irtgraph iif — Item information function plot

Description

irtnograph iif plots item information functions (IIFs) for items in the currently fitted IRT model.

Quick start

2PL model for binary items b1 to b10

 irt 2pl b1-b10

Plot IIFs for all items in the model

 irtgraph iif

Plot IIFs for items b1 and b5

 irtgraph iif b1 b5

Fit a group 2PL model

 irt 2pl b1-b9, group(female)

Plot IIFs for items b1 and b5 for both groups

 irtgraph iif b1 b5

Plot IIFs for item b1 for both groups and for item b5 for group 1

 irtgraph iif (b1) (1: b5)

Menu

Statistics > IRT (item response theory)
Syntax

Basic syntax

\texttt{irtgraph iif [varlist] [\ , options]}

Full syntax

\texttt{irtgraph iif ([#: varlist [\ , line_options]]) ([#: varlist [\ , line_options]]) [\ldots] [\ , options]}

\textit{varlist} is a list of items from the currently fitted IRT model.

\#: selects items in \textit{varlist} for the specified group.

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{range(# #)}</td>
<td>plot over $\theta = # \text{ to } #$</td>
</tr>
<tr>
<td>\textit{line_options}</td>
<td>affect rendition of the plotted IIFs</td>
</tr>
<tr>
<td>\texttt{addplot(plot)}</td>
<td>add other plots to the IIF plot</td>
</tr>
<tr>
<td>\textit{twoway_options}</td>
<td>any options other than \texttt{by()} documented in [G-3] \textit{twoway_options}</td>
</tr>
<tr>
<td>\texttt{n(#)}</td>
<td>evaluate IIFs at # points; default is \texttt{n(300)}</td>
</tr>
<tr>
<td>\texttt{data(filename[, replace])}</td>
<td>save plot data to a file</td>
</tr>
</tbody>
</table>

\textit{line_options} in \texttt{(varlist, line_options)} override the same options specified in \textit{options}.

Options

- **Plots**
 \texttt{range(# #)} specifies the range of values for θ. This option requires a pair of numbers identifying the minimum and maximum. The default is \texttt{range(-4 4)}.

- **Line**
 \textit{line_options} affect the rendition of the plotted IIFs; see [G-3] \textit{line_options}.

- **Add plots**
 \texttt{addplot(plot)} allows adding more graph \textit{twoway} plots to the graph; see [G-3] \texttt{addplot_option}.

- **Y axis, X axis, Titles, Legend, Overall**
 \textit{twoway_options} are any of the options documented in [G-3] \textit{twoway_options}, excluding \texttt{by()}. These include options for titling the graph (see [G-3] \textit{title_options}) and for saving the graph to disk (see [G-3] \textit{saving_option}).
n(#) specifies the number of points at which the IIFs are to be evaluated. The default is n(300).
data(filename[,replace]) saves the plot data to a Stata data file.

Remarks and examples

\texttt{irtgraph iif} plots IIFs after estimating the parameters of an IRT model using \texttt{irt}.

In IRT, the term “information” is used to describe reliability or precision of an item or a whole instrument. More reliable items measure the latent trait around the estimated difficulty parameter with greater precision.

IIFs are useful in test development and item evaluation. Depending on the specific needs of the test, items can be chosen to cover the whole spectrum or to focus on a particular range of the ability scale.

The example below shows how to use \texttt{irtgraph iif} after a simple 2PL model; see example 4 of \texttt{[IRT] irtgraph icc} for remarks on how \texttt{irtgraph iif} behaves after a group IRT model.

\section*{Example 1: IIF for binary items}

We continue with the 2PL model from example 1 of \texttt{[IRT] irt 2pl}. Recall that we fit a 2PL model to the nine binary items.
. use https://www.stata-press.com/data/r16/masc1
(Data from De Boeck & Wilson (2004))
. irt 2pl q1-q9

Fitting fixed-effects model:
Iteration 0: log likelihood = -4275.6606
Iteration 1: log likelihood = -4269.7861
Iteration 2: log likelihood = -4269.7825
Iteration 3: log likelihood = -4269.7825

Fitting full model:
Iteration 0: log likelihood = -4146.9386
Iteration 1: log likelihood = -4119.3568
Iteration 2: log likelihood = -4118.4716
Iteration 3: log likelihood = -4118.4697
Iteration 4: log likelihood = -4118.4697

Two-parameter logistic model

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|--------|-----------|-------|------|----------------------|
| q1 | | | | | |
| Discrim | 1.615292 | .2436467 | 6.63 | 0.000| 1.137754 2.092831 |
| Diff | -.4745635 | .074638 | -6.36 | 0.000| -.6208513 -.3282757 |
| q2 | | | | | |
| Discrim | .6576171 | .1161756 | 5.66 | 0.000| .4299171 .885317 |
| Diff | -.1513023 | .1202807 | -1.26 | 0.208| -.3870481 .0844435 |
| q3 | | | | | |
| Discrim | .9245051 | .1569806 | 5.89 | 0.000| .6168289 1.232181 |
| Diff | -1.70918 | .242266 | -7.05 | 0.000| -2.184012 -1.234347 |
| q4 | | | | | |
| Discrim | .8186403 | .1284832 | 6.37 | 0.000| .5668179 1.070463 |
| Diff | .3296791 | .1076105 | 3.06 | 0.002| .1187663 .5405919 |
| q5 | | | | | |
| Discrim | .8956621 | .1535128 | 5.83 | 0.000| .5947825 1.196542 |
| Diff | 1.591164 | .2325918 | 6.84 | 0.000| 1.135293 2.047036 |
| q6 | | | | | |
| Discrim | .9828441 | .147888 | 6.65 | 0.000| .6929889 1.272699 |
| Diff | .6229654 | .1114902 | 5.59 | 0.000| .4044373 .8414708 |
| q7 | | | | | |
| Discrim | .3556064 | .1113146 | 3.19 | 0.001| .1374337 .5737791 |
| Diff | 2.840278 | .8717471 | 3.26 | 0.001| 1.131685 4.548871 |
| q8 | | | | | |
| Discrim | 1.399926 | .233963 | 5.98 | 0.000| .9413668 1.858485 |
| Diff | -1.714416 | .1925531 | -8.90 | 0.000| -2.091814 -1.337019 |
| q9 | | | | | |
| Discrim | .6378452 | .1223972 | 5.21 | 0.000| .3979512 .8777392 |
| Diff | -1.508254 | .2787386 | -5.41 | 0.000| -2.054571 -.9619361 |
Now we plot the IIF for each item in the fitted model.

```
. irtgraph iif
```

![Item Information Functions](image)

For binary items, the amount of information is proportional to the discrimination parameter. Items q_1 and q_8 have the two highest discrimination estimates and provide more information than the remaining items. For a 2PL model, the maximum information is provided at $\theta = b_i$.

irtgraph iif’s full syntax allows us to apply line styles to each item as we see fit. Let’s say we expect more discrimination and therefore more information from a relatively difficult item q_5 and thus want q_5 to stand out in the IIF plot. To accomplish this, we specify thick and black line styles for q_5 to distinguish it from the other items, which we specify with red and dashed line styles.

```
. irtgraph iif (q1-q4 q6-q9, lcolor(red) lpattern(dash))
> (q5, lcolor(black) lwidth(thick)), legend(off)
```

![Item Information Functions](image)

Looking at either IIF graph, we seem to have more item information in the negative region of the latent trait than in the positive region. This suggests that the whole test provides more information about students located at the lower end of the latent trait spectrum, which we show graphically in example 1 of [IRT] *irtgraph tif*.

![Item Information Functions](image)
Methods and formulas

For a given item i with categories $k = 1, \ldots, K$, let $p_{ik}(\theta)$ be the probability of a respondent with latent trait value θ selecting response category k. The functional form of $p_{ik}(\theta)$ depends on the IRT model used to fit item i to the data. The category information function, for category k of item i, is defined as

$$I_{ik}(\theta) = -\frac{\partial^2 \log p_{ik}(\theta)}{\partial \theta^2}$$

The IIF for item i is the sum of its category information functions, weighted by the category probabilities.

$$I_i(\theta) = \sum_{k=1}^{K} I_{ik}(\theta) p_{ik}(\theta)$$

See Birnbaum (1968) and Samejima (1969, 1972, 1977) for a more detailed discussion of item information functions.

References

Also see

[IRT] irt — Introduction to IRT models
[IRT] irt 1pl — One-parameter logistic model
[IRT] irt 2pl — Two-parameter logistic model
[IRT] irt 3pl — Three-parameter logistic model
[IRT] irt grm — Graded response model
[IRT] irt hybrid — Hybrid IRT models
[IRT] irt nrm — Nominal response model
[IRT] irt pcm — Partial credit model
[IRT] irt rsm — Rating scale model
[IRT] irtgraph tif — Test information function plot