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Description

irt grm fits graded response models (GRMs) to ordinal items. In the GRM, items vary in their
difficulty and discrimination. This model is an extension of the 2PL model to ordered categorical
items.

Quick start
GRM for ordinal items o1 to o5

irt grm o1-o5

Report items sorted by discrimination

estat report, sort(a)

Plot CCCs for o1

irtgraph icc o1

Menu
Statistics > IRT (item response theory)
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2 irt grm — Graded response model

Syntax
irt grm varlist

[
if
] [

in
] [

weight
] [

, options
]

options Description

group(varname) fit model for different groups

Model

cns(spec) apply specified parameter constraints
listwise drop observations with any missing items

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

notable suppress coefficient table
noheader suppress output header
display options control columns and column formats

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration points; default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
noestimate do not fit the model; show starting values instead
estmetric show parameter estimates in the estimation metric
dnumerical use numerical derivative techniques
coeflegend display legend instead of statistics

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature

bootstrap, by, collect, jackknife, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
startvalues(), noestimate, estmetric, dnumerical, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/irtirtconstraints.pdf#irtirtconstraintsSyntax
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/irt.pdf#irtirtgrmOptionsdisplay_options
https://www.stata.com/manuals/irt.pdf#irtirtgrmSyntaxintmethod
https://www.stata.com/manuals/irt.pdf#irtirtgrmOptionsmaxopts
https://www.stata.com/manuals/irt.pdf#irtirtgrmOptionsstartvalues
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options
group(varname) specifies that the model be fit separately for the different values of varname; see

[IRT] irt, group( ) for details.

� � �
Model �

cns(spec) constrains item parameters to a fixed value or constrains two or more parameters to be
equal; see [IRT] irt constraints for details.

listwise handles missing values through listwise deletion, which means that the entire observation
is omitted from the estimation sample if any of the items are missing for that observation. By
default, all nonmissing items in an observation are included in the likelihood calculation; only
missing items are excluded.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nol-
stretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for computing the log likelihood.
mvaghermite performs mean and variance adaptive Gauss–Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss–Hermite quadrature; and ghermite performs non-
adaptive Gauss–Hermite quadrature.

The default integration method is mvaghermite.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used to compute the log likelihood.

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases with the number of integration points.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for irt are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/irtirtgroup.pdf#irtirt,group()
https://www.stata.com/manuals/irtirtconstraints.pdf#irtirtconstraints
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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The following options are available with irt but are not shown in the dialog box:

startvalues() specifies how starting values are to be computed. Starting values specified in from()
override the computed starting values.

startvalues(zero) specifies that all starting values be set to 0. This option is typically useful
only when specified with the from() option.

startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model
for each response to obtain estimates of intercept and cutpoint parameters.

startvalues(fixedonly) builds on startvalues(constantonly) by fitting a full fixed-
effects model for each response variable to obtain estimates of coefficients along with intercept
and cutpoint parameters. You can also add suboption iterate(#) to limit the number of
iterations irt allows for fitting the fixed-effects model.

startvalues(ivloadings) builds on startvalues(fixedonly) by using instrumental-variable
methods with the generalized residuals from the fixed-effects models to compute starting values
for latent-variable loadings. This is the default behavior.

noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as
modified by the above options if modifications were made), and they are to be shown using the
coeflegend style of output. An important use of this option is before you have modified starting
values at all; you can type the following:

. irt ..., ... noestimate

. matrix b = e(b)

. ... (modify elements of b) ...

. irt ..., ... from(b)

estmetric displays parameter estimates in the slope-intercept metric that is used for estimation.

dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed
using numerical techniques instead of analytical formulas. By default, irt uses analytical formulas
for computing the gradient and Hessian for all integration methods.

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Overview
Video example

Overview

The following discussion is about how to use irt to fit GRMs to ordinal items. If you are new to
the IRT features in Stata, we encourage you to read [IRT] irt first.

In the GRM, item responses are categorical and ordered, for example, “poor”, “good”, and “excellent”
or “strongly disagree”, “disagree”, “agree”, and “strongly agree”. If there are only two outcomes,
the GRM is equivalent to the 2PL model; see [IRT] irt 2pl. If the item responses are not ordered, see
[IRT] irt nrm.

The GRM allows the ordered categories to vary between items; however, to keep the following
discussion from being overly complicated, we will assume the outcome levels for all items are given
by k = 0, 1, . . . ,K.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/irtirt.pdf#irtirt
https://www.stata.com/manuals/irtirt2pl.pdf#irtirt2pl
https://www.stata.com/manuals/irtirtnrm.pdf#irtirtnrm
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In the GRM, each item is modeled with its own discrimination parameter and cutpoints that identify
boundaries between the ordered outcomes. The probability of observing outcome k or higher for item
i and person j is given by

Pr(Yij ≥ k|θj) =
exp{ai(θj − bik)}

1 + exp{ai(θj − bik)}
θj ∼ N(0, 1)

where ai represents the discrimination of item i, bik is the kth cutpoint for item i, and θj is the
latent trait of person j. The cutpoint bik can be considered the difficulty of responding with category
k or higher for item i.

The GRM is defined in terms of cumulative probabilities, but we can calculate the probability of
observing outcome k as

Pr(Yij = k|θj) = Pr(Yij ≥ k|θj)− Pr(Yij ≥ k + 1|θj)

where we take Pr(Yij ≥ 0) = 1 and Pr(Yij > K) = 0. Because of the additional calculation step
required to obtain the probability of observing a particular outcome, the GRM is an indirect IRT model,
also known as a difference model; see Thissen and Steinberg (1986).

The GRM was proposed by Samejima (1969). In the multilevel literature, the GRM is known as
the cumulative logit model; see [ME] meologit. When no latent variable is present, the model for a
single item is known as the proportional odds model; see [R] ologit.

Example 1: Fitting a GRM

To illustrate the GRM, we use the data from Zheng and Rabe-Hesketh (2007). charity.dta
contains five survey questions, ta1 through ta5, measuring faith and trust in charity organizations.
Responses are strongly agree (0), agree (1), disagree (2), and strongly disagree (3). Higher scores
indicate higher levels of distrust. Here we list the first five observations.

. use https://www.stata-press.com/data/r18/charity
(Data from Zheng & Rabe-Hesketh (2007))

. list in 1/5, nolabel

ta1 ta2 ta3 ta4 ta5

1. . 2 1 1 .
2. 0 0 0 0 0
3. 1 1 2 0 2
4. 1 2 2 0 1
5. . 1 1 1 1

Looking across the first row, we see that the first respondent did not provide an answer to items
ta1 and ta5, answered 2 on item ta2, and answered 1 on items ta3 and ta4. All irt commands
exclude missing items for a given observation from the likelihood calculation but keep the nonmissing
items for that observation. If you wish to remove the entire observation from the model, add the
listwise option at estimation time.

https://www.stata.com/manuals/memeologit.pdf#memeologit
https://www.stata.com/manuals/rologit.pdf#rologit
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We fit a GRM as follows:

. irt grm ta1-ta5

Fitting fixed-effects model:

Iteration 0: Log likelihood = -5559.6414
Iteration 1: Log likelihood = -5473.9434
Iteration 2: Log likelihood = -5467.4082
Iteration 3: Log likelihood = -5467.3926
Iteration 4: Log likelihood = -5467.3926

Fitting full model:

Iteration 0: Log likelihood = -5271.0634
Iteration 1: Log likelihood = -5162.5917
Iteration 2: Log likelihood = -5159.2947
Iteration 3: Log likelihood = -5159.2791
Iteration 4: Log likelihood = -5159.2791

Graded response model Number of obs = 945
Log likelihood = -5159.2791

Coefficient Std. err. z P>|z| [95% conf. interval]

ta1
Discrim .907542 .0955772 9.50 0.000 .7202142 1.09487

Diff
>=1 -1.540098 .1639425 -1.861419 -1.218776
>=2 1.296135 .1427535 1.016343 1.575927
=3 3.305059 .3248468 2.668371 3.941747

ta2
Discrim .9434675 .0967483 9.75 0.000 .7538444 1.133091

Diff
>=1 -1.661331 .167878 -1.990366 -1.332296
>=2 .0068314 .082222 -.1543208 .1679836
=3 2.531091 .2412513 2.058247 3.003935

ta3
Discrim 1.734201 .1554383 11.16 0.000 1.429548 2.038855

Diff
>=1 -1.080079 .0835119 -1.243759 -.9163983
>=2 1.016567 .0796635 .8604297 1.172705
=3 2.232606 .1497814 1.93904 2.526172

ta4
Discrim 1.93344 .1857629 10.41 0.000 1.569351 2.297528

Diff
>=1 -.3445057 .0578468 -.4578833 -.2311282
>=2 1.466254 .0983823 1.273428 1.65908
=3 2.418954 .162392 2.100672 2.737237

ta5
Discrim 1.42753 .1263962 11.29 0.000 1.179798 1.675262

Diff
>=1 -.8552358 .0833158 -1.018532 -.6919399
>=2 .6805315 .07469 .5341418 .8269211
=3 2.074243 .1538858 1.772632 2.375853

Because the GRM is basically an ordered logistic model, each item’s difficulty parameters are
naturally estimated in an increasing order. The difficulties represent a point at which a person with
trait level θj = bik has a 50% chance of responding in category k or higher. We make cumulative
comparisons because the model is defined in terms of cumulative probabilities.
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For example, looking at the estimated parameters of item ta1, we see that a person with θ = −1.54
has a 50% chance of answering 0 versus greater than or equal to 1, a person with θ = 1.30 has a
50% chance of answering 0 or 1 versus greater than or equal to 2, and a person with θ = 3.31 has a
50% chance of answering 0, 1, or 2 versus 3.

To illustrate this, we plot the BCCs as a function of θ for ta1 using the estimated GRM parameters.
The blocation option adds a vertical line at the estimated difficulties; see [IRT] irtgraph icc.

. irtgraph icc ta1, blocation
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-4 -1.54 1.3 3.31 4
Theta

Pr(ta1≥1)
Pr(ta1≥2)
Pr(ta1=3)

Boundary characteristic curves

We see that the estimated difficulty parameters correspond to the point on the latent trait scale at
which Pr(Y ≥ k|θ) = 0.5. You can think of these curves as item characteristic curves where each
curve dichotomizes the ordered responses into successive Pr(Y ≥ k) and Pr(Y < k) categories. The
estimated discrimination parameter for ta1 is 0.91; thus, the curves have relatively flat slopes.

We can also plot category probabilities, Pr(Y = k), as a function of θ, which in fact is the default
behavior of irtgraph icc. For categorical responses, such plots are called category characteristic
curves (CCCs). Here we plot the CCCs for item ta1.

https://www.stata.com/manuals/irtirtgraphicc.pdf#irtirtgraphicc
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. irtgraph icc ta1, xlabel(-4 -1.35 1.55 2.9 4)
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Category characteristic curves

The graph shows that respondents with the latent trait level below approximately −1.35 are most
likely to respond in the first category, respondents with the latent trait level between approximately
−1.35 and 1.55 are most likely to respond in the second category, and so on.

We use irtgraph tcc to plot the TCC using the estimated GRM parameters; see [IRT] irtgraph tcc.
Because we have 5 items, each coded 0 to 3, the total score ranges from 0 to 15. The thetalines()
option plots the expected scores at the specified values for θ.

. irtgraph tcc, thetalines(-1.96 0 1.96)

0
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Theta

Test characteristic curve

This plot tells us what kind of scores we can expect from individuals with different levels of the
latent trait (trust in charities).

For example, we can expect above-average individuals to score 5.35 or above. Actually, no one
is expected to score exactly 5.35 on this survey, so a more realistic statement is that we expect
above-average individuals to score above 5 out of a possible score of 15.

Using the 95% critical values from the standard normal distribution (−1.96 and 1.96), this plot
also tells us that we can expect 95% of randomly selected people to score between 1.47 and 10.6.

https://www.stata.com/manuals/irtirtgraphtcc.pdf#irtirtgraphtcc
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Again, a more realistic statement is that we expect about 95% of randomly selected people to score
from 2 to 10, which can be interpreted that most people either trust or slightly distrust charities.

Video example

Item response theory using Stata: Graded response models (GRMs)

Stored results
irt grm stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k rc) number of covariances
e(k rs) number of variances
e(irt k eq) number of IRT equations
e(k items1) number of items in first IRT equation
e(k cat#) number of categories for the #th item, ordinal
e(ll) log likelihood
e(N clust) number of clusters
e(N groups) number of groups
e(n quad) number of integration points
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if target model converged, 0 otherwise

Macros
e(cmd) gsem
e(cmd2) irt
e(cmdline) command as typed
e(model1) grm
e(items1) names of items in first IRT equation
e(depvar) names of all item variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(groupvar) name of group variable
e(family#) family for the #th item
e(link#) link for the #th item
e(intmethod) integration method
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(method) estimation method: ml
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict

https://www.youtube.com/watch?v=I_2BBUqa9cY
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e(covariates) list of covariates
e(footnote) program used to implement the footnote display

Matrices
e( N) sample size for each item
e(b) coefficient vector, slope-intercept parameterization
e(b pclass) parameter class
e(cat#) categories for the #th item, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance
e(groupvalue) vector of group values in e(groupvar)
e(nobs) vector with number of observations per group

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Let Yij represent the (yet to be observed) outcome for item i from person j. Without loss of

generality, we will assume all items take on the ordered categories, k = 0, 1, . . . ,K.

Using the IRT parameterization, we see that the probability of person j with latent trait level θj
(the latent trait) providing response k or above for item i is given by

Pr(Yij ≥ k|ai,bi, θj) =
exp{ai(θj − bik)}

1 + exp{ai(θj − bik)}

where ai represents the discrimination of item i, bi = (bi1, . . . , biK) represent the difficulties that
distinguish the ordered categories of item i, and it is understood that Pr(Yij ≥ 0|ai,bi, θj) = 1 and
Pr(Yij > K|ai,bi, θj) = 0. The probability of observing outcome k is then

Pr(Yij = k|ai,bi, θj) = Pr(Yij ≥ k|ai,bi, θj)− Pr(Yij ≥ k + 1|ai,bi, θj)

irt grm fits the model using the slope-intercept form, so the probability for providing response k or
above is parameterized as

Pr(Yij ≥ k|αi,βi, θj) =
exp(αiθj − βik)

1 + exp(αiθj − βik)

The transformation between these two parameterizations is

ai = αi bik =
βik
αi
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Let yij be the observed response for Yij and pij = Pr(Yij = yij |αi,βi, θj). Conditional on θj ,
the item responses are assumed to be independent, so the conditional density for person j is given by

f(yj |B, θj) =
I∏

i=1

pij

where yj = (y1j , . . . , yIj), B = (α1, . . . , αI ,β1, . . . ,βI), and I is the number of items.

Missing items are skipped over in the above product by default. When the listwise option is
specified, persons with any missing items are dropped from the estimation sample.

The likelihood for person j is computed by integrating out the latent variable from the joint density

Lj(B) =

∫ ∞
−∞

f(yj |B, θj)φ(θj) dθj

where φ(·) is the density function for the standard normal distribution. The log likelihood for the
estimation sample is simply the sum of the log likelihoods from the N persons in the estimation
sample.

logL(B) =

N∑
j=1

logLj(B)

The integral in the formula for Lj(B) is generally not tractable, so we must use numerical methods.

Models for multiple groups, Gauss–Hermite quadrature, and adaptive quadrature are documented
in Methods and formulas of [IRT] irt hybrid.
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