzero coef. = 52
Folds: 1...5....10 CVF = 8.05246
Grid value 33: lambda = .0798787 no. of nonzero coef. = 57
Folds: 1...5....10 CVF = 8.070293
Grid value 34: lambda = .0762481 no. of nonzero coef. = 63
Folds: 1...5....10 CVF = 8.105045
. cross-validation complete ... minimum found
Lasso Cox model No. of obs = 150
No. of covariates = 500
Selection: Cross-validation No. of CV folds = 10
No. of
nonzero In-sample CV mean
ID Description lambda coef. dev. ratio deviance
1 first lambda .3539123 0 0.0000 8.922501
30 lambda before .0918411 45 0.2199 8.042941
* 31 selected lambda .0876668 48 0.2306 8.039609
32 lambda after .0836822 52 0.2419 8.05246
34 last lambda .0762481 63 0.2662 8.105045

* lambda selected by cross-validation.

lasso examples — Examples of lasso for prediction 219

lasso cox selects 48 of the 500 features. We can now predict the relative-hazard ratio, which we will
call riskscore_training, and evaluate risk scores. We will use the median of riskscore_training
as a threshold to classify a patient as low risk or high risk. We store the median value in a global macro
(median) for later use.
. predict riskscore_training

(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)

. summarize riskscore_training, detail

Predicted hazard ratio, penalized

Percentiles Smallest

1% .054982 .0414753

5% .0838301 .054982
10% .1308778 .0702972 Obs 150
25% .3676802 .0727958 Sum of wgt. 150
50% .9458244 Mean 1.998198
Largest Std. dev. 3.75226

75% 2.368032 9.962103
90% 4.912702 11.13334 Variance 14.07945
95% 6.651043 12.4411 Skewness 7.054249
99% 12.4411 39.40631 Kurtosis 67.68195

. global median = r(p50)

Based on the median of the predicted risk ratio in the training data, we now use the testing data
to validate the model. First, we predict the risk ratio in the testing sample, which we will call
riskscore_testing. Then, we compare riskscore_testing with the median of the risk ratio ob-
tained in the training data ($median). If the predicted risk score is greater than or equal to the median, the
patient is labeled as high risk. If the predicted risk score is less than the median, the patient is classified
as low risk.

. use lungcancer_testing, clear
(Fictitious data on stage I adenocarcinoma lung cancer)

. predict riskscore_testing
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)

. generate byte risk = (riskscore_testing >= $median)
. label define risk_1b 1 "High risk" O "Low risk"

. label values risk risk_1b

lasso examples — Examples of lasso for prediction 220

To evaluate the effectiveness of risk classification, we first look at the Kaplan—Meier plot, which
draws the survival curve for both low-risk and high-risk groups.

. sts graph, by(risk)
Failure _d: died
Analysis time _%: t

Kaplan-Meier survival estimates

1.00
0.75-
e - ——
0.25
0.00_ i | ‘ |

0 50 100 150 200

Analysis time

The graph shows that the predicted high-risk patients have a more steeply falling survival curve than
the predicted low-risk patients. To confirm this conjecture, we do a log-rank test.

. sts test risk
Failure _d: died
Analysis time _%: t

Equality of survivor functions
Log-rank test

Observed Expected

risk events events
Low risk 39 68.17
High risk 51 21.83
Total 90 90.00
chi2(1) = 61.50

Pr>chi2 = 0.0000

The log-rank test rejects the hypothesis that the predicted low-risk and high-risk patients have the
same survival functions. Both the Kaplan—Meier plot and the log-rank test show that using the predicted
hazard ratios’ median can effectively distinguish a low-risk patient from a high-risk patient. We can now
make prognostic predictions given new data.

The dataset (newlungcancer.dta) contains histopathology image features for some new stage I
adenocarcinoma patients, but their survival time is not recorded because they are still alive. Based on
the prediction model from lasso cox, we want to classify these new patients as low risk or high risk.
To achieve this objective, we need to predict the new patients’ hazard ratios and compare them with the
median level of risk score obtained in the training data.

lasso examples — Examples of lasso for prediction 221

. use https://www.stata-press.com/data/r19/newlungcancer, clear
(Fictitious new data on stage I adenocarcinoma lung cancer)

. predict riskscore_new
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)

. generate risk = (riskscore_new >= $median)
. label define risk_1b 1 "High risk" O "Low risk"
. label values risk risk_1b

. tabulate risk

risk Freq. Percent Cum.

Low risk 27 54.00 54.00

High risk 23 46.00 100.00
Total 50 100.00

The table of the predicted risk level shows that 27 patients are classified as low risk, while 23 patients
are classified as high risk.

References

Sohn, 1., J. Kim, S.-H. Jung, and C. Park. 2009. Gradient lasso for Cox proportional hazards model. Bioinformatics 25:
1775-1781. https://doi.org/10.1093/bioinformatics/btp322.

Yu, K., C. Zhang, G. J. Berry, R. B. Altman, C. R¢, D. L. Rubin, and M. Snyder. 2016. Predicting non-small cell lung
cancer prognosis by fully automated microscopic pathology image features. Nature Communications 7(12474). https:
//doi.org/10.1038/ncomms12474.

Also see

[LASSO] lasso — Lasso for prediction and model selection

[LASSO] lasso fitting — The process (in a nutshell) of fitting lasso models

https://doi.org/10.1093/bioinformatics/btp322
https://doi.org/10.1038/ncomms12474
https://doi.org/10.1038/ncomms12474

lasso fitting — The process (in a nutshell) of fitting lasso models

Description Remarks and examples Also see

Description

This entry describes the process of fitting lasso models.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Model selection

The process
Step 1. Set the grid range
Step 2. Fit the model for next lambda in grid
Selection method none
Step 3. Identifying a minimum of the C'V function
Plotting the CV function
Selecting another model

What exactly is CV?

Adaptive lasso

Plugin selection

Selection using the BIC function

Introduction

If you are to fit lasso models successfully, you need to understand how the software computes them.
There are options you can specify to modify the process and specifying them is sometimes necessary just
to find the solution. This entry explains the process.

The process of fitting lasso models applies to the three commands that directly fit lasso and related
models:

lasso sqrtlasso elasticnet

The lasso inferential commands

dsregress poregress Xporegress

dslogit pologit xpologit

dspoisson popoisson xpopoisson
poivregress Xpoivregress

fit multiple lasso models under the hood, and you may want to try using different lasso model-selection
methods with these commands. If you do, then this entry is also for you. All the options described here
can be used with the inferential commands to specify different lasso model-selection methods and modify
the settings that control the lasso-fitting process.

222

lasso fitting — The process (in a nutshell) of fitting lasso models 223

Model selection

Fitting lasso models requires that the software fit lots of models behind the scenes from which one
will be selected. The trick to minimizing the time needed is to avoid fitting unnecessary models, while
ensuring that you fit the right one so it is there to select.

Lasso has a way of ordering models. They are ordered on scalar parameter A defined over 0 to +-c0. A
is a parameter of the penalty function. For ordinary lassos, the penalty is) times the sum of the absolute
values of the coefficients of the normalized variables. Every possible model has a A associated with it.
When A\ is large, the penalty is large, and the model has few or no variables. Models with smaller \’s
have more variables.

We can think of lasso as fitting model(\), where A varies over a range, and then selecting one of them.

Which model do we select? That depends on the problem. Do we want a good model for prediction
or a parsimonious model that better reflects the “true” model?

One method of selection is called cross-validation (CV), and it works well for prediction. The criterion
is the CV function f(\), an estimate of the out-of-sample prediction error, which we minimize. The model
for the A that minimizes the CV function is the selected model.

To find A* that minimizes f(-), and thus find the corresponding model(A*), we need to fit models
with \’s near to * to be certain that we identified the minimum. Only nearby A’s would be good enough
if your models were fit on infinite-observation datasets because this perfect f(\) is globally convex.
Because your datasets will be finite, the empirically estimated function will jiggle around its Platonic
ideal, and that means that you will need to fit additional models to be reasonably certain that the one you
select is the one that corresponds to A*.

Another method, adaptive lasso, works well when the goal is to find parsimonious models—models
with fewer variables in them—that might better reflect the true model. Adaptive lasso starts by finding
the CV solution and then, using weights on the coefficients in the penalty function, does another lasso
and selects a model that has fewer variables.

A third method is called plugin lasso. It is faster than CV or adaptive lasso. It is not just faster, it
will be approaching the finish line while the others are still working out where the finish line is. It is
faster because it does not minimize f(-). It uses an iterative formula to calculate the smallest A that
is large enough to dominate the estimation error in the coefficients. Plugin will not produce as low an
out-of-sample prediction error as CV, but it will produce more parsimonious models than CV. Plugin is
the default selection method for the inferential commands because it is so fast. For prediction, CV has
better theoretical properties.

A fourth method uses the Bayesian information criterion (BIC) function to select *. That is, f(\) is
the BIC function, and * minimizes f(-). The number of covariates selected by minimizing BIC typically
lies between the number selected by CV and the number selected by the plugin method; however, BIC
tends to be more similar to the number selected by the plugin method. Furthermore, BIC does not require
a complex derivation as does the plugin, so like CV, it can be applied in a more general context. Typically,
selection using BIC is much faster than selection using CV, but this is not always the case.

We discuss CV, adaptive, plugin, and BIC lassos below, and we discuss a fifth selection method that
we call none. None is a do-it-yourself (DIY) method. It calculates model(\) over a range of A’s and
stops. You then examine them and choose one.

lasso fitting — The process (in a nutshell) of fitting lasso models 224

The process

Step 1. Set the grid range

Step 1 consumes virtually no time, but the total time steps 2 and 3 consume will depend on the grid
that step 1 sets. The grid that steps 2 and 3 will search and calculate over will range from Ay, t0 Agin
and have G points on it.

Large values of A correspond to models with few or no variables in them. Small values correspond
to models with lots of variables. Given any two values of A\, A\;, and Ao,

A1 > A, usually implies that # of variables in model 1 < # of variables in model 2

Most of us think of parameters as running from smallest to largest, say, 0 to +oc0o, but with), you will be
better served if you think of them as running from +oo to 0.

The grid does not start at +o0, it starts at A,,,,. The software does an excellent job of setting Ay p,,-
It sets Ag,y to the smallest A that puts no variables in the model. You cannot improve on this. There is

no option for resetting Agpax-
The software does a poor job of setting Ay
If we are to identify the minimum of the CV function, f(*), A

to do because obviously we do not know the value of *.

There simply does not exist a scheme to set it optimally.
must be less than *. That is difficult

gmin

Computing models for small A’s is computationally expensive because fitting a model for a small A
takes longer than fitting a model for a larger A. Our strategy is to hope we set Ay, small enough and
then stop iterating over A as soon as we are assured that we have found the minimum of the CV function.
If we did not set Ay, small enough, the software will tell us this.

The initial grid is set to
Agmaxs A2> Az -5 Agmin (Agmin t00 small we hope)

The software sets Agyiy t0 7ati0 X Agyay, Where ratio defaults to le—4 when p < N, where p is the number
of potential covariates and IV the number of observations. When p > N, the default is 1e-2.

You can reset ratio with the grid(, ratio(#)) option, or you can reset A
grid(, min(#)).

directly by specifying

gmin

Finally, in addition to setting rafio or Ay, you can reset the number of points on the grid. It is set to
100 by default, meaning the initial grid will be

A = A1 Az, Az, -ovs Agos)‘gmin = Moo

gmin

You can reset the number of points by specifying grid (#). You can specify the number of points and a
value for ratio by typing grid(#, ratio(#)). See [LASSO] lasso.

Step 2. Fit the model for next lambda in grid

We have a grid range A to A

amax emin and number of points on the grid, which we will simply denote
by their indices:

ALy Agy Az, oty Aggs Algo

The software obtains the models

model (),), model(),), model(A;), ..., model(Aqg)

lasso fitting — The process (in a nutshell) of fitting lasso models 225

By “obtains”, we mean that the software chooses the variables that appear in each one. The software
proceeds from left to right. The first model, model(};), has no variables in it and was easy to find.
Once found, model(\,) provides the starting point for finding model(},), and model(\,) provides the
starting point for finding model(\;), and so on. Working from the previous model to obtain the next
model is known as a warm start in the literature. Regardless of what the technique is called, this is why
the software does not allow you to set a different A, for A;. To calculate model(A) for a small value
of A, the software has to work its way there from previous model(\) results.

The grid points are not equally spaced. The grid points are not

)‘1:Agmax
Ay = A — A
A3 =X — A

)\4:)\3—A

The grid points are instead chosen so that In A is equally spaced, which you can think of as the A\’s being
closer together as they get smaller:

)‘1:)‘gmax
Ag =A — 4
Az =X — Ay, 0<A, <A

M=XA—A;, 0<A; <A,

Model estimation involves not only choosing the variables that appear in the model but also estimating
their coefficients as well.

The computation will not usually be carried out all the way to A,,,. Because small \’s are computa-
tionally expensive, we want to stop before we get to ;. There are two criteria for stopping. The first
is when we have identified the minimum of the CV function.

After we fit model (),), we compute the value of the CV function for A;, f(};). Likewise after fitting
model(\,), we compute f(A,). For early A’s, typically we have f(A;) > f(A,,1). Now if we see

Tz1) > FA) < f(Api)

A, might give the minimum of the CV function. It is possible that the CV function is bouncing around a
bit, and it might not be the true minimum. We discuss how we declare a minimum in more detail in the
next section.

For now, assume that we have properly identified a minimum. We are done, and we need not do any
more estimations of model(\).

But what if we do not find a minimum of the CV function? Sometimes, the CV function flattens out
and stays flat, barely changing and only slowly declining with each smaller A.

lasso fitting — The process (in a nutshell) of fitting lasso models 226

As the software proceeds from the calculation of model(A;,_;) to model()\;), it calculates the relative
differences in the in-sample deviances between models:

deviance{model(\;_;)} — deviance{model(\;)}
deviance{model(\,_;)}

This relative difference is a measure of how much predictive ability is added by proceeding to model(\},).
Ifit is small, that suggests the difference between the CV function values f(\,_;) and f();,) will be small,
and changes in the function for smaller A\’s smaller yet. So we think it is likely that we have gone far
enough.

If the relative difference is less than le-5, the software sets the selected A" = Ay, = A;, and stops
estimating models for more A’s. The output tells you that the selected A* was determined by this stopping
rule. This means model(A*) does not give the minimum of the CV function, but we believe something
close to it.

If you do not want this default behavior, there are three things you can do. The first is to change the
value of the stopping rule tolerance. If you want to use le—6 instead of le-5, specify

. lasso y x1 x2 ..., stop(le-6)

With a smaller tolerance, it will iterate over more \’s, giving a greater chance that a minimum might be
identified.

The second possibility is to turn off the early stopping rule by setting the tolerance to 0. If there is a
minimum that can be identified, this will find it.

. lasso y x1 x2 ..., stop(0)

If, however, the CV function flattens out and stays flat, specifying stop (0) might mean that the software
iterates to the end of the A grid, and this might take a long time.

A third choice is to specify

. lasso y x1 x2 ..., selection(cv, strict)

This is the same as the default behavior in this case, except that it throws an error! The suboption strict
says that if we do not find a minimum, end with an error. This is useful when using selection(cv)
with the inferential commands. It alerts us to the fact that we did not find a minimum, and it leaves the
lasso behind, so we can plot the CV function and decide what to do next.

Selection method none

If you specify selection(none) instead of selection(cv), the software stops when the stopping
rule tolerance is reached or when the end of the A grid is reached.

You can specify selection(none) when you want to gain a feel for how the number of included
variables changes over \ or if you want to choose * yourself. We provide a suite of postestimation
commands for this purpose:

e lassoknots shows you a table of the \’s and the properties of the models.

e lassocoef lists the variables in the selected model. It can compare multiple models in the
same table.

lasso fitting — The process (in a nutshell) of fitting lasso models 227

e lassoselect lets you choose a model to be treated as the selected model(A*).
e lassogof evaluates the selected model. It can also compare multiple models in the same table.

What you do not have, however, is the CV function and other CV-based measures of fit, which allow
you to evaluate how well models predict and so make an informed choice as to which model should be
model(A*).

There is another way. Do not specify selection(none), specify selection(cv) or

selection(adaptive). The above postestimation functions will work, and you can, based on your
own criteria if you wish, select the model for yourself.

Step 3. Identifying a minimum of the CV function

The minimum is identified when there are values of f(-) that rise above it on both sides. For example,
consider the following case:

JT) > fAg) > > f(Ay)
and

FQug) < F(A50) < F(A51) < f(Ag2)

For linear models, f(\,q) is an identified minimum, and the software sets * = \,q. Linear mod-
els require that there be three smaller A\’s with larger CV function values by a relative difference of
cvtolerance (#) or more.

Because the CV functions for nonlinear models are not as smooth, lasso has a stricter criterion for
declaring that a minimum of the CV function is found than it has for linear models. lasso requires that
five smaller A’s to the right of a nominal minimum be observed with larger CV function values by a
relative difference of cvtolerance (#) or more.

If you want more assurance that you have found a minimum, you can change cvtolerance (#) to a
larger value from its default of 1e-3.
. lasso y x1 x2 ..., cvtolerance(le-2)

Making the tolerance larger typically means that a few more model(\)’s are estimated to find the required
three (or five) with CV function values larger than the minimum by this tolerance.

lasso fitting — The process (in a nutshell) of fitting lasso models 228

The software provides three options that control how * is set when a identified minimum is not found.
They work like this:

A* is set to
Options Case 1 Case 2 Case 3
selection(cv, strict) Acymin error error
selection(cv, stopok) Acvmin Astop error
selection(cv, gridminok) Acymin Astop Agmin

Case 1 is an identified minimum.
Case 2 is falling over range, stopping rule tolerance reached.

Case 3 is falling over range, stopping rule tolerance not reached.

Acvmin 18 the identified minimum of the CV function f(-).
Astop 18 the A that meant the stopping rule tolerance.
Agmin 18 the last A in the grid.

error indicates that A* is not set, and the software issues an error message.

You may specify only one of the three options. selection(cv, stopok) is the
default if you do not specify one.

We emphasize that these options affect the setting of A* only when an identified minimum is not
found.

selection(cv, stopok) is the default and selects A" = A, when the stopping rule tolerance was
reached.

selection(cv, strict) is the purist’s option. A* is found only when a minimum is identified.
Otherwise, the software issues a minimum-not-found error.

selection(cv, gridminok) is an option that has an effect only when the early stopping rule toler-
ance is not reached. We have fallen off the right edge of the grid without finding an identified minimum.
A" is set to Ay, There is no theoretical justification for this rule. Practically, it means that A, was
set too large. We should make it smaller and refit the model.

Plotting the CV function

Run lasso if you have not already done so. After you do, there are two possible outcomes. The
software ended by setting a A*, thus selecting a model, or it did not set a A*. You will have no doubts
as to which occurred because when * is not set, the software ends with an error message and a nonzero
return code. Note that even when it ends with a nonzero return code, results of the lasso are left behind.

lasso fitting — The process (in a nutshell) of fitting lasso models 229

Regardless of how estimation ended, graph the CV function, f(-). It is easy to do. Type cvplot after
running a lasso. Here is one:

. lasso linear y x1 x2 ...
. cvplot

Cross-validation plot

18-

164

14+

Cross-validation function

12

1 1
A

Acv = .11 is the cross-validation minimum A; # coefficients = 64.
This lasso identified a minimum of the CV function. It identified the minimum and stopped iterating over
A. If we want to see more of the CV function, we can set cvtolerance (#) to a larger value.
. lasso linear y x1 x2 ..., cvtolerance(0.05)

. cvplot

Cross-validation plot
)\CV

18+
16+

14

124 /

1 1
A

Acv = .11 is the cross-validation minimum A; # coefficients = 64.

Cross-validation function

If we want to see more of the CV function, we can specify selection(cv, alllambdas). When the
alllambdas suboption is specified, estimation does not end when a minimum of the CV function is
found. In fact, it estimates model(\) for all \’s first and then computes the CV function because this is
slightly more computationally efficient if we are not stopping after identifying a minimum.

lasso fitting — The process (in a nutshell) of fitting lasso models 230

. lasso linear y x1 x2 ..., selection(cv, alllambdas)
. cvplot

Cross-validation plot
)\CV

18+

164

14

Cross-validation function

12

1 1 01 001
A

Acv = .11 is the cross-validation minimum A; # coefficients = 64.

Actually, alllambdas is a lie. In this case, it estimated only 73 X\’s. It ended when the stopping rule
tolerance was reached. If we really want to see all 100 \’s, we need to turn off the stopping rule.

. lasso linear y x1 x2 ..., selection(cv, alllambdas) stop(0)
. cvplot

Cross-validation plot

Acv

18-
=
S
3
c
S 16
c
S
=
°
@
>
& 144
[0}
°
o

12

T T T T
1 01 .001 .0001

A

Acv = .11 is the cross-validation minimum A; # coefficients = 64.

That is a plot of all 100 A’s. Clearly, in this case, the default behavior worked fine to identify a minimum.

lasso fitting — The process (in a nutshell) of fitting lasso models 231

Here is an example of a CV function for which a minimum was not identified. The stopping rule
tolerance was reached instead.

. lasso linear z wl w2 ...
. cvplot

Cross-validation plot
Asop

354
30
254
20+

154

Cross-validation function

104

T
1 1 .01 .001
A

Asiop = .00097 is the A where the stopping tolerance is reached; # coefficients = 16.

To try more A’s in a search for a minimum, we turn off the stopping rule

. lasso linear z wl w2 ..., stop(0)
. cvplot

Cross-validation plot

354
30
25+

20

Cross-validation function

154

10+

1 1 01 001

It went to the end of the grid without finding a minimum. The default stopping rule tolerance usually
works fine. Setting stop(0) typically burns more computer time without identifying a minimum.

Selecting another model

Imagine that you have successfully found the model that minimizes the CV function, f()), the estimate
of out-of-sample prediction error. If your interest is in prediction, the model that minimizes the CV
function really is best. If your interest is in model selection, however, you may want to look at alternatives
that are close in the out-of-sample prediction sense.

lasso fitting — The process (in a nutshell) of fitting lasso models 232

You can use lassoknots to see a table of the \’s where variables were added or dropped. These are
called knot points.

You can then use lassoselect to choose one of the models. This command sets A* to the A you
specify. Once you have selected a model, you can use all of lasso’s postestimation features on it.
And then, if you wish, you can lassoselect another model. If you use estimates store after each
lassoselect, you can compare multiple models side by side using lassogof.

See [LASSO] lassoselect for an example.

What exactly is CV?

We are done discussing using CV as a selection method, and yet we have never discussed CV itself.
CV is about using one subsample of data to fit models and another to evaluate their prediction error.

Here are the details. The f(-) function is an estimate of the out-of-sample prediction error, and the
function is calculated using CV. The method starts by dividing the data into K partitions called folds.
Once that is done, for each fold &,

1. model(\) is fit on all observations except those in fold k.
2. that result is used to predict the outcome in fold k.

3. steps 1 and 2 are repeated for each fold.
4

. the prediction error is then averaged over all folds, which is to say, all observations. This is
f.
Option selection(cv, folds(#)) sets K, and folds(10) is used by default.

Adaptive lasso

In Plotting the CV function, we looked at a graph of the CV function for which f(\) had a long flat
region and the stopping rule selected A*. We explained that you could use the 1asso DIY postestimation
commands to change the selected model to one with fewer variables in it.

Adaptive lasso is another approach for obtaining parsimonious models. It is a variation on CV, and
in fact, for each step, it uses CV. It uses the CV-selected model(*) as a starting point and then amplifies
the important coefficients and attenuates the unimportant ones in one or more subsequent lassos that also
use CV.

For the second lasso, variables not selected in the first lasso’s model(*) are dropped, and the penalty
term uses weights equal to the inverse of the absolute value of the coefficients from model(*). The
justification being that important coefficients are large and unimportant ones, small. (Variables are stan-
dardized so that comparison of coefficient size makes sense.) These weights tend to drive small coeffi-
cients to zero in the second lasso. So the selected model from the second lasso almost always has fewer
variables than the selected model from the first lasso.

Plugin selection

CV selects model(*) such that f(\) is minimized. Adaptive is a variation on CV. It selects a final
model(A*) that minimizes a more restricted f(A).

lasso fitting — The process (in a nutshell) of fitting lasso models 233

Plugins—selection(plugin)—are a whole different thing. Parameter) still plays a role, but f(-)
does not. Instead, the * that determines model(*) is produced by direct calculation using the plugin
function, A* = g(-). The function returns the smallest value of A that is large enough to dominate the
estimation error in the coefficients.

No search over A is required, nor is a grid necessary. This makes plugin the fastest of the methods
provided. It is fast, but it is not instantaneous. The plugin formula is solved iteratively, and if it is trying
to calculate a small value for *, it can take a little time. Those small \’s again!

Plugin’s selected model(A*) are almost always more parsimonious than the minimum- f(A) models
selected by CV. Plugin will not produce models with as low an out-of-sample prediction error as CV,
but it tends to select the most important variables and can be proven to do so for many data-generation
processes. Plugin is popular when the problem is model selection instead of out-of-sample prediction.

Selection using the BIC function

Selecting * using the BIC function—selection (bic)—is similar to selection using CV. However,
rather than the CV function being minimized, the BIC function is minimized. The BIC function is

f(A\) = —2 x log likelihood + kIn N

where k is the number of coefficients in model(\) and N is the number of observations.

Just like selection using CV, selection using BIC searches for the minimum along a grid of \’s, starting
with large A\’s and moving toward smaller \’s. The A grid is set up exactly the same way as it is for CV,
and all the options to control the initialization of the grid that were described earlier work in exactly the
same manner.

The criterion for identifying the minimum with BIC is similar to that for CV. The main difference is
that a minimum A* will be identified when there are only two \’s on both sides of A* that have values of
f(A) that are larger than f(A*). CV requires three A’s for linear models and five for nonlinear models.

The stopping rules are the same for BIC as they are for CV, and the suboptions stopok, strict,
gridminok, and alllambdas can be specified with selection(bic), and all work the same
way. To change the tolerance for identifying the minimum, you set bictolerance(), rather than
cvtolerance (). See [LASSO] lasso.

Because the BIC function is computed analytically, there is no random component to its computation,
unlike CV. This means that BIC is typically much faster than CV. However, this is not always true. The BIC
function could have a flatter tail than the CV function and have to search more \’s in the grid. However,
simulations seem to indicate that BIC typically yields a larger A* than CV and so typically selects fewer
covariates than CV. In simulations, the number selected is typically close to but more than the number
selected by plugin.

lasso fitting — The process (in a nutshell) of fitting lasso models 234

Also see

[LASSO] lasso — Lasso for prediction and model selection
[LASSO] lasso examples — Examples of lasso for prediction

[LASSO] bicplot — Plot Bayesian information criterion function after lasso

]
]
]
[LASSO] evplot — Plot cross-validation function after lasso
[LASSO] lassocoef — Display coefficients after lasso estimation results
[LASSO] lassogof — Goodness of fit after lasso for prediction
[LASSO] lassoknots — Display knot table after lasso estimation
]

[LASSO] lassoselect — Select lambda after lasso

lassogof — Goodness of fit after lasso for prediction

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see
Description

lassogof calculates goodness of fit of predictions after lasso, sqrtlasso, and elasticnet. It
also calculates goodness of fit after regress, logit, probit, poisson, and stcox estimations for
comparison purposes. For linear models, mean squared error of the prediction and R? are displayed. For
logit, probit, Poisson, and Cox models, deviance and deviance ratio are shown.

Quick start

See goodness of fit for current lasso result using penalized coefficient estimates

lassogof

See goodness of fit for current lasso result using postselection coefficient estimates

lassogof, postselection

See goodness of fit for four stored estimation results

lassogof mylasso mysqrtlasso myelasticnet myregress

See goodness of fit for all stored estimation results

lassogof *

Randomly split sample into two, fit a lasso on the first sample, and calculate goodness of fit separately
for both samples

splitsample, generate(sample) nsplit(2)
lasso linear y x* if sample ==
lassogof, over(sample)

Menu

Statistics > Postestimation

235

lassogof — Goodness of fit after lasso for prediction 236

Syntax

lassogof [namelist| [if] [in] | , options]

namelist is a name of a stored estimation result, a list of names, _all, or *. _all and * mean the same
thing. See [R] estimates store.

options Description

Main
penalized use penalized (shrunken) coefficient estimates; the default
postselection use postselection coefficient estimates
over (varname) display goodness of fit for samples defined by varname
noweights do not use weights when calculating goodness of fit

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

Main

penalized specifies that the penalized coefficient estimates be used to calculate goodness of fit. Penal-
ized coefficients are those estimated by lasso with shrinkage. This is the default.

postselection specifies that the postselection coefficient estimates be used to calculate goodness of
fit. Postselection coefficients are estimated by taking the covariates selected by lasso and reestimat-
ing the coefficients using an unpenalized estimator—namely, an ordinary linear regression, logistic
regression, probit model, Poisson regression, or Cox regression as appropriate.

over (varname) specifies that goodness of fit be calculated separately for groups of observations defined
by the distinct values of varname. Typically, this option would be used when the lasso is fit on one
sample and one wishes to compare the fit in that sample with the fit in another sample.

noweights specifies that any weights used to estimate the lasso be ignored in the calculation of goodness
of fit.

Remarks and examples

lassogof is intended for use on out-of-sample data. That is, on data different from the data used to
fit the lasso.

There are two ways to do this. One is to randomly split your data into two subsamples before fitting
a lasso model. The examples in this entry show how to do this using splitsample.

The other way is to load a different dataset in memory and run lassogof with the lasso results on it.
The steps for doing this are as follows.

1. Load the data on which you are going to fit your model.
. use datafilel

2. Run lasso (or sqrtlasso or elasticnet).

. lasso ...

lassogof — Goodness of fit after lasso for prediction 237

3. Save the results in a file.

. estimates save filename

4. Load the data for testing the prediction.

. use datafile?, clear

5. Load the saved results, making them the current (active) estimation results.

. estimates use filename

6. Run lassogof.

. lassogof

b Example 1: Comparing fit in linear models

We will show how to use lassogof after lasso linear.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the v1
variable lists active.
. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We now use splitsample to generate a variable indicating the two subsamples.

. set seed 1234
. splitsample, generate(sample) nsplit(2)
. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues
We run lasso on the first subsample and set the random-number seed using the rseed () option so we
can reproduce our results.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous

> if sample == 1, rseed(1234)
(output omitted)
Lasso linear model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991
* 19 | selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.

. estimates store linearcv

lassogof — Goodness of fit after lasso for prediction 238

After the command finished, we used estimates store to store the results in memory so we can later
compare these results with those from other lassos.

We are now going to run an adaptive lasso, which we do by specifying the option
selection(adaptive).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(4321) selection(adaptive)

(output omitted)
Lasso linear model No. of obs = 458
No. of covariates 277
Selection: Adaptive No. of lasso steps = 2
Final adaptive step results
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
25 first lambda 48.55244 4 0.0101 17.01083
7 lambda before .3847698 46 0.3985 10.33691
* 78 | selected lambda .3505879 46 0.3987 10.33306
79 lambda after .3194427 47 0.3985 10.33653
124 last lambda .0048552 59 0.3677 10.86697

* lambda selected by cross-validation in final adaptive step.

. estimates store linearadaptive

We want to see which performs better for out-of-sample prediction. We specify the over () option
with the name of our sample indicator variable, sample. We specify the postselection option because
for linear models, postselection coefficients are theoretically slightly better for prediction than the pe-
nalized coefficients (which lassogof uses by default). See the discussion in predict in [LASSO] lasso
postestimation.

. lassogof linearcv linearadaptive, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs
linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493
linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

The ordinary lasso did a little better in this case than adaptive lasso.

lassogof — Goodness of fit after lasso for prediction 239

b Example 2: Comparing fit in logit and probit models

We fit a logit model on the same data we used in the previous example.

. lasso logit q106 $idemographics $ifactors $vlcontinuous

> if sample == 1, rseed(1234)
(output omitted)
Lasso logit model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of-
nonzero sample CV mean
ID Description lambda coef. dev. ratio deviance
1 first lambda .1155342 0 -0.0004 1.384878
22 lambda before .0163767 65 0.1857 1.127315
* 23 | selected lambda .0149218 69 0.1871 1.125331
24 lambda after .0135962 73 0.1864 1.126333
27 last lambda .010285 88 0.1712 1.147343

* lambda selected by cross-validation.

. estimates store logit

Let’s now fit a probit model.

. lasso probit q106 $idemographics $ifactors $vlcontinuous

> if sample == 1, rseed(1234)
(output omitted)
Lasso probit model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of-
nonzero sample CV mean
ID Description lambda coef. dev. ratio deviance
1 first lambda .1844415 0 -0.0004 1.384877
21 lambda before .0286931 61 0.1820 1.132461
* 22 | selected lambda .0261441 64 0.1846 1.128895
23 lambda after .0238215 70 0.1841 1.129499
26 last lambda .0180201 87 0.1677 1.152188

* lambda selected by cross-validation.

. estimates store probit

lassogof — Goodness of fit after lasso for prediction 240

We look at how they did for out-of-sample prediction.

. lassogof logit probit, over(sample)

Penalized coefficients

Deviance

Name sample Deviance ratio Obs
logit

Training .8768969 0.3674 499

Testing 1.268346 0.0844 502
probit

Training .8833892 0.3627 500

Testing 1.27267 0.0812 503

They both did not do very well. The out-of-sample deviance ratios were notably worse than the in-sample
values. The deviance ratio for nonlinear models is analogous to R? for linear models. See Methods and
formulas for the formal definition.

We did not specify the postselection option in this case because there are no theoretical grounds
for using postselection coefficients for prediction with nonlinear models.

d

Stored results

lassogof stores the following in r ():

Macros
r (names) names of estimation results displayed
r(over_var) name of the over () variable
r(over_levels) levels of the over () variable
Matrices
r(table) matrix containing the values displayed

Methods and formulas

lassogof reports the mean squared error (MSE) and the R? measures of fit for linear models. It
reports the deviance and the deviance ratio for logit, probit, poisson, and cox models. The deviance
ratio is also known as D? in the literature.

See Wooldridge (2020, 720) for more about MSE and Wooldridge (2020, 76—77) for more about R2.
The deviance measures are described in Hastie, Tibshirani, and Wainwright (2015, 29-33) and McCul-
lagh and Nelder (1989, 33-34). For the cox model deviance, see Simon, Friedman, Hastie, and Tibshirani
(2011).

In the formulas below, we use xb, to denote the linear prediction for the ith observation. By default,
the lasso penalized coefficients E are used to compute xb,. Specifying the option postselection causes

the postselection estimates E to be used to compute xb;. See predict in [LASSO] lasso postestimation
for a discussion of penalized estimates and postselection estimates.

lassogof — Goodness of fit after lasso for prediction 241

We also use the following notation. y,; denotes the ith observation of the outcome. w, is the weight
applied to the ith observation; w; = 1 if no weights were specified in the estimation command or if
option noweights was specified in lassogof. N is the number of observations in the sample over
which the goodness-of-fit statistics are computed. If frequency weights were specified at estimation
N, = Ei\il w;,; otherwise, N, = N.

The formulas for the measures reported after linear models are
R? =1 —RSS/TSS
MSE = 1/N_RSS

where

TSS = Y w;(y; —7)°
i=1
1 XN
17 = N Z W;Y;
5 =1
The deviance ratio D? is given by
D,.—D
D2 — Pl
D

null

where D, is the deviance calculated when only a constant term is included in the model and D is the
deviance of the full model.

The formulas for the deviance and for D, vary by model.

For logit, the deviance and the D, are

=

2 ~
D=—=2_ wi [;xb; + In{1 + exp(xb;)}]

S 1

Il
—

2 & L . _
D :*ﬁzwi{yi Iny+(1—9;)In(1-79)}

s =1

1 y;>0
0 otherwise

1
Y Z w;;
i—1

S

Yi

1
Il
—N

=

lassogof — Goodness of fit after lasso for prediction 242

For probit, the deviance and the D, are
Zw i In{®(xb;)} + (1 —7;) In{1 — @(xb;)}]

N
- Z {f;Iny+ (1—§)In(1—7)}

S:l

-)1 y,>0
Yi 0 otherwise
Ly

N s;w; Y
Ny =

For poisson, the deviance and the D, are

null -

<
|

9 N
D=—7r sz{szbz — exp(xb;) —v;}
s o1

0 ify; =0
v; =
y;Iny, —y, otherwise

lassogof — Goodness of fit after lasso for prediction 243

For cox, the deviance and the D, are
D=2 (Zsaturaled - l)

D null — 2 (lsaturaled - lnull)

1
Zsaturated = _F Z dj 10g (d])
s j=1

Ny
= _Ni Z Z [wi(xbi) — w, log { Z w, exp(xbe)}l

s j=1ieD, (ER,
1
X Py
s j=1 i€R,
dj = Z w;
i€D;
where j indexes the ordered failure times ¢(;), j = 1,..., Ng; D; is the set of observations that fail at

t(;)> R; is the set of observations k that are at risk at time ;) (that is, all k such that ¢y, < ;) <1,
and £, is the entry time for the kth observation).

References

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations.
Boca Raton, FL: CRC Press. https://doi.org/10.1201/b18401.
McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman and Hall/CRC.

Simon, N., J. H. Friedman, T. J. Hastie, and R. J. Tibshirani. 2011. Regularization paths for Cox’s proportional hazards
model via coordinate descent. Journal of Statistical Software 39: art. 5. https://doi.org/10.18637/jss.v039.105.

Wooldridge, J. M. 2020. Introductory Econometrics: A Modern Approach. 7th ed. Boston: Cengage.

Also see
[LASSO] lasso — Lasso for prediction and model selection
[LASSO] lassoknots — Display knot table after lasso estimation

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

https://doi.org/10.1201/b18401
https://www.stata.com/bookstore/glm.html
https://doi.org/10.18637/jss.v039.i05
https://www.stata.com/bookstore/introductory-econometrics/

lasso inference postestimation — Postestimation tools for lasso inferential models

Postestimation commands predict Remarks and examples Also see

Postestimation commands

The following postestimation commands are of special interest after the ds, po, and xpo commands:

Command Description
*bicplot plot Bayesian information criterion function
* coefpath plot path of coefficients
*cvplot plot cross-validation function
lassocoef display selected coefficients
lassoinfo information about lasso estimation results
lassoknots knot table of coefficient selection and measures of fit

* lassoselect

select alternative A* (and o* for elasticnet)

*bicplot requires that the selection method of the lasso be selection(bic). cvplot requires that the selection method of
the lasso be selection(cv) or selection(adaptive). lassoselect requires that the selection method of the lasso
be selection(bic), selection(cv), or selection(adaptive). See [LASSO] lasso options.

The following standard postestimation commands are also available:

Command

Description

contrast

estat summarize
estat vce
estimates
etable

lincom

nlcom

predict
predictnl
pwcompare
test
testnl

contrasts and ANOVA-style joint tests of parameters
summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
cataloging estimation results

table of estimation results

point estimates, standard errors, testing, and inference for linear combinations of
parameters

point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

linear predictions

point estimates for generalized predictions

pairwise comparisons of parameters

Wald tests of simple and composite linear hypotheses
Wald tests of nonlinear hypotheses

244

lasso inference postestimation — Postestimation tools for lasso inferential models 245

predict

Description for predict

—~/ —~
predict creates a new variable containing the linear form X3 , where 3 is the vector of estimated
coefficients of the variables of interest and does not include a constant term. This is the only type of
prediction available after the ds, po, and xpo commands.

Menu for predict

Statistics > Postestimation

Syntax for predict
predict [type] newvar [if] [in]

Remarks and examples
After the ds, po, and xpo estimation commands, predict computes only the linear form X@l. So,
for example, you need to type only

. predict xbhat

The formulation of the lasso inferential models does not lend itself to making predictions for means,
probabilities, or counts.

Also see

LASSO] Lasso inference intro — Introduction to inferential lasso models
LASSO] Inference examples — Examples and workflow for inference
LASSO] dslogit — Double-selection lasso logistic regression

LASSO] dspoisson — Double-selection lasso Poisson regression

LASSO] dsregress — Double-selection lasso linear regression

]
]
]
]
]
LASSO] poivregress — Partialing-out lasso instrumental-variables regression
]
LASSO] popoisson — Partialing-out lasso Poisson regression
LASSO] poregress — Partialing-out lasso linear regression
LASSO] xpoivregress — Cross-fit partialing-out lasso instrumental-variables regression
LASSO] xpologit — Cross-fit partialing-out lasso logistic regression

]

[

[

[

[

[

[

[LASSO] pologit — Partialing-out lasso logistic regression

[

[

[

[

[LASSO] xpopoisson — Cross-fit partialing-out lasso Poisson regression
[

LASSO] xporegress — Cross-fit partialing-out lasso linear regression

[U] 20 Estimation and postestimation commands

lassoinfo — Display information about lasso estimation results

Description Quick start Menu Syntax Option
Remarks and examples Stored results Also see
Description

lassoinfo displays basic information about the lasso or lassos fit by all commands that fit lassos.

Quick start

After any command that fits lassos
lassoinfo

dsregress was run and the results stored under the name mygreatmodel using estimates store;
show information about all the lassos in mygreatmodel

lassoinfo mygreatmodel

Same as above, but three models were stored
lassoinfo mygreatmodel mygoodmodel myfairmodel

After an xpo command, show information about every single lasso fit
lassoinfo, each

Menu

Statistics > Postestimation

Syntax
For all lasso estimation results

lassoinfo [namelist|

For xpo estimation results

lassoinfo [namelist] [, each]

namelist is a name of a stored estimation result, a list of names, _all, or *. _all and * mean the same
thing. See [R] estimates store.

collect is allowed; see [U] 11.1.10 Prefix commands.

Option

each applies to xpo models only. It specifies that information be shown for each lasso for each cross-fit
fold to be displayed. If resample was specified, then information is shown for each lasso for each
cross-fit fold in each resample. By default, summary statistics are shown for the lassos.

246

lassoinfo — Display information about lasso estimation results 247

Remarks and examples

lassoinfo isintended for use after ds, po, xpo commands and after telasso to see basic information
about the lassos they fit. It is a good idea to always run lassoinfo after these commands to see how
many variables were selected in each lasso.

Running lassoinfo is a first step toward doing a sensitivity analysis. The lassos listed by lassoinfo
can be examined using coefpath, cvplot, lassocoef, lassoknots, and lassoselect.

b Example 1: lasso

lassoinfo works after lasso, sqrtlasso, and elasticnet, but it does not display much useful
information for these commands.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the v1
variable lists active.
. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with v1)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We fit the lasso.

. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)

10-fold cross-validation with 100 lambdas ...

Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331
(output omitted)
Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 914
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553
* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887
* lambda selected by cross-validation.

lassoinfo — Display information about lasso estimation results 248

lassoinfo tells us nothing new.

. lassoinfo

Estimate: active
Command: lasso

No. of
Dependent Selection Selection selected
variable Model method criterion lambda variables
ql04 linear cv CV min. .1069782 64
Replaying the command gives more information.
. lasso
Lasso linear model No. of obs = 914
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553
* 24 selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

b Example 2: dsregress

lassoinfo gives important information after the ds, po, and xpo commands.
We load the data used in [LASSO] lasso examples. See that entry for details about the data.

. use https://www.stata-press.com/data/r19/fakesurvey_vl, clear
(Fictitious survey data with v1)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We are going to fit a dsregress model with q104 as our dependent variable and variables of interest
q41 and q22. These variables of interest are currently in the variable lists factors and vlcontinuous,
which we will use to specify the control variables. So we need to move them out of these variable lists.

. vl modify factors = factors - (q4l)
note: 1 variable removed from $factors.

. vl move (g22) vlother
note: 1 variable specified and 1 variable moved.

(output omitted)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

lassoinfo — Display information about lasso estimation results 249

After we moved the variables out of the variable lists, we typed v1 rebuild to update the variable list
ifactors created from factors. See [D] vl for details.

We fit our dsregress model using cross-validation to select A*’s in the lassos.

. dsregress ql104 i.q41 922,
> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)

Estimating lasso for q104 using cv
Estimating lasso for 1bn.q41 using cv
Estimating lasso for q22 using cv

Double-selection linear model Number of obs = 914
Number of controls = 274
Number of selected controls = 123
Wald chi2(2) = 10.96
Prob > chi2 = 0.0042
Robust

ql104 | Coefficient std. err. z P>|z]| [95% conf. intervall

q41
Yes .6003918 .2848483 2.11 0.035 . 0420994 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.1281246 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

lassoinfo shows us how many variables were selected in each lasso.

. lassoinfo

Estimate: active
Command: dsregress

No. of

Selection Selection selected

Variable Model method criterion lambda variables
ql04 linear cv CV min. .1116376 63
1bn.qg41 linear cv CV min. .0135958 68
q22 linear cv CV min. .1624043 49

lassoinfo — Display information about lasso estimation results 250

lassoinfo also gives useful information after fitting the model using the default

selection(plugin).

. dsregress q104 i.q41 g22, controls(($idemographics) $ifactors $vlcontinuous)

Estimating lasso
Estimating lasso
Estimating lasso

for q104 using plugin
for 1bn.q41 using plugin
for g22 using plugin

Double-selection linear model Number of obs 914
Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001
Robust
q104 | Coefficient std. err. z P>|z]| [95% conf. intervall
q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001
Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.
. lassoinfo
Estimate: active
Command: dsregress
No. of
Selection selected
Variable Model method lambda variables
ql04 linear plugin .1467287 18
1bn.q41 linear plugin .1467287 16
q22 linear plugin .1467287 15

See [LASSO] lassoselect, where we continue this example and do a sensitivity analysis to examine the
differences between the lassos fit using cross-validation and the lassos fit using the plugin estimator.

d

lassoinfo — Display information about lasso estimation results 251

b Example 3: poivregress

We want to show you some differences that arise when you fit models containing endogenous variables
using poivregress and xpoivregress.

We will not describe the data or the model here. See [LASSO] Inference examples.
We load the data,

. use https://www.stata-press.com/data/r19/mroz2, clear

set v1 variable lists,
. vl create vars = (kidslt6 kidsge6 age husage city exper)
note: $vars initialized with 6 variables.
. vl substitute vars2 = c.vars c.vars#c.vars

. vl create iv = (huseduc motheduc fatheduc)
note: $iv initialized with 3 variables.

. vl substitute iv2 = c.iv c.iv#c.iv

and fit our model using poivregress.

. poivregress lwage (educ = $iv2), controls($vars2) selection(cv) rseed(12345)

Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Estimating lasso for pred(educ) using cv

Partialing-out IV linear model Number of obs = 428
Number of controls = 27

Number of instruments = 9

Number of selected controls = 16

Number of selected instruments = 4

Wald chi2(1) = 11.10

Prob > chi2 = 0.0009

Robust
lwage | Coefficient std. err. z P>|z| [95% conf. intervall
educ .0765154 .0229707 3.33 0.001 .0314936 .1215371

Endogenous: educ

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

. estimates store poivregresscv

lassoinfo — Display information about lasso estimation results 252

We stored our estimation results using estimates store, and here we use lassoinfo with the name
used to store them.

. lassoinfo poivregresscv

Estimate: poivregresscv
Command: poivregress

No. of

Selection Selection selected

Variable Model method criterion lambda variables
lwage linear cv CV min. .0353704 3

educ linear cv CV min. .0530428 10
pred(educ) linear cv CV min. .013186 12

Note that we have two lassos for educ labeled by lassoinfo as educ and pred(educ).
poivregress and xpoivregress perform two lassos for each endogenous variable, one for the en-
dogenous variable and one for its prediction. lassoinfo shows us how to refer to each of these lassos
in other postestimation commands using the for () option. In this example, we would type for (educ)
and for (pred(educ)), respectively.

N

b Example 4: xporegress

The xpo commands fit many lassos. For each lasso fit by a po command, the corresponding xpo
command fits xfolds (#) X resample(#) lassos. lassoinfo can be used to get information about
these lassos.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r19/breathe, clear
(Nitrogen dioxide and attention)

set v1 variable lists,

. vl set
(output omitted)

. vl move (siblings_old siblings_young) vlcontinuous
note: 2 variables specified and 2 variables moved.

(output omitted)

. vl create mycontinuous = vlcontinuous - (react no2_class)
note: $mycontinuous initialized with 10 variables.

. vl substitute mycontrols = i.vlcategorical mycontinuous

lassoinfo — Display information about lasso estimation results 253

and fit our model using xporegress with the options xfolds(3) and resample(2).

. xporegress react no2_class, controls($mycontrols) xfolds(3) resample(2)
> selection(cv) rseed(12345)
Resample 1 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.

Cross-fit partialing-out Number of obs = 1,036
linear model Number of controls = 32
Number of selected controls = 27
Number of folds in cross-fit = 3
Number of resamples = 2
Wald chi2(1) = 20.99
Prob > chi2 = 0.0000

Robust
react | Coefficient std. err. z P>|z| [95% conf. intervall
no2_class 2.332193 .5090902 4.58 0.000 1.334394 3.329991

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

For each cross-fit fold and each resample, xporegress fits lassos. So it fit six lassos for the dependent
variable, react, and six for the variable of interest, no2_class. lassoinfo summarizes the numbers
of variables selected across these six lassos for react and no2_class.

. lassoinfo

Estimate: active
Command: xporegress

No. of selected variables

Selection
Variable Model method min median max
no2_class linear cv 11 15 15

react linear cv 9 15 19

lassoinfo — Display information about lasso estimation results 254

Specifying the option each gives us information on each lasso.

. lassoinfo, each

Estimate: active
Command: xporegress

No. of

Dependent Selection Resample xfold Selection sel.
variable Model method number no. criterion lambda var.
no2_class linear cv 1 1 CV min. .2663004 11
no2_class linear cv 1 2 CV min. .2860957 15
no2_class linear cv 1 3 CV min. .2887414 14
no2_class linear cv 2 1 CV min. .2337636 15
no2_class linear cv 2 2 CV min. .2824076 15
no2_class linear cv 2 3 CV min. .2515777 15
react linear cv 1 1 CV min. 6.07542 9
react linear cv 1 2 CV min. 1.704323 19
react linear cv 1 3 CV min. 3.449884 15
react linear cv 2 1 CV min. 6.034922 9
react linear cv 2 2 CV min. 4.31785 16
react linear cv 2 3 CV min. 4.096779 15

See [LASSO] lassocoef for an example where we list the variables selected by each lasso.

Stored results

lassoinfo stores the following in r):

Macros
r (names) names of estimation results displayed
Matrices
r(table) matrix containing the numerical values displayed
Also see

[LASSO] lassoselect — Select lambda after lasso
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

lassoknots — Display knot table after lasso estimation

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see
Description

lassoknots shows a table of knots after a lasso. Knots are the values of \ at which variables in the
model change.

lassoknots displays the names of the variables added or removed as models are fit for successive
A’s. When using cross-validation (CV) to select *, lassoknots will display values of the CV function.
lassoknots also displays measures of fit. After viewing measures of fit, you can select an alternative

A* using lassoselect.

When telasso, ds, po, and xpo commands fit models using selection(cv),
selection(adaptive), or selection(bic) (see [LASSO] lasso options), lassoknots can be
used to show the CV function (for cv and adaptive) or the BIC function or other measures of fit for
each of the lassos computed.

lassoknots does work after selection(plugin) but only shows measures for the single A* esti-
mated by the plugin formula.

Quick start

Show knot table after lasso, sqrtlasso, and elasticnet
lassoknots
Same as above, but show number of nonzero coefficients, out-of-sample R2, and variables added or
removed after a linear model

lassoknots, display(nonzero osr2 variables)

Same as above, but show in-sample R? and CV mean-prediction error in addition to out-of-sample R>
lassoknots, display(osr2 r2 cvmpe)
After lasso logit, lasso probit, or lasso poisson, show out-of-sample mean-deviance ratio, in-
sample deviance ratio, and Bayes information criterion (BIC)

lassoknots, display(cvdevratio devratio bic)

After a lasso fit with selection(adaptive), show knot tables for all adaptive steps
lassoknots, steps
After a ds or po estimation with selection(cv) or selection(adaptive), show the knot table for
the lasso for the dependent variable y
lassoknots, for(y)
After poivregress, show the knot table for the lasso for the prediction of the endogenous variable
whatup
lassoknots, for (pred(whatup))

255

lassoknots — Display knot table after lasso estimation 256

After xporegress with option resample, show the knot table for the lasso for x for the 4th cross-fit
fold of the 9th resample

lassoknots, for(x) xfold(4) resample(9)

After telasso estimation with selection(cv) or selection(adaptive), show the knot table for the
lasso for the outcome variable y at treatment level 1

lassoknots, for(y) tlevel(1)

Menu
Statistics > Postestimation
Syntax

After lasso, sqrtlasso, and elasticnet

lassoknots [, options}

After ds and po

lassoknots, for (varspec) [options]

After xpo without resample

lassoknots, for (varspec) xfold(#) [options |

After xpo with resample

lassoknots, for (varspec) xfold(#) resample (#) [options |

After telasso for the outcome variable

lassoknots, for (varspec) tlevel (#) [options]

After telasso for the treatment variable

lassoknots, for (varspec) [options]

After telasso for the outcome variable with cross-fitting but without resample

lassoknots, for (varspec) tlevel (#) xfold(#) [options]

After telasso for the treatment variable with cross-fitting but without resample

lassoknots, for (varspec) xfold(#) [options |

After telasso for the outcome variable with cross-fitting and resample

lassoknots, for (varspec) tlevel (#) xfold(#) resample(#) [options |

*

*

*

lassoknots — Display knot table after lasso estimation 257

After telasso for the treatment variable with cross-fitting and resample

lassoknots, for (varspec) xfold(#) resample (#) [Oplions]

varspec is varname, except after poivregress and xpoivregress, when it is either varname or
pred(varname).

options Description

display(di_opts) specify what to display; maximum of three di_opts options
alllambdas show all \’s

steps show all adaptive steps; selection(adaptive) only
nolstretch do not stretch the width of the table to accommodate long variable names
for (varspec) lasso for varspec; telasso, ds, po, and xpo commands only
xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso
with xfolds only
resample (#) lasso for the #th resample; xpo commands and telasso
with resample only
tlevel (#) lasso for the outcome model with the treatment level #;

telasso only

*for (varspec) is required for all ds, po, and xpo commands and for telasso.

xfold(#) is required for all xpo commands and for telasso when the option xfolds (#) was specified.
resample (#) is required for xpo and for telasso when the option resample (#) was specified.
tlevel (#) is required for the outcome model in telasso.

collect is allowed; see [U] 11.1.10 Prefix commands.

di_opts Description
nonzero number of nonzero coefficients
variables names of variables added or removed
cvmd CV mean deviance (the CV function)
cvdevratio CV mean-deviance ratio
devratio in-sample deviance ratio
bic BIC
11 relative £, -norm of coefficients
12 relative £,-norm squared of coefficients
Linear models only
cvmpe CV mean-prediction error (the CV function)
osr2 out-of-sample R2

r2 in-sample R?

lassoknots — Display knot table after lasso estimation 258

Options

display (di_opts) specifies what to display in the knot table. A maximum of three di_opts op-
tions can be specified. For lassos fit using selection(cv) or selection(adaptive), the
default is display(nonzero cvmpe variables) for linear models and display(nonzero cvmd
variables) for logit, probit, Poisson, and Cox models. For lassos fit using selection(plugin)
or selection(bic), the default is display(nonzero r2 variables) for linear models and
display(nonzero devratio variables) for logit, probit, Poisson, and Cox models. The full set
of di_opts is the following.

nonzero specifies that the number of nonzero coefficients be shown.
variables specifies that the names of variables added or removed at each knot be shown.

cvmd specifies that the CV mean deviance be shown. These are the values of the CV function that are
searched for a minimum. For linear models, it is the same as the CV mean-prediction error given
by cvmpe. cvmd is available only for lassos fit using selection(cv) or selection(adaptive).

cvdevratio specifies that the CV mean-deviance ratio be shown. The CV mean-deviance ratio is an
estimate of out-of-sample goodness of fit. As a measure of prediction performance, it is superior
to devratio, the in-sample deviance ratio. It is typically between 0 and 1, but in some cases, it
may be outside this range. For linear models, it is the same as out-of-sample R? given by osr2.
cvdevratio is available only for lassos fit using selection(cv) or selection(adaptive).

devratio specifies that the in-sample deviance ratio be shown. The in-sample deviance ratio is an
indicator of in-sample goodness of fit. The in-sample deviance generalizes the in-sample R? to
nonlinear models. As a measure of prediction performance, it is inferior to cvdevratio, the CV
mean-deviance ratio. The in-sample deviance ratio is a poor measure of prediction performance
because it does not capture the cost of including additional covariates for prediction. It is always
between 0 and 1. For linear models, it is the same as in-sample R? given by r2.

bic specifies that the BIC be shown. Note that the BIC can be displayed for lassos fit using
selection(cv) and selection(adaptive), but the CV measures—cvmd, cvdevratio, and
cvmpe—are not available for lassos fit using selection(bic).

11 specifies that the relative ¢, -norm of coefficients be shown.
12 specifies that relative ¢,-norm squared of coefficients be shown.
Linear models only

cvmpe specifies that the CV mean-prediction error be shown. These are the values of the
CV function that are searched for a minimum. cvmpe is available only for lassos fit using
selection(cv) or selection(adaptive).

osr2 specifies that the out-of-sample R? be shown. The out-of-sample R? is an estimate of out-
of-sample goodness of fit. As a measure of prediction performance, it is superior to r2, the
in-sample R2. It is typically between 0 and 1, but in some cases, it may be outside this range.

r2 specifies that the in-sample deviance ratio be shown. The in-sample deviance ratio is an in-
dicator of in-sample goodness of fit. As a measure of prediction performance, it is inferior to
osr2, the out-of-sample R2. The in-sample R? is a poor measure of prediction performance
because it does not capture the cost of including additional covariates for prediction. It is always
between 0 and 1.

lassoknots — Display knot table after lasso estimation 259

alllambdas specifies that all \’s are to be shown, not just the knots. Measures at \’s that are not knots
change slightly because the coefficient estimates change slightly. A’s that are not knots can be selected
as * by lassoselect; however, this is typically not done.

steps applies to selection(adaptive) only. When specified, A’s for all adaptive steps are shown.
By default, \’s for only the last adaptive step are shown.

nolstretch specifies that the width of the table not be automatically widened to accommodate long
variable names. When nolstretch is specified, names are abbreviated to make the table width no
more than 79 characters. The default, 1stretch, is to automatically widen the table up to the width
of the Results window. To change the default, use set 1stretch off.

for (varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command fit
using the option selection(cv), selection(adaptive), or selection(bic). For all commands
except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either dep-
var, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred (varname) . The lasso for
depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by
varname and pred (varname) . The exogenous variables of interest each have only one lasso, and it
is specified by pred (varname) .

For telasso, varspec is either the outcome variable or the treatment variable.
This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds (#) was specified. For each variable to be fit with a lasso, K lassos are done, one
for each cross-fit fold, where K is the number of folds. This option specifies which fold, where
#=1,2,..., K. xfold(#) is required after an xpo command and after telasso when the option
xfolds (#) was specified.

resample (#) specifies a particular lasso after an xpo estimation command or after telasso fit using the
option resample (#). For each variable to be fit with a lasso, R x K lassos are done, where R is the
number of resamples and K is the number of cross-fitting folds. This option specifies which resample,
where #=1,2,..., R. resample (#), along with xfold (#), is required after an xpo command and
after telasso with resampling.

tlevel (#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Measures of fit

In-sample measures versus estimates of out-of-sample measures
BIC

Examples

lassoknots — Display knot table after lasso estimation 260

Introduction

When a lasso is fit over a grid of \’s, it starts with the smallest \ that produces a model with no
selected variables. This initial A is the largest A in the grid. Lasso steps to the next A\ and fits a model
for it. One or more variables are selected for this second A (if no variables were selected, it would be the
starting \). Lasso steps to the third A, and more variables may be selected, or the model may have the
same variables as the model for the second .

In this way, lasso iterates across the grid of A values. A’s at which the selected variables change are
called “knots”. Variables are not only added at a knot but also sometimes removed. Typically, when
a variable is removed, one or more variables are added in its place. Usually, the number of nonzero
coefficients increases monotonically as A gets smaller but not always. Occasionally, the net number of
variables in the model goes down, rather than up, in an iteration to a smaller .

lassoknots displays a table of the knots, showing the names of variables that enter and leave the
models. The option alllambdas can be specified to display all the A’s in the grid. To view all variables
selected at a particular A\, you can use lassoselect to select that A and then lassocoef to list the
variables and, optionally, the coefficients.

Selection methods selection(cv), selection(adaptive), selection(bic), and
selection(none) fit models for each A in the grid. The method selection(plugin) calcu-
lates A* using a formula so there is only one A.

Measures of fit

lassoknots will also display other measures. The methods selection(cv) and
selection(adaptive) use CV. When CV is performed, lassoknots by default displays the
number of nonzero coefficients, the CV function, and the names of variables that enter or leave the
model.

Optionally, there are five other measures that can be displayed. For linear models, they are in-sample
R? (r2), estimates of out-of-sample R? (osr2), the BIC (bic), relative £, -norm of coefficients (11), and
relative £5,-norm squared of coefficients (12).

For nonlinear models, in place of the R? measures, there are the analogous measures, the in-sample
deviance ratio (devratio) and estimates of out-of-sample deviance ratio (cvdevratio).

The in-sample measures, BIC, and relative norms are available regardless of whether CV was done.

The out-of-sample R? and out-of-sample deviance ratio are not computed on out-of-sample data, but
rather they are estimates of what these measures would be on out-of-sample data. The CV procedure
provides these estimates.

In-sample measures versus estimates of out-of-sample measures

Estimates of out-of-sample measures are superior to in-sample measures.

Consider a linear lasso. The set of covariates that produces the smallest out-of-sample MSE is the
set that produces the best predictions. CV is used to estimate out-of-sample MSE and select the set that
produces the smallest estimate.

In contrast, we should not use in-sample MSE to select the set of covariates. In-sample MSE system-
atically underestimates out-of-sample prediction error. In-sample MSE can be made smaller and smaller
simply by including more covariates (as long as they are not collinear with covariates already in the
model). In-sample MSE does not capture the cost of including more covariates.

lassoknots — Display knot table after lasso estimation 261

For the same reason, estimates of out-of-sample R? are superior to in-sample R? for linear models.
For logit, probit, and Poisson models, estimates of out-of-sample deviance ratios are superior to in-sample
deviance ratios.

See Hastie, Tibshirani, and Friedman (2009, sec. 7.2) for an introduction to a comparison of in-sample
and out-of-sample measures of the predictive ability of a model.

BIC

Information criteria, like the BIC, have a term that penalizes for each additional parameter. Selecting
the set of covariates that minimizes the BIC is another way to select a set of covariates that will predict
well out of sample. Zhang, Li, and Tsai (2010) show that the A selected by minimizing the BIC will select
a set of covariates close to the true set under the conditions described in their article.

In practice, the BIC is more informative than the in-sample measures reported by lassoknots for
selection(plugin) and selection(none).

Examples

b Example 1: lasso linear

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the v1
variable lists active.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with v1)

. vl rebuild
Rebuilding vl macros ...

(output omitted)
We fit a lasso linear model.

. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)

10-fold cross-validation with 100 lambdas ...

Grid value 1: lambda = .9090511 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331
(output omitted)
Grid value 28: lambda = .0737359 no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 914
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda .9090511 0 -0.0010 18.33331
23 lambda before .1174085 58 0.3543 11.82553
* 24 | selected lambda .1069782 64 0.3547 11.81814
25 lambda after .0974746 66 0.3545 11.8222
28 last lambda .0737359 80 0.3487 11.92887

* lambda selected by cross-validation.

lassoknots — Display knot table after lasso estimation 262

We run lassoknots.

. lassoknots
No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

D lambda coef . error or left (U)nchanged

2 .8282935 2 18.24362 A 0.q19 0.988

3 .7547102 4 17.99053 A 0.985 3.q156

5 | .6265736 7 17.26211 | A 0.q48 0.q73 0.q101

6 .5709106 11 16.7744 A 4.938 q31 q76
q139

7 .5201924 15 16.19275 A 0.95 2.q34 0.q943
0.950

8 .47398 16 15.58941 A g22

11 .3585485 19 14.07708 A 0.q941 0.956 2.q84

12 .326696 22 13.69483 A 3.q16 0.989 0.q118

13 .2976732 25 13.3281 | A 0.991 age 0.gender

14 .2712288 26 12.99274 A 3.938

16 .2251789 32 12.48904 A 0.93 0.949 0.q150
2.q155 0.q160 qii1

18 .1869475 34 12.15245 A 2.96 3.978

19 .1703396 39 12.03358 A 0.q14 0.933 0.q126
0.q147 0.q149

20 .15652071 42 11.94361 A 0.925 0.982 1.q110

21 .1414189 46 11.88652 A 0.996 q20 3.q110
1.q134

22 .1288556 50 11.84693 A 0.932 0.q102 1.9105
0.q122

23 .1174085 58 11.82553 A 0.94 0.q7 1.934
0.940 3.984 q53
q93 2.q134

* 24 .1069782 64 11.81814 A 0.951 0.955 0.q975

0.q77 q63 0.q115

25 .0974746 66 11.8222 A 3.96 0.q117

26 .0888152 70 11.84669 A 0.959 3.995 q21
0.q125

27 .0809251 72 11.88463 A 0.q100 4.q155

28 .0737359 80 11.92887 A 0.q13 0.930 0.968
q52 q70 2.q110
0.q153 0.q159

* lambda selected by cross-validation.

The table ends at the 28th A. The default grid had 100 A\’s. The iteration over the A grid ended after a
minimum of the CV function was found. There are other cases in which the iteration ends before the end
of the grid is reached. See The CV function in [LASSO] lasso and [LASSO] lasso fitting for details.

lassoknots — Display knot table after lasso estimation 263

The option alllambdas shows all the A’s for which models were fit. In this case, the first 28 A’s in

the grid.
. lassoknots, alllambdas
No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,
D lambda coef. error or left (U)nchanged
1 .9090511 0 18.33331 | U
2 .8282935 2 18.24362 | A 0.9q19 0.988
3 .7547102 4 17.99053 | A 0.985 3.q156
4 .6876638 4 17.6434 | U
5 .6265736 7 17.26211 A 0.948 0.973 0.q101
6 .5709106 11 16.7744 | A 4.938 q31 q76
q139
7 | .5201924 15 16.19275 | A 0.95 2.934 0.943
0.950
8 .47398 16 15.58941 A g22
9 .4318729 16 15.01285 U
10 .3935065 16 14.50648 | U
11 .3585485 19 14.07708 | A 0.qg41 0.956 2.q84
12 .326696 22 13.69483 A 3.q16 0.989 0.q118
13 .2976732 25 13.3281 A 0.991 age 0.gender
14 .2712288 26 12.99274 | A 3.938
15 .2471336 26 12.71385 | U
16 .2251789 32 12.48904 | A 0.93 0.q949 0.q9150
2.q155 0.q160 qi111
17 .2051746 32 12.30196 | U
18 .1869475 34 12.15245 | A 2.96 3.978
19 .1703396 39 12.03358 A 0.q14 0.933 0.q126
0.q147 0.q149
20 .1552071 42 11.94361 A 0.925 0.982 1.q110
21 .1414189 46 11.88652 A 0.996 q20 3.q110
1.q134
22 .1288556 50 11.84693 | A 0.932 0.9102 1.9105
0.q122
23 .1174085 58 11.82553 | A 0.q94 0.q7 1.934
0.940 3.984 g53
q93 2.q134
* 24 .1069782 64 11.81814 | A 0.951 0.955 0.q975
0.q77 q63 0.q115
25 .0974746 66 11.8222 A 3.96 0.q117
26 .0888152 70 11.84669 | A 0.959 3.995 q21
0.q125
27 .0809251 72 11.88463 | A 0.q100 4.q155
28 .0737359 80 11.92887 | A 0.ql13 0.930 0.968
q52 q70 2.q110
0.q153 0.q159

* lambda selected by cross-validation.

The A’s that are not knots have a U for unchanged in the variables column. At these A’s, the variables in
the model do not change, but their coefficient estimates do. In this example, the selected * is a knot,

but frequently the selected A* will not be a knot.

lassoknots — Display knot table after lasso estimation 264

We display the number of nonzero coefficients again, but this time with estimates of out-of-sample
R? and in-sample R?.

. lassoknots, display(nonzero osr2 r2)

No. of OQut-of-

nonzero sample In-sample

ID lambda coef. R-squared R-squared
2 .8282935 2 0.0039 0.0102
3 . 7547102 4 0.0177 0.0278
5 .6265736 7 0.0575 0.0707
6 .5709106 11 0.0841 0.1051
7 .5201924 15 0.1159 0.1414
8 .47398 16 0.1488 0.1790
11 .3585485 19 0.2314 0.2635
12 .326696 22 0.2523 0.2861
13 .2976732 25 0.2723 0.3090
14 .2712288 26 0.2906 0.3288
16 .2251789 32 0.3181 0.3610
18 . 1869475 34 0.3365 0.3870
19 .1703396 39 0.3430 0.3981
20 .1552071 42 0.3479 0.4081
21 .1414189 46 0.3510 0.4176
22 .1288556 50 0.3532 0.4263
23 .1174085 58 0.3543 0.4342
* 24 .1069782 64 0.3547 0.4418
25 .0974746 66 0.3545 0.4486
26 .0888152 70 0.3532 0.4546
27 .0809251 72 0.3511 0.4598
28 .0737359 80 0.3487 0.4647

* lambda selected by cross-validation.

In-sample R? is significantly larger than the estimates of out-of-sample R2. As we discussed in In-
sample measures versus estimates of out-of-sample measures above, in-sample R? should not be used
for assessing fit. It is, however, occasionally useful for exposing problems with the specification of the set
of potential covariates. For example, suppose our dependent variable is log-income and we accidentally
include income as a potential covariate. It will no doubt be selected, and we will see an R? of 1 or close
to it. Seeing that, we realize we made a mistake in the specification of potential variables.

lassoknots — Display knot table after lasso estimation 265

We run lassoknots again to display BIC and the relative norms of the coefficient vectors.

. lassoknots, display(l1l 12 bic)

Relative Relative

L1 L2

ID lambda BIC length length
2 .8282935 5262.546 0.0084 0.0013
3 .7547102 5259.79 0.0244 0.0060
5 .6265736 5238.991 0.0696 0.0313
6 .5709106 5231.834 0.1066 0.0544
7 .5201924 5221.257 0.1449 0.0840
8 .47398 5187.164 0.1903 0.1195
11 .3585485 5108.273 0.3092 0.2504
12 .326696 5100.274 0.3492 0.2982
13 .2976732 5090.95 0.3948 0.3487
14 .2712288 5071.186 0.4375 0.4001
16 .2251789 5067.137 0.5179 0.4999
18 .1869475 5042.754 0.5959 0.5949
19 .1703396 5060.244 0.6344 0.6398
20 .15652071 5065.277 0.6734 0.6834
21 .1414189 5077.835 0.7133 0.7259
22 .1288556 5091.401 0.7543 0.7677
23 .1174085 5133.245 0.7955 0.8091
* 24 .1069782 5161.662 0.8388 0.8503
25 .0974746 5164.198 0.8805 0.8904
26 .0888152 5181.477 0.9213 0.9286
27 .0809251 5186.25 0.9606 0.9651
28 .0737359 5232.569 1.0000 1.0000

* lambda selected by cross-validation.

The relative norms are relative to the coefficient vector for the last A. If we were using BIC to select *,
we would have chosen A at ID = 18.

d

lassoknots — Display knot table after lasso estimation 266

b Example 2: lasso logit

We fit a lasso logit model using the same data as in the previous example.

. lasso logit q106 $idemographics $ifactors $vlcontinuous, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .0886291 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.386903
(output omitted)
Grid value 27: lambda = .0078899 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 1.103886
. cross-validation complete ... minimum found
Lasso logit model No. of obs = 914
No. of covariates = 277
Selection: Cross-validation No. of CV folds 10
No. of Out-of-
nonzero sample CV mean
ID Description lambda coef. dev. ratio deviance
1 first lambda .0886291 0 -0.0004 1.386903
23 lambda before .0114469 68 0.2102 1.094953
* 24 | selected lambda .01043 76 0.2103 1.09471
25 lambda after .0095034 79 0.2091 1.096417
27 last lambda .0078899 87 0.2037 1.103886
* lambda selected by cross-validation.

The default 1assoknots gives a table that is the same as that for a linear model, except that instead
of CV mean-prediction error, CV mean deviance is shown. The CV function for logit (and probit and

Poisson) is the CV mean deviance.

. lassoknots
No. of
nonzero CV mean Variables (A)dded, (R)emoved,
1D lambda coef. deviance or left (U)nchanged
2 .0807555 3 1.38295 A 0.990 2.q134 0.q142
3 .0735814 5 1.37237 A 0.98 q53
4 .0670447 8 1.357427 A 0.968 0.q77 q22
5 .0610886 9 1.33969 A 0.946
6 | .0556616 12 1.319525 | A 0.q13 2.q16 2.q95
7 .0507168 14 1.299571 A 1.984 q20
8 .0462113 18 1.279802 A 0.929 0.q133 0.q140
1.q144
(output omitted)
23 .0114469 68 1.094953 A 0.926 0.973 0.q118
* 24 .01043 76 1.09471 | A 0.q4 ql 0.950
2.965 3.965 0.983
q24 1.q155
25 .0095034 79 1.096417 A q76 0.q108 0.q9122
26 .0086591 83 1.09945 A 2.96 0.q64 0.q100
q132
27 .0078899 87 1.103886 A 0.958 0.q74 0.q113
q103

* lambda selected by cross-validation.

lassoknots — Display knot table after lasso estimation 267

We can look at in-sample CV deviance ratio and estimates of out-of-sample CV deviance ratio. These
are analogous to the linear in-sample R? and out-of-sample R2. The in-sample CV deviance ratio is
always between 0 and 1. The estimates of out-of-sample CV deviance ratio are usually, but not always,
between 0 and 1.

. lassoknots, display(cvdevratio devratio bic)

OQut-of- In-sample

sample deviance
ID lambda dev. ratio ratio BIC
2 .0807555 0.0024 0.0057 1287.176
3 .0735814 0.0100 0.0180 1285.111
4 .0670447 0.0208 0.0323 1287.477
5 .0610886 0.0336 0.0488 1273.364
6 .0556616 0.0482 0.0657 1272.417
7 .0507168 0.0626 0.0835 1263.5
8 .0462113 0.0768 0.1022 1267.165

(output omitted)

23 .0114469 0.2102 0.3209 1330.907
* 24 .01043 0.2103 0.3297 1374.27
25 .0095034 0.2091 0.3379 1384.306
26 .0086591 0.2069 0.3461 1401.188
27 .0078899 0.2037 0.3535 1419.149

* lambda selected by cross-validation.

b Example 3: dsregress

We load the data used in [LASSO] lasso examples. See that entry for details about the data.
. use https://www.stata-press.com/data/r19/fakesurvey_vl, clear
(Fictitious survey data with v1)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We are going to fit a dsregress model with q104 as our dependent variable and variables of interest
g41 and g22. These variables of interest are currently in the variable lists factors and vlcontinuous,
which we will use to specify the control variables. So we need to move them out of these variable lists.

. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.

. vl move (q22) vlother
note: 1 variable specified and 1 variable moved.

(output omitted)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

After we moved the variables out of the variable lists, we typed v1 rebuild to update the variable list
ifactors created from factors. See [D] vl for details.

lassoknots — Display knot table after lasso estimation 268

We fit our dsregress model using the default plugin selection method.

. dsregress q104

Estimating lasso
Estimating lasso
Estimating lasso

i.q41 q22, controls(($idemographics) $ifactors $vlcontinuous)

for q104 using plugin
for 1bn.q41 using plugin
for q22 using plugin

Double-selection linear model Number of obs 914
Number of controls = 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001
Robust

q104 | Coefficient std. err. z P>|z]| [95% conf. intervall

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each

lasso.

lassoinfo shows the lassos that dsregress fit.

. lassoinfo

Estimate: active
Command: dsregress

No. of

Selection selected

Variable Model method lambda variables
ql04 linear plugin .1467287 18
1bn.q41 linear plugin .1467287 16
q22 linear plugin .1467287 15

The knot table for the lasso for the dependent variable q104 can be seen using the for (q104) option.
We also show BIC and in-sample RZ.

. lassoknots, display(nonzero r2 bic) for(ql104)

No. of
nonzero In-sample
ID lambda coef. R-squared BIC
* 1 .1467287 14 0.1623 5191.862

* lambda selected by plugin assuming heteroskedastic errors.

A lasso fit with plugin fits only one model for one A. So that is all we get from lassoknots.
If we wanted to see the same table for the variable of interest i.q941, we would type

. lassoknots, display(nonzero r2 bic) for(1ibn.g4l)

In the for () option, we specify the variable name for the lasso exactly as it is shown in lassoinfo.

lassoknots — Display knot table after lasso estimation 269

We run dsregress again, this time specifying selection(cv).

. dsregress q104 i.q41 q22,

> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)

Estimating lasso for ql04 using cv

Estimating lasso for 1bn.q41l using cv
Estimating lasso for q22 using cv

Double-selection linear model Number of obs 914
Number of controls 274
Number of selected controls = 123
Wald chi2(2) 10.96
Prob > chi2 0.0042
Robust

ql04 | Coefficient std. err. z P>|z| . intervall

q41
Yes .6003918 .2848483 2.11 0.035 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each

lasso.

lassoknots now shows knots up to the minimum and slightly passed it.

. lassoknots, display(nonzero cvmpe osr2) for(q104)

No. of CV mean Out-of-

nonzero pred. sample

ID lambda coef. error R-squared

1 .864369 4 17.9727 0.0187

2 . 7875809 6 17.88282 0.0236

3 .7176144 7 17.64713 0.0365

4 .6538635 8 17.32777 0.0539

5 .595776 12 16.87904 0.0784

6 .5428489 14 16.3203 0.1089

7 .4946237 15 15.74852 0.1401

8 .4506827 18 15.2143 0.1693
(output omitted)

22 .1225221 52 12.02453 0.3435

* 23 .1116376 59 12.02148 0.3436

24 .10172 62 12.02571 0.3434

25 .0926835 71 12.03785 0.3427

26 .0844497 76 12.0626 0.3414

27 .0769474 80 12.09713 0.3395

27 .0769474 80 12.09713 0.3395

* lambda selected by cross-validation.

For a sensitivity analysis that uses lassoselect after lassoknots, see [LASSO] lassoselect.

lassoknots — Display knot table after lasso estimation 270

Stored results

lassoknots stores the following in r ():

Matrices
r(table) matrix containing the values displayed

Methods and formulas

Methods and formulas are presented under the following headings:

Overview
Statistics that measure the size of the coefficient vector
Statistics that measure fit
CV measures of fit
Single-sample measures of fit
Deviance formulas
Saturated log likelihood
Prediction error formulas
BIC formula

Overview

All the reported statistics depend on the p-dimensional coefficient vector B \.» which is the penalized
estimate of 3 for given penalty value \.

We present the formulas in the context of lasso, but formulas for elasticnet and sqrtlasso are
the same, although the context would have some subtle differences that we can safely ignore.

Statistics that measure the size of the coefficient vector

Option display (nonzero) displays the number of nonzero coefficients, which is given by

p
nonzero = E dj
Jj=1

. {1 if By #0

0 otherwise

Option display(11) displays the sum of the absolute values of the coefficients, which is known as
the ¢, -norm:
P
11 = Z W1
j=1
Option display (12) displays the sum of the squared values of the coefficients, which is the square

of the /,-norm:
p
12=) 63,

7=1

lassoknots — Display knot table after lasso estimation 271

Statistics that measure fit

All statistics that measure fit are functions of the observation-level contributions of either the squared
prediction error, spe, or the log likelihood, /;.

The contribution of observation ¢ to a statistic can be calculated using a single-sample calculation
or using CV. The CV version estimates the out-of-sample equivalent. The single-sample versions are
in-sample measures that do not reliably estimate their out-of-sample equivalents.

CV measures of fit

When CV is performed, CV versions of spe, and ¢; are available. Here is how we compute these
observation-level quantities.

1. The data are partitioned into K folds.
2. For each value of A,
a. the coefficients are estimated on the observations not in fold & using A.

b. for each observation i in fold k, the fit measures spe, and /; are computed using the penalized
coefficient estimates.

Single-sample measures of fit

The single-sample measures of fit are computed as follows.
1. For each value of A,
a. the coefficients are estimated on all the observations using A.

b. for each observation i the fit measures spe, and £; are computed using the penalized coefficient
estimates.

Deviance formulas

The CV version of ¢, is used in the formulas for cvmd and cvdevratio. The single-sample version
of ¢, is used in the formula for devratio.

For all models, the deviance, D,, for the ith observation is given by

D, = —2(¢

3

i Esaturated)
where /; is the value of the log-likelihood function at observation 7, and £ ..cq 1S the value of the
saturated log-likelihood function. Formulas for the ¢, and for the £,...q are given below. The penalized

coefficient estimates are used in these computations.

The mean deviance D is given by

_ 1 X
D=-S D
v
The formula for the deviance ratio D, is
D
Dy,=1-

null

lassoknots — Display knot table after lasso estimation 272

where the D, is the null deviance and is given by

null - N E EO i saturated)

and £, ; is the ith observation of the log likelihood from the model that includes only a constant term.

Saturated log likelihood

For linear, logit, and probit models, the log-likelihood function of the saturated model is zero. For the
Poisson model,

1 N
gsaturated = N Z(_yz + Yi In yz)
i=1

For the Cox model,

ésamrated Z lOg

where j indexes the ordered failure times ¢(;), j = 1,..., Ny D; is the set of observations that fail at
) and dj is the number of observations in Dj.

Prediction error formulas

These formulas are used only for linear models. The squared prediction error for the ith observation
is given by

spe, = (Uz - XiBA)Q

where y, is the ith observation of the dependent variable and xiﬁ , is the predicted mean of y; conditional
onx,.

For cvmpe and osr2, the CV version of spe, is used. For r2, the single-sample version of spe, is used.

R? is given by
MSE

MSE,

R?=1-—

null

where the mean squared error (MSE) is given by

1 X
MSE = ; spe
and the MSE of the null model is given by
1 &
MSE,un = + Z(yz -9
N

where 7 is the sample average of y.

lassoknots — Display knot table after lasso estimation 273

BIC formula
BIC is given by
BIC=—-2(+kInN

where { = Zi\i 1 li» k = nonzero + 1 is the number of coefficients in the model including the constant

term, and each ¢; is always calculated using the single-sample methods.

References

Hastie, T. J., R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. 2nd ed. New York: Springer. https://doi.org/10.1007/978-0-387-84858-7.

Zhang, Y., R. Li, and C.-L. Tsai. 2010. Regularization parameter selections via generalized information criterion. Journal
of the American Statistical Association 105: 312-323. https://doi.org/10.1198/jasa.2009.tm08013.

Also see

LASSO] lasso — Lasso for prediction and model selection
LASSO] lasso fitting — The process (in a nutshell) of fitting lasso models

1
]

LASSO] lassocoef — Display coefficients after lasso estimation results
]

[

[

[

[LASSO] lassoselect — Select lambda after lasso

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models
[

CAUSAL] telasso postestimation — Postestimation tools for telasso

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1198/jasa.2009.tm08013

lasso options — Lasso options for inferential models

Description Syntax Options Remarks and examples Reference Also see

Description

This entry describes the options that control the lassos, either individually or globally, in the ds, po,
and xpo estimation commands.

For an introduction to lasso inferential models, see [LASSO] Lasso inference intro.

For examples of the ds, po, and xpo estimation commands and the use of these options, see
[LASSO] Inference examples.

Syntax

lasso_inference_cmd . . .[, .. .options |

lasso_inference_cmd is one of dslogit, dspoisson, dsregress, poivregress, pologit,
popoisson, poregress, xpoivregress, xpologit, xpopoisson, Or xporegress.

options Description
Model
selection(plugin) select * using a plugin iterative formula for all lassos;
T the default
selection(cv) select * using cross-validation (CV) for all lassos
selection(adaptive) select * using adaptive lasso for all lassos
selection(bic) select * using Bayesian information criterion (BIC) for all
lassos
sqrtlasso fit square-root lassos instead of regular lassos
Advanced
lasso (varlist, lasso_options) specify options for lassos for variables in varlist

sqrtlasso (varlist, lasso_options) specify options for square-root lassos for variables in varlist

lasso_options Description

selection(sel_method) selection method to select an optimal value of the lasso
penalty parameter A* from the set of possible A’s

grid(#, [, ratio(#) min(#) |) specify the set of possible A\’s using a logarithmic grid with
#, grid points

stop (#) tolerance for stopping the iteration over the A grid early
cvtolerance (#) tolerance for identification of the CV function minimum
bictolerance (#) tolerance for identification of the BIC function minimum
tolerance (#) convergence tolerance for coefficients based on their values
dtolerance (#) convergence tolerance for coefficients based on deviance

274

lasso options — Lasso options for inferential models 275

sel_method Description

plugin|, plugin_opts | select * using a plugin iterative formula; the default
cv|, cv_opis| select * using CV

adaptive|, adapt_opts cv_opts] select * using an adaptive lasso; only available for lasso ()
bic[, bic_opts] select A* using BIC

plugin_opts Description

heteroskedastic assume model errors are heteroskedastic; the default

homoskedastic assume model errors are homoskedastic

cv_opts Description

folds(#) use # folds for Cv

alllambdas fit models for all A’s in the grid or until the stop (#) tolerance is reached;

by default, the CV function is calculated sequentially by A, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select *

stopok when the CV function does not have an identified minimum and the stop (#)
stopping criterion for A was reached at Ay, set the selected A* to be
Astops the default

strict do not select A* when the CV function does not have an identified minimum,;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop (#)

stopping criterion for A was not reached, set the selected * to be the
minimum of the A grid, A\, ;.; this is a looser alternative to the default
stopok and is rarely use

omin

adapt_opts Description

steps (#) use # adaptive steps (counting the initial lasso as step 1)
unpenalized use the unpenalized estimator to construct initial weights
ridge use the ridge estimator to construct initial weights

power (#) raise weights to the #th power

lasso options — Lasso options for inferential models 276

bic_opts Description

alllambdas fit models for all A’s in the grid or until the stop (#) tolerance is reached;
by default, the BIC function is calculated sequentially by A, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop (#)
stopping criterion for A was reached at A\, set the selected * to be
Agiops the default

stop?
strict do not select A* when the BIC function does not have an identified minimum;

this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop (#)
stopping criterion for A was not reached, set the selected * to be the
minimum of the A grid, \,;,; this is a looser alternative to the default

stopok and is rarely use
postselection use postselection coefficients to compute BIC

stop?

Options
Model

selection(plugin|cv|adaptive |bic) is a global option that specifies that all lassos use the given
selection method. It is the same as specifying lasso(*, selection(plugin|cv|adaptive |
bic)). The default is selection(plugin). That is, not specifying this option implies a global
selection(plugin) for all lassos. This global form of the option does not allow suboptions. To
specify suboptions, use the lasso () or sqrtlasso () option described below.

sqrtlasso is a global option that specifies that all lassos be square-root lassos. It is the same as spec-
ifying sqrtlasso(*), except for logit and Poisson models. For logit and Poisson models, it is the
same as sqrtlasso (varsofinterest), where varsofinterest are all the variables that have lassos ex-
cluding the dependent variable. This global form of the option does not allow suboptions. To specify
suboptions, use the sqrtlasso () option described below.

Advanced

lasso (varlist, lasso_options) and sqrtlasso (varlist, lasso_options) let you set different options for
different lassos and square-root lassos. These options also let you specify advanced options for
all lassos and all square-root lassos. The lasso() and sqrtlasso() options override the global
options selection(plugin|cv|adaptive) and sqrtlasso for the lassos for the specified vari-
ables. If lasso (varlist, lasso_options) or sqrtlasso (varlist, lasso_options) does not contain a
selection() specification as part of lasso_options, then the global option for selection() is as-
sumed.

lasso (varlist, lasso_options) specifies that the variables in varlist be fit using lasso with the selec-
tion method, set of possible \’s, and convergence criteria determined by lasso_options.

sqrtlasso (varlist, lasso_options) specifies that the variables in varlist be fit using square-root
lasso with the selection method, set of possible \’s, and convergence criteria determined by
lasso_options.

For lasso() and sqrtlasso(), varlist consists of one or more variables from depvar, the de-
pendent variable, or varsofinterest, the variables of interest. To specify options for all lassos, you
may use * or _all to specify depvar and all varsofinterest.

lasso options — Lasso options for inferential models 277

For models with endogeneity, namely, poivregress and xpoivregress models, lassos are done
for depvar, the exogenous variables, exovars, and the endogenous variables, endovars. Any of
these variables can be specified in the lasso() option. All of them can be specified using * or
_all.

The lasso() and sqrtlasso() options are repeatable as long as different variables are given in
each specification of 1asso () and sqrtlasso(). The type of lasso for any depvar or varsofinter-
est (or exovars or endovars) not specified in any lasso () or sqrtlasso() option is determined
by the global lasso options described above.

For all lasso inferential commands, linear lassos are done for each of the varsofinterest (or exovars
and endovars). For linear models, linear lassos are also done for depvar. For logit models, how-
ever, logit lassos are done for depvar. For Poisson models, Poisson lassos are done for depvar.
Square-root lassos are linear models, so sqrtlasso(depvar, ...) cannot be specified for the
dependent variable in logit and Poisson models. For the same reason, sqrtlasso(*, ...) and
sqrtlasso(_all, ...) cannot be specified for logit and Poisson models. For logit and Poisson
models, you must specify sqrtlasso (varsofinterest, ...) to set options for square-root lassos
and specify lasso(depvar, ...) to set options for the logit or Poisson lasso for depvar.

Suboptions for lasso() and sqrtlasso()

selection(plugin [, heteroskedastic homoskedastic|) selects * based on a “plugin” iterative
formula dependent on the data. The plugin estimator calculates a value for * that dominates the noise
in the estimating equations, which ensures that the variables selected belong to the true model with
high probability. See Methods and formulas in [LASSO] lasso.

selection(plugin) does not estimate coefficients for any other values of A, so it does not require a
A grid, and none of the grid options apply. It is much faster than the other selection methods because
estimation is done only for a single value of A. It is an iterative procedure, however, and if the plugin
is computing estimates for a small A (which means many nonzero coefficients), the estimation can
still be time consuming.

heteroskedastic assumes model errors are heteroskedastic. It is the default. Specifying
selection(plugin) for linear lassos is equivalent to specifying selection(plugin,
heteroskedastic). This suboption can be specified only for linear lassos. Hence, this sub-
option cannot be specified for depvar for logit and Poisson models, where depvar is the dependent
variable. For these models, specify lasso(depvar, selection(plugin)) to have the logit or
Poisson plugin formula used for the lasso for depvar. See Methods and formulas in [LASSO] lasso.

homoskedastic assumes model errors are homoskedastic. This suboption can be specified only for
linear lassos. Hence, this suboption cannot be specified for depvar for logit and Poisson models,
where depvar is the dependent variable.

selection(cv [, folds(#) alllambdas serule stopok strict gridminok]) selects A* to be the
A that gives the minimum of the CV function.

folds (#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that models be fit for all A’s in the grid or until the stop (#) tolerance is reached.
By default, models are calculated sequentially from largest to smallest A\, and the CV function is
calculated after each model is fit. If a minimum of the CV function is found, the computation ends
at that point without evaluating additional smaller \’s.

lasso options — Lasso options for inferential models 278

alllambdas computes models for these additional smaller A’s. Because computation time is
greater for smaller), specifying alllambdas may increase computation time manyfold. Specify-
ing alllambdas is typically done only when a full plot of the CV function is wanted for assurance
that a true minimum has been found. Regardless of whether alllambdas is specified, the selected
A* will be the same.

serule selects A* based on the “one-standard-error rule” recommended by Hastie, Tibshirani, and
Wainwright (2015, 13—14) instead of the A that minimizes the CV function. The one-standard-error
rule selects the largest A for which the CV function is within a standard error of the minimum of
the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have an identified
minimum. A minimum is identified at * when the CV function at both larger and smaller adjacent
A is greater than it is at A*. When the CV function has an identified minimum, stopok, strict,
and gridminok all do the same thing: the selected * is the A that gives the minimum.

In some cases, however, the CV function declines monotonically as A gets smaller and never rises
to identify a minimum. When the CV function does not have an identified minimum, stopok and
gridminok make alternative selections for A*, and strict makes no selection. You may specify
only one of stopok, strict, or gridminok; stopok is the default if you do not specify one.
With each of these suboptions, estimation results are always left in place, and alternative * can
be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the stop (#)
stopping tolerance for A was reached, the selected A* is Ay, the A that met the stopping cri-
terion. A, is the smallest A for which coefficients are estimated, and it is assumed that Ay,
has a CV function value close to the true minimum. When no minimum is identified and the
stop (#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum. If it does not, an error is issued.

gridminok is a rarely used suboption that specifies that when the CV function has no identified
minimum and the stop (#) stopping criterion was not met, A,;,, the minimum of the A grid,
is the selected A*.

The gridminok selection criterion is looser than the default stopok, which is looser than strict.
With strict, only an identified minimum is selected. With stopok, either the identified minimum
Or Ay, is selected. With gridminok, either the identified minimum or Ay, or Ay, is selected,
in this order.

selection(adaptive |, steps(#) unpenalized ridge power (#) cv_options|) can be specified
only as a suboption for lasso(). It cannot be specified as a suboption for sqrtlasso(). It se-
lects A* using the adaptive lasso selection method. It consists of multiple lassos with each lasso step
using CV. Variables with zero coefficients are discarded after each successive lasso, and variables with
nonzero coefficients are given penalty weights designed to drive small coefficient estimates to zero
in the next step. Hence, the final model typically has fewer nonzero coefficients than a single lasso.

selection(bic [, bic_opts |) selects * to be the X that gives the minimum of the BIC function.
bic_opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all A’s in the grid or until the stop (#) tolerance is
reached. By default, models are calculated sequentially from largest to smallest A, and the BIC
function is calculated after each model is fit. If a minimum of the BIC function is found, the
computation ends at that point without evaluating additional smaller \’s.

lasso options — Lasso options for inferential models 279

alllambdas computes models for these additional smaller A’s. Because computation time
is greater for smaller A, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected A* will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have an
identified minimum. A minimum is identified at A* when the BIC function at both larger and
smaller adjacent \’s is greater than it is at A*. When the BIC function has an identified minimum,
these options all do the same thing: the selected A* is the A that gives the minimum. In some
cases, however, the BIC function declines monotonically as A gets smaller and never rises to
identify a minimum. When the BIC function does not have an identified minimum, stopok
and gridminok make alternative selections for *, and strict makes no selection. You may
specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative *
can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the
stop (#) stopping tolerance for A was reached, the selected A" is Ay, the A that met the
stopping criterion. A, is the smallest A for which coefficients are estimated, and it is
assumed that A, has a BIC function value close to the true minimum. When no minimum
is identified and the stop (#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified
minimum and the stop (#) stopping criterion was not met, then A the minimum of the
A grid, is the selected A*.

gmin>

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or Ay, is selected. With gridminok, either the identified minimum or A, or
A is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function. By
default, the penalized coefficients are used.

stop

gmin

steps (#) specifies that adaptive lasso with # lassos be done. By default, # = 2. That is, two
lassos are run. After the first lasso estimation, terms with nonzero coefficients j; are given penalty
weights equal to 1/|8;|, terms with zero coefficients are omitted, and a second lasso is estimated.
Terms with small coefficients are given large weights, making it more likely that small coefficients
become zero in the second lasso. Setting # > 2 can produce more parsimonious models. See
Methods and formulas in [LASSO] lasso

unpenalized specifies that the adaptive lasso use the unpenalized estimator to construct the initial
weights in the first lasso. unpenalized is useful when CV cannot find a minimum. unpenalized
cannot be specified with ridge.

ridge specifies that the adaptive lasso use the ridge estimator to construct the initial weights in the
first lasso. ridge cannot be specified with unpenalized.

power (#) specifies that the adaptive lasso raise the weights to the #th power. The default power is 1.
The specified power must be in the interval [0.25,2].

lasso options — Lasso options for inferential models 280

cv_options are all the suboptions that can be specified for selection(cv), namely, folds(#)),
alllambdas, serule, stopok, strict, and gridminok. The suboptions alllambdas, strict,
and gridminok apply only to the first lasso estimated. For second and subsequent lassos,
gridminok is the default. When ridge is specified, gridminok is automatically used for the
first lasso.

grid{#g [, ratio(#) min(#) |) specifies the set of possible \’s using a logarithmic grid with #, grid
points.

#, is the number of grid points for A. The defaultis #, = 100. The grid is logarithmic with the ith grid
point (i = 1,...,n = #) givenby In\; = [(i — 1)/(n — D)]In7 + In Ay, Where Agpae = Ay
is the maximum, Ay, = A, = min(#) is the minimum, and 7 = A

gmin/>‘gmax = ratio(#) isthe
ratio of the minimum to the maximum.

ratio(#) specifies Aypin/Agmax- The maximum of the grid, Ay, is set to the smallest A for which
all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).
Agmin 18 then set based on ratio(#). When p < N, where p is the total number of othervars
and alwaysvars (not including the constant term) and NV is the number of observations, the default
value of ratio (#) is le—4. When p > N, the default is le—2.

min(#) sets A By default, \
data.

is based on ratio(#) and \ which is computed from the

gmin*® gmin gmax>
stop (#) specifies a tolerance that is the stopping criterion for the A iterations. The default is 1e—5. This
suboption does not apply when the selection method is selection(plugin). Estimation starts with
the maximum grid value, A, and iterates toward the minimum grid value, A,,;,. When the relative
difference in the deviance produced by two adjacent A grid values is less than stop (#), the iteration
stops and no smaller \’s are evaluated. The value of A that meets this tolerance is denoted by A

Typically, this stopping criterion is met before the iteration reaches A

stop*
gmin®

Setting stop (#) to a larger value means that iterations are stopped earlier at a larger \y,,. To pro-
duce coefficient estimates for all values of the A grid, stop(0) can be specified. Note, however,
that computations for small \’s can be extremely time consuming. In terms of time, when using
selection(cv), selection(adaptive), or selection(bic), the optimal value of stop(#) is
the largest value that allows estimates for just enough \’s to be computed to identify the minimum of
the CV or BIC function. When setting stop (#) to larger values, be aware of the consequences of the
default A* selection procedure given by the default stopok. You may want to override the stopok
behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum Cv
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller \’s with a relative difference in the CV function greater than #. For
nonlinear models, at least five smaller \’s are required. The default is le—3. Setting # to a bigger
value makes a stricter criterion for identifying a minimum and brings more assurance that a declared
minimum is a true minimum, but it also means that models may need to be fit for additional smaller
A, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information
about this tolerance and the other tolerances.

bictolerance (#) is a rarely used option that changes the tolerance for identifying the minimum BIC
function. A minimum is identified when the BIC function rises above a nominal minimum for at least
two smaller A\’s with a relative difference in the BIC function greater than #. The default is le—2.
Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more

lasso options — Lasso options for inferential models 281

assurance that a declared minimum is a true minimum, but it also means that models may need to be
fit for additional smaller A, which can be time consuming. See Methods and formulas in [LASSO] lasso
for more information about this tolerance and the other tolerances.

tolerance (#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-
vergence is achieved when the relative change in each coefficient is less than this tolerance. The
default is tolerance(le-7).

dtolerance (#) is ararely used option that changes the convergence criterion for the coefficients. When
dtolerance (#) is specified, the convergence criterion is based on the change in deviance instead of
the change in the values of coefficient estimates. Convergence is declared when the relative change
in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-
ifying this option and instead using the default tolerance(le-7) criterion or specifying a smaller
value for tolerance (#).

Remarks and examples

All the options shown here may seem overwhelming. However, you will likely never need to use
many of them.

You would typically use the global options to change the selection method for each of the lassos
performed by one of the lasso inference commands. For example, you can specify selection(cv),
selection(adaptive), or selection(bic) to change the selection method globally from the default
selection(plugin).

Sometimes, CV fails to identify a minimum of the CV function and so fails to select *; thus, the in-
ferential command fails. Lasso inference postestimation commands provide tools to see what happened.
Then it may be possible to set options so that an acceptable A* is selected. Of course, in many cases, the
issue is not with the computation but rather with model specification or simply not having enough data.

To understand the selection(cv), selection(adaptive), and selection(bic) selection meth-
ods and how to set options to control them, you should first become familiar with lasso for prediction
and model selection.

Notice, however, that options for the lasso and sqrtlasso commands are specified slightly differ-
ently than they are when used as suboptions for lasso inference commands. For instance, with lasso,
you might specify selection(cv, folds(20)). With dsregress or one of the other inference com-
mands, you would specify lasso(*, selection(cv, f0lds(20))) to specify that CvV with 20 folds
be used to select * for each lasso.

Read [LASSO] lasso and [LASSO] lasso fitting to learn about the lasso options in greater detail.

Reference

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations.
Boca Raton, FL: CRC Press. https://doi.org/10.1201/b18401.

Also see

[LASSO] Lasso intro — Introduction to lasso

[LASSO] Lasso inference intro — Introduction to inferential lasso models
[LASSO] lasso — Lasso for prediction and model selection
[]

LASSO] lasso fitting — The process (in a nutshell) of fitting lasso models

https://doi.org/10.1201/b18401

lassoselect — Select lambda after lasso

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see
Description

lassoselect allows the user to select a different * after lasso and sqrtlasso when the selection
method was selection(cv), selection(adaptive), selection(bic), or selection(none).

After elasticnet, the user can select a different (a*, A*) pair.

When the telasso, ds, po, and xpo commands fit models using selection(cv),
selection(adaptive), or selection(bic) ([LASSO] lasso options), lassoselect can be
used to select a different * for a particular lasso.

Quick start

After lasso with selection(cv), change the selected A* to that with ID = 52

lassoselect id =52

Same as above, but change the selected A* to the A closest to 0.01
lassoselect lambda =0.01

After elasticnet, change the selected (a*, *) to (0.5,0.267345)
lassoselect alpha = 0.5 lambda = 0.267345

After dsregress with selection(adaptive), change the selected A* to 1.65278 for the adaptive lasso
for the variable y

lassoselect lambda = 1.65278, for(y)

After poivregress with selection(bic), change the selected A* to the A closest to 0.7 for the lasso
for the prediction of the variable income

lassoselect lambda =0.7, for(pred(income))

After xporegress with selection(cv) and resample, change the selected * to 0.234189 for the
lasso for the variable x26 for the 5th cross-fit fold in the 9th resample

lassoselect lambda = 0.234189, for(x26) xfold(5) resample(9)

After telasso with selection(cv), change the selected A* to the A closest to 0.7 for the lasso for the
outcome variable y at treatment level 1

lassoselect lambda =0.7, for(y) tlevel(1l)

Menu

Statistics > Postestimation

282

lassoselect — Select lambda after lasso 283

Syntax
After lasso, sqrtlasso, and elasticnet

lassoselect id=#

After lasso and sqrtlasso

lassoselect lambda = #

After elasticnet

lassoselect alpha = # lambda = #

After ds and po with selection(cv) or selection(adaptive)

lassoselect { id|lambda } = #, for (varspec)

After xpo without resample and with selection(cv) or selection(adaptive)

lassoselect {id|lambda } = #, for (varspec) xfold(#)

After xpo with resample and selection(cv) or selection(adaptive)

lassoselect { id|lambda } = #, for (varspec) xfold(#) resample (#)

After telasso for the outcome variable and with selection(cv) or selection(adaptive)

lassoselect { id|lambda } = #, for (varspec) tlevel (#)

After telasso for the treatment variable and with selection(cv) or selection(adaptive)
lassoselect { id|lambda } = #, for (varspec)

After telasso for the outcome variable with cross-fitting but without resample and with

selection(cv) or selection(adaptive)

lassoselect { id|lambda } = #, for (varspec) tlevel (#) xfold(#)

After telasso for the treatment variable with cross-fitting but without resample

lassoselect { id|lambda } = #, for (varspec) xfold(#)
After telasso for the outcome variable with cross-fitting and resample and with selection(cv) or
selection(adaptive)

lassoselect { id |lambda } = #, for (varspec) tlevel (#) xfold(#) resample (#)
After telasso for the treatment variable with cross-fitting and resample and with selection(cv) or
selection(adaptive)

lassoselect {id|lambda } = #, for (varspec) xfold(#) resample (#)

lassoselect — Select lambda after lasso 284

varspec is varname, except after poivregress and xpoivregress, when it is either varname or

pred(varname).
options Description

* for (varspec) lasso for varspec; telasso, ds, po, and xpo commands only

*xfold(#) lasso for the #th cross-fit fold; xpo commands and telasso
with xfolds only

* resample (#) lasso for the #th resample; xpo commands and telasso
with resample only

*tlevel (#) lasso for the outcome model with the treatment level #;

telasso only

*for (varspec) is required for all ds, po, and xpo commands and for telasso.

xfold(#) is required for all xpo commands and for telasso when the option xfolds (#) was specified.
resample (#) is required for xpo and for telasso when the option resample (#) was specified.
tlevel (#) is required for the outcome model in telasso.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

for (varspec) specifies a particular lasso after telasso or after a ds, po, or xpo estimation command fit
using the option selection(cv), selection(adaptive), or selection(bic). For all commands
except poivregress and xpoivregress, varspec is always varname.

For the ds, po, and xpo commands except poivregress and xpoivregress, varspec is either dep-
var, the dependent variable, or one of varsofinterest for which inference is done.

For poivregress and xpoivregress, varspec is either varname or pred (varname). The lasso for
depvar is specified with its varname. Each of the endogenous variables have two lassos, specified by
varname and pred (varname) . The exogenous variables of interest each have only one lasso, and it
is specified by pred (varname).

For telasso, varspec is either the outcome variable or the treatment variable.
This option is required after telasso and after the ds, po, and xpo commands.

xfold(#) specifies a particular lasso after an xpo estimation command or after telasso when the
option xfolds (#) was specified. For each variable to be fit with a lasso, K lassos are done, one
for each cross-fit fold, where K is the number of folds. This option specifies which fold, where
#=1,2,...,K. xfold(#) is required after an xpo command and after telasso when the option
xfolds (#) was specified.

resample (#) specifies a particular lasso after an xpo estimation command or after telasso fit using the
option resample (#). For each variable to be fit with a lasso, R x K lassos are done, where R is the
number of resamples and K is the number of cross-fitting folds. This option specifies which resample,
where #=1,2,..., R. resample(#), along with xfold (#), is required after an xpo command and
after telasso with resampling.

tlevel (#) specifies the lasso for the outcome variable at the specified treatment level after telasso.
This option is required to refer to the outcome model after telasso.

lassoselect — Select lambda after lasso 285

Remarks and examples

b Example 1: lasso linear

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the v1
variable lists active.
. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with v1)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We want to evaluate our lasso predictions on a sample that we did not use to fit the lasso. So we
randomly split our data into two samples of equal sizes. We will fit models on one, and we will use the
other to test their predictions. We use splitsample to generate a variable indicating the two subsamples.

. set seed 1234
. splitsample, generate(sample) nsplit(2)
. label define svalues 1 "Training" 2 "Testing"

. label values sample svalues

We fit a lasso linear model on the first subsample.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous

> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93341
(output omitted)
Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10 CVF = 12.17933
. cross-validation complete ... minimum found
Lasso linear model No. of obs = 458
No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10
No. of Out-of- CV mean
nonzero sample prediction
ID Description lambda coef. R-squared error
1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991
* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.

We store the results because we want to compare these results with other results later.

. estimates store lassocv

lassoselect — Select lambda after lasso 286

We run lassoknots with options to show the number of nonzero coefficients, estimates of out-of-
sample R?, and the Bayes information criterion (BIC).

. lassoknots, display(nonzero osr2 bic)

No. of OQut-of-
nonzero sample

ID lambda coef. R-squared BIC
1 .8978025 4 0.0147 2618.642
2 .8180442 7 0.0236 2630.961
3 .7453714 8 0.0421 2626.254
4 .6791547 9 0.0635 2619.727
5 .6188205 10 0.0857 2611.577
6 .5638462 13 0.1110 2614.155
8 .468115 14 0.1581 2588.189
9 4265289 16 0.1785 2584.638
10 .3886373 18 0.1980 2580.891
11 .3541118 22 0.2170 2588.984
12 .3226535 26 0.2340 2596.792
13 .2939899 27 0.2517 2586.521
14 .2678726 28 0.2669 2578.211
15 2440755 32 0.2784 2589.632
16 .2223925 35 0.2865 2593.753
17 .2026358 37 0.2919 2592.923
18 .1846342 42 0.2953 2609.975
* 19 .1682318 49 0.2968 2639.437
20 .1532866 55 0.2964 2663.451
21 .139669 62 0.2952 2693.929
22 .1272612 66 0.2934 2707.174
23 .1159557 74 0.2913 2744.508

* lambda selected by cross-validation.

Research indicates that under certain conditions, selecting the A that minimizes the BIC gives good pre-
dictions. See BIC in [LASSO] lassoknots.

Here the A with ID = 14 gives the minimum value of the BIC. Let’s select it.

. lassoselect id = 14
ID = 14 lambda = .2678726 selected

When lassoselect runs, it changes the current estimation results to correspond with the selected
lambda. It is almost the same as running another estimation command and wiping out the old estimation
results. We say “almost” because it is easy to change * back to what it was originally. We stored our
earlier results knowing lassoselect was going to do this.

Let’s store the new results from lassoselect.

. estimates store lassosel

lassoselect — Select lambda after lasso 287

We plot the CV function with the new selected * marked along with the A selected by cross-
validation—the A that gives the minimum of the CV function.

. cvplot

Cross-validation plot
>\LS)\C\/
174
16

15+

14+

Cross-validation function

134

12

1 1
A

Acy = .17 is the cross-validation minimum A; # coefficients = 49.
Ais = .27 is the lassoselect specified A; # coefficients = 28.

The CV function is curving upward at the value of the new selected A*. Alternative A*’s in a region
where the CV function is still relatively flat are sometimes selected, but that is not the case here.

The real test is to see how well it does for out-of-sample prediction compared with the original *.
We run lassogof to do this.

. lassogof lassocv lassosel, over(sample) postselection

Postselection coefficients

Name sample MSE R-squared Obs
lassocv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493
lassosel
Training 9.740229 0.4421 508
Testing 13.44496 0.3168 503

The model for A* that minimized the BIC did considerably better on out-of-sample prediction than the
model for * that minimized the CV function. In-sample prediction was better for the * that minimized
the CV function. That is expected because that model contains more variables. But it appears these extra
variables were mostly fitting noise, and that hurt the model’s out-of-sample predictive ability.

d

b Example 2: dsregress

lassoselect can be used after the ds, po, and xpo commands when they are fit using
selection(cv) or selection(adaptive). See [LASSO] lasso options.

lassoselect — Select lambda after lasso 288

We load the data used in [LASSO] lasso examples. See that entry for details about the data.

. use https://wuw.stata-press.com/data/r19/fakesurvey_vl, clear
(Fictitious survey data with v1)

. vl rebuild
Rebuilding vl macros ...

(output omitted)

We are going to fit a dsregress model with q104 as our dependent variable and variables of interest
941 and g22. These variables of interest are currently in the variable lists factors and vlcontinuous,
which we will use to specify the control variables. So we need to move them out of these variable lists.

. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.

. vl move (g22) vlother
note: 1 variable specified and 1 variable moved.

(output omitted)

. vl rebuild
Rebuilding vl macros ...

(output omitted)
After we moved the variables out of the variable lists, we typed v1 rebuild to update the variable list
ifactors created from factors. See [D] vl for details.

Before we fit our dsregress model using cross-validation, let’s fit it using the default
selection(plugin).

. dsregress ql104
Estimating lasso
Estimating lasso
Estimating lasso

i.q41 q22, controls(($idemographics) $ifactors $vlcontinuous)

for q104 using plugin
for 1bn.q41 using plugin
for q22 using plugin

Double-selection linear model Number of obs 914
Number of controls 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001
Robust

q104 | Coefficient std. err. z P>|z] [95% conf. intervall

q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001

Note:

Chi-squared test is a Wald test of the coefficients of the variables

of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each

lasso.

lassoselect — Select lambda after lasso 289

We run lassoinfo to see how many nonzero coefficients were in each lasso fit by dsregress. It is

a good idea to always run lassoinfo after any ds, po, or xpo command.

. lassoinfo
Estimate: active

Command: dsregress
No. of
Selection selected
Variable Model method lambda variables
ql04 linear plugin .1467287 18
1bn.qg41 linear plugin .1467287 16
q22 linear plugin .1467287 15

We now run dsregress with selection(cv),

. dsregress ql104 i.q41 922,
> controls(($idemographics) $ifactors $vlcontinuous)
> selection(cv) rseed(1234)

Estimating lasso
Estimating lasso
Estimating lasso

for q104 using cv
for 1bn.q41 using
for 922 using cv

cv

Double-selection linear model Number of obs 914
Number of controls = 274
Number of selected controls = 123
Wald chi2(2) = 10.96
Prob > chi2 = 0.0042
Robust

ql04 | Coefficient std. err. z P>|z| [95% conf. interval]

q41
Yes .6003918 .2848483 2.11 0.035 .0420994 1.158684
q22 -.0681067 .0306219 -2.22 0.026 -.1281246 -.0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each

lasso.

and then run lassoinfo.

. lassoinfo
Estimate: active

Command: dsregress
No. of
Selection Selection selected
Variable Model method criterion lambda variables
ql04 linear cv CV min. .1116376 63
1bn.q41 linear cv CV min. .0135958 68
q22 linear cv CV min. .1624043 49

The selection(cv) lassos selected considerably more variables than the selection(plugin) las-
sos. The CV lassos selected 63, 68, and 49 variables for the lassos, whereas the plugin lassos selected 18,
16, and 15 variables.

lassoselect — Select lambda after lasso 290

We are going to use lassoselect to change the selected * for CV lassos to match the number of
selected variables in the plugin lassos.

. lassoknots, display(nonzero cvmpe osr2) for(ql04)

No. of CV mean OQut-of-

nonzero pred. sample

ID lambda coef. error R-squared

1 .864369 4 17.9727 0.0187

2 . 7875809 6 17.88282 0.0236

3 .7176144 7 17.64713 0.0365

4 .6538635 8 17.32777 0.0539

5 .595776 12 16.87904 0.0784

6 .5428489 14 16.3203 0.1089

7 .4946237 15 15.74852 0.1401

8 .4506827 18 15.2143 0.1693
(output omitted)

22 .1225221 52 12.02453 0.3435

* 23 .1116376 59 12.02148 0.3436

24 .10172 62 12.02571 0.3434

25 .0926835 71 12.03785 0.3427

26 .0844497 76 12.0626 0.3414

27 .0769474 80 12.09713 0.3395

27 .0769474 80 12.09713 0.3395

* lambda selected by cross-validation.

. lassoknots, display(nonzero cvmpe osr2) for(ibn.q41)

No. of CV mean Out-of-

nonzero pred. sample

ID lambda coef. error R-squared

1 .1155307 4 .2509624 -0.0044

2 .1052673 5 .248763 0.0044

3 .0959156 8 2442525 0.0224

4 .0873947 9 .2388787 0.0439

5 .0796308 11 .2328436 0.0681

6 .0725566 12 .2262371 0.0945

10 .0500105 15 .2076117 0.1691

12 .0415196 16 .2020617 0.1913
(output omitted)

23 .0149214 61 .1898068 0.2403

* 24 .0135958 64 .1895992 0.2412

25 .012388 68 .1896789 0.2408

26 .0112875 76 .1900733 0.2393

27 .0102847 87 .190537 0.2374

28 .0093711 94 .190995 0.2356

* lambda selected by cross-validation.

lassoselect — Select lambda after lasso 291

. lassoknots, display(nonzero cvmpe osr2) for(q22)

No. of CV mean Out-of-

nonzero pred. sample

ID lambda coef. error R-squared

1 1.380036 4 22.19516 0.0403

2 | 1.257437 6 21.66035 0.0634

3 1.14573 7 21.01623 0.0913

5 .9512051 8 19.70951 0.1478

9 .6556288 9 18.04511 0.2197

10 .5973845 10 17.74092 0.2329

11 .5443145 11 17.41052 0.2472

12 .4959591 13 17.09005 0.2610

13 .4518995 15 16.78501 0.2742
(output omitted)

23 .1782385 39 14.93049 0.3544

* 24 .1624043 45 14.92344 0.3547

25 .1479767 55 14.93826 0.3541

26 .1348309 67 14.94057 0.3540

27 .1228529 70 14.93962 0.3540

28 .111939 75 14.95101 0.3535

* lambda selected by cross-validation.

When we look at the lassoinfo output for the plugin lassos, we see that the value of A* for each
lasso was the same, namely, 0.1467287. This value does not match up with the same numbers of nonzero
coefficients for the CV lassos in these knot tables.

The plugin estimator for A* uses estimated coefficient-level weights in its lassos. In theoretical terms,
these coefficient-level weights put A* on the correct scale for covariate selection by normalizing the
scores of the unpenalized estimator. In practical terms, these weights cause the effective scale of A for
selection(plugin) and selection(cv) to differ.

We select the *’s for each CV lasso to match the number of nonzero coefficients of the plugin lassos.
. lassoselect id = 6, for(ql04)

ID = 6 lambda = .5428489 selected

. lassoselect id = 6, for(ibn.g41)
ID = 6 lambda = .0725566 selected

. lassoselect id = 11, for(q22)
ID = 11 1lambda = .5443145 selected

lassoselect — Select lambda after lasso 292

To update our dsregress model with these new A*’s, we rerun the command with the reestimate
option. Then, we run lassoinfo to confirm that the lassos produced the same number of nonzero
coefficients.

. dsregress, reestimate

Double-selection linear model Number of obs 914
Number of controls 274
Number of selected controls = 33
Wald chi2(2) = 18.72
Prob > chi2 = 0.0001
Robust
ql04 | Coefficient std. err. z P>|z| [95% conf. intervall
q41
Yes .8410538 .2691082 3.13 0.002 .3136114 1.368496
q22 -.0878443 .0310435 -2.83 0.005 -.1486884 -.0270001
Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.
. lassoinfo
Estimate: active
Command: dsregress
No. of
Selection Selection selected
Variable Model method criterion lambda variables
ql04 linear user user .5428489 18
1bn.q41 linear user user .0725566 16
q22 linear user user .5443145 15

These new dsregress results are exactly the same as the dsregress results produced with plugin lassos.

lassoselect — Select lambda after lasso 293

We can plot the CV function and see where the new * falls. We do so for the lasso for the dependent
variable q104.

. cvplot, for(q104)

Cross-validation plot for 104
Ais Acv

16+

14

Cross-validation function

12

1 1
A

Acv = .11 is the cross-validation minimum A; # coefficients = 59.
As = .54 is the lassoselect specified A; # coefficients = 14.

It may be that the plugin lassos underselected controls for this problem. Or it may be that the plu-
gin lassos actually did fine and the CV lassos overselected controls. We might want to continue these
sensitivity analyses and pick some *’s intermediate between the plugin values and the CV values. Plu-
gin selection and CV selection are not just two different numerical techniques, they are two different
modeling techniques, each with a different set of assumptions. See [LASSO] Inference requirements.

d

Stored results

lassoselect stores the following in r ():

Macros
r(varlist) selected variables

Also see

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[CAUSAL] telasso postestimation — Postestimation tools for telasso

poivregress — Partialing-out lasso instrumental-variables regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference Also see
Description

poviregress fits a lasso instrumental-variables linear regression model and reports coefficients
along with standard errors, test statistics, and confidence intervals for specified covariates of interest.
The covariates of interest may be endogenous or exogenous. The partialing-out method is used to es-
timate effects for these variables and to select from potential control variables and instruments to be
included in the model.

Quick start

Estimate a coefficient for endogenous d1 in a linear regression of y on d1, and include x1 to x100 as
potential control variables and z1 to z100 as potential instruments to be selected by lassos

poivregress y (d1 =z1-z100), controls(x1-x100)

Same as above, and estimate the coefficient for the exogenous d2
poivregress y d2 (d1 =z1-z100), controls(x1-x100)

Use cross-validation (CV) instead of a plugin iterative formula to select the optimal A* in each lasso
poivregress y d2 (dl =z1-z100), controls(x1-x100) selection(cv)

Same as above, and set a random-number seed for reproducibility

poivregress y d2 (d1 =z1-z100), controls(x1-x100) selection(cv) ///
rseed(28)

Specify CV for the lasso for y only, with the stopping rule criterion turned off

poivregress y d2 (d1 =z1-z100), controls(x1-x100) ///
lasso(y, selection(cv), stop(0))

Same as above, but apply the option to the lassos for y, d2, and d1

poivregress y d2 (dl =z1-z100), controls(x1-x100) ///
lasso(*, selection(cv), stop(0))

Compute lassos beyond the CV minimum to get full coefficient paths, knots, etc.

poivregress y d2 (d1 =z1-z100), controls(x1-x100) ///
lasso(*, selection(cv, alllambdas))

Menu

Statistics > Lasso > Lasso inferential models > Continuous outcomes > Partialing-out IV model

294

poivregress — Partialing-out lasso instrumental-variables regression 295

Syntax

poivregress depvar [exovars| (endovars = instrumvars) [if | [in],

controls([(alwaysvars)| othervars) |options]

Coefficients and standard errors are estimated for the exogenous variables, exovars, and the endogenous
variables, endovars. The set of instrumental variables, instrumvars, may be high dimensional.

options

Description

Model

* controls([(alwaysvars)] othervars)

selection(plugin)

selection(cv)

selection(adaptive)

sele