Description

irt 1pl fits one-parameter logistic (1PL) models to binary items. In the 1PL model, items vary in their difficulty but share the same discrimination parameter.

Quick start

1PL model for binary items b1 to b10

```
irt 1pl b1-b10
```

Group estimates by parameter type and sort items by difficulty

```
estat report, byparm sort(b)
```

Plot ICCs for all items

```
irtgraph icc
```

Menu

Statistics > IRT (item response theory)
Syntax

irt 1pl varlist [if] [in] [weight] [, options]

options Description

 group(varname) fit model for different groups

Model
 cns(spec) apply specified parameter constraints
 listwise drop observations with any missing items

SE/Robust
 vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or jackknife

Reporting
 _level(#) set confidence level; default is _level(95)
 notable suppress coefficient table
 noheader suppress output header
 display_options control columns and column formats

Integration
 intmethod(intmethod) integration method
 intpoints(#) set the number of integration points; default is intpoints(7)

Maximization
 maximize_options control the maximization process; seldom used
 startvalues(svmethod) method for obtaining starting values
 noestimate do not fit the model; show starting values instead
 estmetric show parameter estimates in the estimation metric
 dnumerical use numerical derivative techniques
 coeflegend display legend instead of statistics

intmethod Description

 mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
 mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
 ghermite nonadaptive Gauss–Hermite quadrature

bootstrap, by, jackknife, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweight(), iweight(), and pweight() are allowed; see [U] 11.1.6 weight.
startvalues(), noestimate, estmetric, dnumerical, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
Options

\textbf{group(varname)} specifies that the model be fit separately for the different values of \textit{varname}; see \cite{irt} for details.

\textbf{cns(spec)} constrains item parameters to a fixed value or constrains two or more parameters to be equal; see \cite{irt} for details.

\textbf{listwise} handles missing values through listwise deletion, which means that the entire observation is omitted from the estimation sample if any of the items are missing for that observation. By default, all nonmissing items in an observation are included in the likelihood calculation; only missing items are excluded.

\textbf{vce(vcetype)} specifies the type of standard error reported, which includes types that are derived from asymptotic theory (\textit{vce(oim)}), that are robust to some kinds of misspecification (\textit{vce(robust)}), that allow for intragroup correlation (\textit{vce(cluster clustvar)}), and that use bootstrap or jackknife methods (\textit{vce(bootstrap, jackknife)}); see \cite{vce_option}.

\textbf{level(#)}; see \cite{estimation_options}.

\textbf{notable} suppresses the estimation table, either at estimation or upon replay.

\textbf{noheader} suppresses the output header, either at estimation or upon replay.

\textit{display_options}: \textit{noci, nopvalues, cformat(\%fmt), pformat(\%fmt), sformat(\%fmt)}, and \textit{nolstretch}; see \cite{estimation_options}.

\textbf{intmethod(intmethod)} specifies the integration method to be used for computing the log likelihood. \textit{mvaghermite} performs mean and variance adaptive Gauss–Hermite quadrature; \textit{mcaghermite} performs mode and curvature adaptive Gauss–Hermite quadrature; and \textit{ghermite} performs non-adaptive Gauss–Hermite quadrature.

The default integration method is \textit{mvaghermite}.

\textbf{intpoints(#)} sets the number of integration points for quadrature. The default is \textit{intpoints(7)}, which means that seven quadrature points are used to compute the log likelihood.

The more integration points, the more accurate the approximation to the log likelihood. However, computation time increases with the number of integration points.

\textbf{maximize_options}: \textit{difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs)}; see \cite{maximize}.

\textbf{from()} accepts a properly labeled vector of initial values or a list of coefficient names with values. A list of values is not allowed.
The following options are available with `irt` but are not shown in the dialog box:

- `startvalues()` specifies how starting values are to be computed. Starting values specified in `from()` override the computed starting values.
- `startvalues(zero)` specifies that all starting values be set to 0. This option is typically useful only when specified with the `from()` option.
- `startvalues(constantonly)` builds on `startvalues(zero)` by fitting a constant-only model for each response to obtain estimates of intercept and cutpoint parameters.
- `startvalues(fixedonly)` builds on `startvalues(constantonly)` by fitting a full fixed-effects model for each response variable to obtain estimates of coefficients along with intercept and cutpoint parameters. You can also add suboption `iterate(#)` to limit the number of iterations `irt` allows for fitting the fixed-effects model.
- `startvalues(ivloadings)` builds on `startvalues(fixedonly)` by using instrumental-variable methods with the generalized residuals from the fixed-effects models to compute starting values for latent-variable loadings. This is the default behavior.

- `noestimate` specifies that the model is not to be fit. Instead, starting values are to be shown (as modified by the above options if modifications were made), and they are to be shown using the `coeflegend` style of output. An important use of this option is before you have modified starting values at all; you can type the following:

  ```
  . irt ..., ... noestimate
  . matrix b = e(b)
  . ... (modify elements of b) ...
  . irt ..., ... from(b)
  ```

- `estmetric` displays parameter estimates in the slope-intercept metric that is used for estimation.
- `dnumerical` specifies that during optimization, the gradient vector and Hessian matrix be computed using numerical techniques instead of analytical formulas. By default, `irt` uses analytical formulas for computing the gradient and Hessian for all integration methods.
- `coeflegend`; see [R] Estimation options.

Remarks and examples

stata.com

Remarks are presented under the following headings:

- Overview
- Video example

Overview

The following discussion is about how to use `irt` to fit 1PL models to binary items. If you are new to the IRT features in Stata, we encourage you to read [IRT] irt first.

In the 1PL model, item responses are typically of the form yes or no, correct or incorrect, agree or disagree, etc. Items are assumed to be equally discriminating and vary in their difficulty only. The probability of person \(j \) providing a positive answer to item \(i \) is given by

\[
\Pr(Y_{ij} = 1 | \theta_j) = \frac{\exp\{a(\theta_j - b_i)\}}{1 + \exp\{a(\theta_j - b_i)\}} \quad \theta_j \sim N(0, 1)
\]

(1)
where \(a \) represents the discrimination common to all items, \(b_i \) represents the difficulty of item \(i \), and \(\theta_j \) is the latent trait of person \(j \).

A related model attributable to Rasch (1960) uses a different parameterization of (1) with \(a = 1 \) and \(\theta_j \sim N(0, \sigma^2) \). Although philosophically different from the 1PL model, the Rasch model produces equivalent predictions of the latent trait; see [SEM] Example 28g for a model fit using the Rasch parameterization. See Item response theory in [BAYES] bayesmh and Balov (2016) for examples demonstrating Bayesian estimation of this model.

Example 1: Fitting a 1PL model

To illustrate the 1PL model, we use an abridged version of the mathematics and science data from De Boeck and Wilson (2004). Student responses to test items are coded 1 for correct and 0 for incorrect. Here we list the first five observations.

```
. use https://www.stata-press.com/data/r16/masc1
   (Data from De Boeck & Wilson (2004))
   . list in 1/5

<table>
<thead>
<tr>
<th>q1</th>
<th>q2</th>
<th>q3</th>
<th>q4</th>
<th>q5</th>
<th>q6</th>
<th>q7</th>
<th>q8</th>
<th>q9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Looking across the rows, we see that the first student correctly answered items q1, q2, q3, and q8, the second student correctly answered items q3, q8, and q9, and so on.
We fit a 1PL model to binary items q1–q9 as follows:

```
. irt 1pl q1-q9
```

Fitting fixed-effects model:

```
Iteration 0: log likelihood = -4275.6606
Iteration 1: log likelihood = -4269.7861
Iteration 2: log likelihood = -4269.7825
Iteration 3: log likelihood = -4269.7825
```

Fitting full model:

```
Iteration 0: log likelihood = -4153.3609
Iteration 1: log likelihood = -4142.3740
Iteration 2: log likelihood = -4142.3516
Iteration 3: log likelihood = -4142.3516
```

One-parameter logistic model

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------------|-------|-----------|------|------|----------------------|
| Discrim | 0.852 | 0.045 | 18.6 | 0.000| 0.7622695 – 0.9419765|
| q1 Diff | -0.707| 0.103 | -6.8 | 0.000| -0.9099066 – -0.5043612|
| q2 Diff | -0.122| 0.096 | -1.3 | 0.205| -0.3110138 – 0.066122 |
| q3 Diff | -1.818| 0.139 | -12.9| 0.000| -2.091994 – -1.543391 |
| q4 Diff | 0.321 | 0.098 | 3.3 | 0.001| 0.1295498 – 0.5123695 |
| q5 Diff | 1.653 | 0.133 | 12.4 | 0.000| 1.392144 – 1.913295 |
| q6 Diff | 0.693 | 0.103 | 6.8 | 0.000| 0.4908243 – 0.8952991 |
| q7 Diff | 1.325 | 0.121 | 10.9 | 0.000| 1.088668 – 1.561335 |
| q8 Diff | -2.413| 0.169 | -14.2| 0.000| -2.745036 – -2.08185 |
| q9 Diff | -1.193| 0.116 | -10.3| 0.000| -1.420965 – -0.965448 |

Because the discrimination parameter is the same for all items, it is listed only once. The estimate of 0.85 suggests poor discrimination; that is, in the vicinity of a given difficulty estimate, any two students with distinct abilities would have similar predicted probabilities of success giving a correct answer to an item. If the items were highly discriminating, the calculated probabilities would be farther away from each other.

The estimates of the difficulty parameter correspond to the point on the ability scale at which \(\Pr(Y = 1|\theta) = 0.5 \). Because we assume a zero mean for \(\theta \), an item is said to be relatively easy if its difficulty estimate is negative and relatively hard if its difficulty estimate is positive.

In the following, we use `estat report` to replay the table of estimated IRT parameters and control how the output is reported. We include the `byparm` option, which arranges the output by parameter
rather than by item, and the sort(b) option, which displays the items in an ascending order of difficulty. This makes it easy to see that item q8 is least difficult and item q5 is most difficult.

```
. estat report, byparm sort(b)
```

One-parameter logistic model

| Discrim | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|-------|-----------|-----|-----|-----------------------------|
| q8 | -2.413443 | .1691832 | -14.27 | 0.000 | -2.745036 -2.08185 |
| q3 | -1.817693 | .1399523 | -12.99 | 0.000 | -2.091994 -1.543391 |
| q9 | -1.193206 | .1162054 | -10.27 | 0.000 | -1.420965 -0.965448 |
| q1 | -0.7071339 | .1034574 | -6.84 | 0.000 | -0.9099066 -0.5043612 |
| q2 | -0.122008 | .0963349 | -1.27 | 0.205 | -0.3110138 0.0666122 |
| q4 | 0.9309596 | .0765995 | 3.29 | 0.001 | 0.825498 0.5123695 |
| q6 | 1.325001 | .1205805 | 10.99 | 0.000 | 1.088668 1.561335 |
| q7 | 1.652719 | .1392494 | 12.43 | 0.000 | 1.392144 1.913295 |

For the 1PL model, the ICC plots the probability of a successful response as a function of θ, using the estimated 1PL parameters. In the following, we use irtgraph icc to plot the ICCs. The blocation option adds a vertical line at the estimated difficulties; see `irtgraph icc`. The other options improve the look of the legend (see `legend_options`), more legible axis labels (see `axis_label_options`), and a wider graph region to accommodate the legend (see `region_options`).

```
. irtgraph icc, blocation legend(pos(3) col(1) ring(1) size(small))
  > xlabel(, alt) xsize(4)
```

![Item Characteristic Curves](image)

The TCC plots the expected score as a function of θ, using the estimated 1PL parameters. We use irtgraph tcc to plot the TCC. For 9 binary items, it is clear that the total score ranges from 0 to 9. The thetalines() option plots the expected scores at the specified values of θ.

```
. irtgraph tcc, thetalines()
```
This plot tells us what kind of scores to expect from individuals with different levels of the latent trait. For example, we can expect above-average individuals to score 4.85 or above. Actually, no one is expected to score 4.85 on a 9-item test, so a more realistic statement is that we expect above-average individuals to score above 4.

Using the 95% critical values from the standard normal distribution (−1.96 and 1.96), this plot also tells us that we can expect 95% of randomly selected people to score between 2.16 and 7.38. Again, a more realistic statement is that we expect about 95% of randomly selected people to score between 2 and 7.

Video example

Item response theory using Stata: One-parameter logistic (1PL) models
Stored results

irt 1pl stores the following in **e()**:

Scalars
- e(N): number of observations
- e(k): number of parameters
- e(k_eq): number of equations in e(b)
- e(k_dv): number of dependent variables
- e(k_rc): number of covariances
- e(k_rs): number of variances
- e(irt_k_eq): number of IRT equations
- e(k_items1): number of items in first IRT equation
- e(ll): log likelihood
- e(N_clust): number of clusters
- e(N_groups): number of groups
- e(n_quad): number of integration points
- e(rank): rank of e(V)
- e(ic): number of iterations
- e(rc): return code
- e(converged): 1 if target model converged, 0 otherwise

Macros
- e(cmd): gsem
- e(cmd2): irt
- e(cmdline): command as typed
- e(model1): 1pl
- e(items1): names of items in first IRT equation
- e(depvar): names of all item variables
- e(vtype): weight type
- e(wexp): weight expression
- e(title): title in estimation output
- e(clustvar): name of cluster variable
- e(groupvar): name of group variable
- e(family#): family for the #th item
- e(link#): link for the #th item
- e(intmethod): integration method
- e(vce): vcetype specified in vce()
- e(vcetype): title used to label Std. Err.
- e(opt): type of optimization
- e(which): max or min; whether optimizer is to perform maximization or minimization
- e(method): estimation method: ml
- e(ml_method): type of ml method
- e(user): name of likelihood-evaluator program
- e(technique): maximization technique
- e(datasignature): the checksum
- e(datasignaturevars): variables used in calculation of checksum
- e(properties): b V
- e(estat_cmd): program used to implement estat
- e(predict): program used to implement predict
- e(covariates): list of covariates
- e(footnote): program used to implement the footnote display

Matrices
- e(_N): sample size for each item
- e(b): coefficient vector, slope-intercept parameterization
- e(b_pclass): parameter class
- e(Cns): constraints matrix
- e(ilog): iteration log (up to 20 iterations)
- e(gradient): gradient vector
- e(V): variance–covariance matrix of the estimators
- e(V_modelbased): model-based variance
- e(groupvalue): vector of group values in e(groupvar)
- e(nobs): vector with number of observations per group
Methods and formulas

Let Y_{ij} represent the (yet to be observed) outcome for item i from person j, and let y_{ij} be the observed value of Y_{ij}. Without loss of generality, we will use the terms “correct” and “incorrect” in reference to the outcomes of Y_{ij}. Furthermore, we will refer to $y_{ij} = 1$ as correct and $y_{ij} = 0$ as incorrect.

Using the IRT parameterization, we see that the probability of person j with latent trait level θ_j providing a correct response to item i is given by

$$
\Pr(Y_{ij} = 1|a, b_i, \theta_j) = \frac{\exp\{a(\theta_j - b_i)\}}{1 + \exp\{a(\theta_j - b_i)\}}
$$

where a represents discrimination, and b_i represents the difficulty of item i. irt 1pl fits the model using the slope-intercept form, so the probability for providing a correct answer is parameterized as

$$
\Pr(Y_{ij} = 1|\alpha, \beta_i, \theta_j) = \frac{\exp(\alpha\theta_j + \beta_i)}{1 + \exp(\alpha\theta_j + \beta_i)}
$$

The transformation between these two parameterizations is

$$
a = \alpha \quad b_i = -\frac{\beta_i}{\alpha}
$$

Let $p_{ij} = \Pr(Y_{ij} = 1|\alpha, \beta_i, \theta_j)$ and $q_{ij} = 1 - p_{ij}$. Conditional on θ_j, the item responses are assumed to be independent, so the conditional density for person j is given by

$$
f(y_j|B, \theta_j) = \prod_{i=1}^{I} p_{ij}^{y_{ij}} q_{ij}^{1-y_{ij}}
$$

where $y_j = (y_{1j}, \ldots, y_{Ij})$, $B = (\alpha, \beta_1, \ldots, \beta_I)$, and I is the number of items.

Missing items are skipped over in the above product by default. When the listwise option is specified, persons with any missing items are dropped from the estimation sample.
The likelihood for person \(j \) is computed by integrating out the latent variable from the joint density

\[
L_j(B) = \int_{-\infty}^{\infty} f(y_j|B, \theta_j) \phi(\theta_j) d\theta_j
\]

where \(\phi(\cdot) \) is the density function for the standard normal distribution. The log likelihood for the estimation sample is simply the sum of the log likelihoods from the \(N \) persons in the estimation sample.

\[
\log L(B) = \sum_{j=1}^{N} \log L_j(B)
\]

The integral in the formula for \(L_j(B) \) is generally not tractable, so we must use numerical methods.

Models for multiple groups, Gauss–Hermite quadrature, and adaptive quadrature are documented in *Methods and formulas* of [IRT] irt hybrid.

References

Also see

[IRT] irt 1pl postestimation — Postestimation tools for irt 1pl

[IRT] irt — Introduction to IRT models

[IRT] irt 2pl — Two-parameter logistic model

[IRT] irt 3pl — Three-parameter logistic model

[IRT] irt constraints — Specifying constraints

[SEM] Example 28g — One-parameter logistic IRT (Rasch) model

[SEM] gsem — Generalized structural equation model estimation command

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands