
irt — Introduction to IRT models

Description Remarks and examples References Also see

Description
Item response theory (IRT) is used in the design, analysis, scoring, and comparison of tests and similar

instruments whose purpose is to measure unobservable characteristics of the respondents. This entry

discusses some fundamental and theoretical aspects of IRT and illustrates these with worked examples.

The entries that follow describe how you can use the irt suite of commands to fit a variety of IRT

models and to evaluate the results. The commands for fitting models can be grouped by the type of

responses you are modeling.

Binary response models

irt 1pl One-parameter logistic model

irt 2pl Two-parameter logistic model

irt 3pl Three-parameter logistic model

Categorical response models

irt grm Graded response model

irt nrm Nominal response model

irt pcm Partial credit model

irt rsm Rating scale model

Multiple IRT models combined

irt hybrid Hybrid IRT models

These models can allow for differences across groups in the population.

Multiple-group IRT models

irt, group( ) IRT models for multiple groups

Constraints can be applied when fitting any IRTmodel, and they are particularly useful for constraining

parameters across groups in multiple-group models.

Constraints

irt constraints Specifying constraints
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https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1pl
https://www.stata.com/manuals/irtirt2pl.pdf#irtirt2pl
https://www.stata.com/manuals/irtirt3pl.pdf#irtirt3pl
https://www.stata.com/manuals/irtirtgrm.pdf#irtirtgrm
https://www.stata.com/manuals/irtirtnrm.pdf#irtirtnrm
https://www.stata.com/manuals/irtirtpcm.pdf#irtirtpcm
https://www.stata.com/manuals/irtirtrsm.pdf#irtirtrsm
https://www.stata.com/manuals/irtirthybrid.pdf#irtirthybrid
https://www.stata.com/manuals/irtirtgroup.pdf#irtirt,group()
https://www.stata.com/manuals/irtirtconstraints.pdf#irtirtconstraints
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After fitting any IRT model, results can be reported, interpreted, and evaluated using postestimation

commands.

IRT graphs

irtgraph icc Item characteristic curve plot

irtgraph tcc Test characteristic curve plot

irtgraph iif Item information function plot

irtgraph tif Test information function plot

IRT reports

estat report Report estimated IRT parameters

estat greport Report estimated group IRT parameters

Model-specific postestimation overview

irt 1pl postestimation Postestimation tools for irt 1pl

irt 2pl postestimation Postestimation tools for irt 2pl

irt 3pl postestimation Postestimation tools for irt 3pl

irt grm postestimation Postestimation tools for irt grm

irt nrm postestimation Postestimation tools for irt nrm

irt pcm postestimation Postestimation tools for irt pcm

irt rsm postestimation Postestimation tools for irt rsm

irt hybrid postestimation Postestimation tools for irt hybrid

irt, group() postestimation Postestimation tools for group IRT

Differential item functioning (DIF) occurs when items that are intended to measure a trait are unfair,

favoring one group of individuals over another. DIF can be evaluated by fitting a multiple-group IRT

model using irt, group() or by using a logistic regression or Mantel–Haenszel DIF test.

Differential item functioning

DIF Introduction to differential item functioning

diflogistic Logistic regression DIF

difmh Mantel–Haenszel DIF

Remarks and examples
Researchers are often interested in studying abilities, personality traits, and other unobservable char-

acteristics. Throughout this manual, we most often refer to the unobserved characteristic of interest as

the latent trait, but we will sometimes also use the term ability.

Latent traits cannot be measured directly, because they are unobservable, but they can be quantified

with an instrument. An instrument is simply a collection of items designed to measure a person’s level

of the latent trait. For example, a researcher interested in measuring mathematical ability (latent trait)

may design a test (instrument) consisting of 100 questions (items).

When designing the instrument or analyzing data from the instrument, the researcher is interested in

how each individual item relates to the trait and how the group of items as a whole relates to this trait.

IRT models allow us to study these relationships.

https://www.stata.com/manuals/irtirtgraphicc.pdf#irtirtgraphicc
https://www.stata.com/manuals/irtirtgraphtcc.pdf#irtirtgraphtcc
https://www.stata.com/manuals/irtirtgraphiif.pdf#irtirtgraphiif
https://www.stata.com/manuals/irtirtgraphtif.pdf#irtirtgraphtif
https://www.stata.com/manuals/irtestatreport.pdf#irtestatreport
https://www.stata.com/manuals/irtestatgreport.pdf#irtestatgreport
https://www.stata.com/manuals/irtirt1plpostestimation.pdf#irtirt1plpostestimation
https://www.stata.com/manuals/irtirt2plpostestimation.pdf#irtirt2plpostestimation
https://www.stata.com/manuals/irtirt3plpostestimation.pdf#irtirt3plpostestimation
https://www.stata.com/manuals/irtirtgrmpostestimation.pdf#irtirtgrmpostestimation
https://www.stata.com/manuals/irtirtnrmpostestimation.pdf#irtirtnrmpostestimation
https://www.stata.com/manuals/irtirtpcmpostestimation.pdf#irtirtpcmpostestimation
https://www.stata.com/manuals/irtirtrsmpostestimation.pdf#irtirtrsmpostestimation
https://www.stata.com/manuals/irtirthybridpostestimation.pdf#irtirthybridpostestimation
https://www.stata.com/manuals/irtirtgrouppostestimation.pdf#irtirt,group()postestimation
https://www.stata.com/manuals/irtdif.pdf#irtDIF
https://www.stata.com/manuals/irtdiflogistic.pdf#irtdiflogistic
https://www.stata.com/manuals/irtdifmh.pdf#irtdifmh
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IRTmodels are used extensively in the study of cognitive and personality traits, health outcomes, and

in the development of item banks and computerized adaptive testing. Some examples of applied work

include measuring computer anxiety in grade school children (King and Bond 1996), assessing physical

functioning in adults with HIV (Wu et al. 1997), and measuring the degree of public policy involvement

of nutritional professionals (Boardley, Fox, and Robinson 1999).

The bulk of the theoretical work in IRT comes from the fields of psychometrics and educational mea-

surement with key early contributions from Rasch (1960), Birnbaum (1968), Wright and Stone (1979),

and Lord (1980). Some good introductory IRT reading includes Hambleton, Swaminathan, and Rogers

(1991), McDonald (1999), Embretson and Reise (2000), Bond and Fox (2015), and de Ayala (2022).

More advanced treatments are presented, for example, in Fischer and Molenaar (1995), van der Linden

and Hambleton (1997), Baker and Kim (2004), and De Boeck and Wilson (2004). Raykov and Mar-

coulides (2018) provide a comprehensive treatment of IRT using Stata.� �
Benjamin Drake Wright (1926–2015) was born in Wilkes-Barre, Pennsylvania. Wright joined the

US Navy in 1944 and went on to study physics at Cornell University. He interned with American

physicist Charles H. Townes, and after joining the physics department at the University of Chicago,

he became Robert S. Mulliken’s research assistant.

His interests began to shift, and in 1957 he obtained a PhD in the philosophy of human development.

When the University of Chicago received an IBM computer, Wright wrote a program for factor anal-

ysis and regression. While performing factor analyses for a market research firm, Wright became

discomforted by the inconsistency of the results.

In 1960, psychometrician Georg Rasch gave a series of lectures on his measurement models at the

University of Chicago, and Wright was won over by their stability. Together with Bruce Choppin,

he wrote computer programs that would fit the Rasch measurement models. His advocacy in these

models is reflected in his cofounding of the Rasch Measurement Social Interest Group, as part of

theAmerican Education ResearchAssociation (AERA), and the Institute for ObjectiveMeasurement,

which publishes the Journal of Applied Measurement on a quarterly basis. Wright also developed

a type of map for presenting the overall performance levels of students; this KIDMAP concept was

implemented first by the LosAngeles Independent County School District in the 1980s and later by

the Australian Council for Educational Research.

For his many contributions to measurement, which spanned multiple fields, Wright was honored

with two conferences celebrating his work.� �
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� �
Frederic M. Lord (1912–2000) was born in Hanover, New Hampshire. He obtained a master’s

degree in educational psychology from the University of Minnesota and a PhD in psychology from

PrincetonUniversity. In 1949, he became the director of statistical analysis for the EducationTesting

Service (ETS), where he would work for 33 years.

Lord devised models to categorize test questions based on difficulty and thus laid the foundation for

item response theory. His work with the ETS had impacts on the Law School Admissions Test, the

test of English as a Foreign Language, and the Graduate Record exam. Additionally, he coauthored

a book with Melvin R. Novick on test theory, which was an expansion of his dissertation. His

dissertation alone made a lasting impact on psychometrics, as did his other publications.

In 2000, the ETS created the Frederic M. Lord Chair in Measurement and Statistics in his honor.

Because of his pioneering contributions, Lord is regarded as the “Father of Modern Testing”.� �� �
Allan Birnbaum (1923–1976) was born in San Francisco, California. He completed a premedical

program prior to obtaining his PhD in mathematical statistics from Columbia University in 1954.

There, among other projects, he worked on developing statistical methods applicable to the social

sciences. In 1959, he joined the faculty of New York University, where he would teach statistics.

He published a total of 41 papers, but the paper published in 1962 stands out as his most significant

contribution to the field of statistical theory. In this publication, he advocated for the likelihood

principle, providing proof that the same inference can bemade across two experiments that provided

proportional likelihood functions. His approach departed from that of Abraham Wald and Erich

Leo Lehmann, who influenced his dissertation. Although met simultaneously with appraise and

opposition, his work had an impact on meta-analysis and predictions with missing data. Notably,

renowned statistician Leonard Jimmie Savage regarded Birnbaum’s work on the likelihood principle

as highly influential in the field of statistics.

Birnbaum also published in the areas of classification and discrimination, and he applied his medical

background to research on experimental genetics. He held faculty positions at Stanford University,

New York University, and Cambridge University. The last position he held was chair of statistics

at City, University of London. He was honored with election to fellowship by the American Asso-

ciation for the Advancement of Sciences, the American Statistical Association, and the Institute of

Mathematical Statistics.

Birnbaum is remembered as a deep thinker and dedicated father.� �

https://www.stata.com/giftshop/bookmarks/series11/birnbaum/
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The main concept in IRT is the item characteristic curve (ICC). The ICC describes the probability that

a person “succeeds” on a given item (individual test question). In the following graph, we can see an

ICC for one item intended to measure ability. Notice that the probability of this broadly defined success

increases as ability increases.
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ICCs will be different for different items. The probability of success on an item is a function of both

the level of the latent trait and the properties of the item. The latent trait is commonly denoted by 𝜃. The
value of 𝜃 for a given person is called the person location. The item properties are parameters, commonly

known as difficulty and discrimination, that are estimated in the IRT model.

The difficulty parameter, or item location, commonly denoted by 𝑏, represents the location of an item
on the ability scale. For example, the following graph plots the ICC for items q1, q2, and q3, with
difficulty parameters −1, 0, and 1, respectively.
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ICC for items with varying difficulty

Item q1 is the least difficult, and item q3 is the most difficult. Notice that the change in difficulty

shifts the ICC along the ability scale (that is, the horizontal axis or 𝑥 axis). The probability of success on

item q1 is higher than the probability of success for the other two items at any ability level. We can say

item q1 is less difficult than the others because a person would need only an ability level greater than −1
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on this ability scale to be expected to succeed on item q1. On the other hand, a person would need an

ability level above 0 to be expected to succeed on item q2 and an ability level above 1 to be expected to

succeed on item q3.

In designing an instrument intended to differentiate between all levels of a latent trait, a researcher

should try to have items with difficulties spread across the full range of the trait.

The second item parameter, discrimination, is related to the slope of the ICC. Discrimination is com-

monly denoted by 𝑎. This item parameter tells us how fast the probability of success changes with ability

near the item difficulty. An item with a large discrimination value has a high correlation between the

latent trait and the probability of success on that item. In other words, an item with a large discrimination

parameter can distinguish better between low and high levels of the latent trait.

In the graph above, all three items have the same discrimination. In the graph below, all three items

have the same difficulty, but they have different discrimination values. A highly discriminating item

differentiates better, around its difficulty value, between persons of similar levels of the latent trait.
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Imagine two persons, one with ability just below zero, and the other with ability just above zero.

According to the ICC for item q1, these persons would have a similar probability of success on this item.
According to the ICC for item q3, the person with the higher ability level would have a substantially

higher probability of success on this item.

Using an IRT model, we can estimate the discrimination and difficulty parameters, 𝑎 and 𝑏, for each
item on an instrument designed to measure a particular latent trait. Throughout this manual, we assume

that a single latent trait is sufficient to explain a person’s response behavior on the group of items. More

technically, we assume a unidimensional latent space. We also assume that after we condition on ability,

a person’s responses to an item are independent of his or her responses to other items. This is called a

conditional independence or a local independence assumption.

We can now express a generic functional form of an ICC as

Pr(success|𝑎, 𝑏, 𝜃) = 𝐹{𝑎(𝜃 − 𝑏)}

The difference term (𝜃 − 𝑏) tells us that the probability of success is a function of the distance between
item location and person location. When 𝜃 = 𝑏, that is, when item difficulty is matched to a person’s

latent trait level, the individual is equally likely to pass or fail the item. When 𝜃 > 𝑏, the individual is
more likely to succeed than to fail. Because we can obtain the same distance with different choices of

𝜃 and 𝑏, we need to provide a metric for 𝜃 to identify the model. We do so by assuming 𝜃 ∼ 𝑁(0, 1),
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which also puts the item difficulty parameter on the same scale as the standard normal distribution. With

the standard normal scale, items with negative difficulties are considered to be relatively easy, and items

with positive difficulties are considered to be relatively hard.

For any IRT model, we assume 𝐹(⋅) to be of correct functional form and increasing with the value

of the latent trait. Because probabilities are bounded between 0 and 1, 𝐹(⋅) is usually a variation of a

cumulative logistic distribution.

Through choices of 𝐹(⋅) and specification of certain constraints on the estimated parameters, we

can fit a variety of different types of IRT models. Using the irt commands, we can fit IRT models to

binary, ordinal, and nominal items. Below we demonstrate an IRT model with binary items and an IRT

model with ordinal items. For additional information and examples of the models available for binary

items, see [IRT] irt 1pl, [IRT] irt 2pl, and [IRT] irt 3pl. For models with ordinal items, see [IRT] irt grm,

[IRT] irt rsm, and [IRT] irt pcm. For models with nominal items, see [IRT] irt nrm. Each of these models

can allow parameters to differ across groups such as males and females or age categories; see [IRT] irt,

group( ). In addition to fitting the models, we can better understand each item and its relationship to the

latent trait through a variety of graphs, as demonstrated in the examples below.

The irt commands fit IRT models via maximum likelihood estimation. See Item response theory in

[BAYES] bayesmh and Balov (2016) for examples of fitting IRTmodels to binary items using a Bayesian

approach.

From a broader statistical perspective, IRT models can be viewed as extensions of (unidimensional)

confirmatory factor analysis (CFA) models to binary and categorical outcomes and as special cases of

generalized linear mixed-effects models; see chapter 1 in De Boeck and Wilson (2004) and chapter 3 in

Skrondal and Rabe-Hesketh (2004) for a theoretical discussion and Zheng and Rabe-Hesketh (2007) for

applied examples.

Example 1: Binary IRT models
In this example, we present IRT analysis of binary data and highlight some postestimation features

of irt. We use an abridged version of the mathematics and science data from De Boeck and Wilson

(2004). Student responses to test items are coded 1 for correct and 0 for incorrect. Here we list the first

five observations.

. use https://www.stata-press.com/data/r19/masc1
(Data from De Boeck & Wilson (2004))
. list in 1/5

q1 q2 q3 q4 q5 q6 q7 q8 q9

1. 1 1 1 0 0 0 0 1 0
2. 0 0 1 0 0 0 0 1 1
3. 0 0 0 1 0 0 1 0 0
4. 0 0 1 0 0 0 0 0 1
5. 0 1 1 0 0 0 0 1 0

Looking across the rows, we see that the first student correctly answered items q1, q2, q3, and q8,
the second student correctly answered items q3, q8, and q9, and so on.

Let’s say the goal of the test is to assess students’mathematical ability and perhaps classify the students

into groups, for example, gifted, average, and remedial. We could look at the total test score for each

student, but the problem is that the total score depends on the composition of the test. If the test comprises

easy items, most students will appear to be gifted, and if the test comprises hard items, most students

https://www.stata.com/manuals/irtirt1pl.pdf#irtirt1pl
https://www.stata.com/manuals/irtirt2pl.pdf#irtirt2pl
https://www.stata.com/manuals/irtirt3pl.pdf#irtirt3pl
https://www.stata.com/manuals/irtirtgrm.pdf#irtirtgrm
https://www.stata.com/manuals/irtirtrsm.pdf#irtirtrsm
https://www.stata.com/manuals/irtirtpcm.pdf#irtirtpcm
https://www.stata.com/manuals/irtirtnrm.pdf#irtirtnrm
https://www.stata.com/manuals/irtirtgroup.pdf#irtirt,group()
https://www.stata.com/manuals/irtirtgroup.pdf#irtirt,group()
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesItemresponsetheory
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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will be assigned to the remedial group. When the model fits the data, an attractive property of IRT is that,

except for measurement error, parameter estimates are invariant; that is, examinee ability estimates are

not test dependent, and item parameter estimates are not group dependent.

We fit a 1PLmodel to binary items q1–q9 as follows.

. irt 1pl q1-q9
Fitting fixed-effects model:
Iteration 0: Log likelihood = -4275.6606
Iteration 1: Log likelihood = -4269.7861
Iteration 2: Log likelihood = -4269.7825
Iteration 3: Log likelihood = -4269.7825
Fitting full model:
Iteration 0: Log likelihood = -4153.3609
Iteration 1: Log likelihood = -4142.374
Iteration 2: Log likelihood = -4142.3516
Iteration 3: Log likelihood = -4142.3516
One-parameter logistic model Number of obs = 800
Log likelihood = -4142.3516

Coefficient Std. err. z P>|z| [95% conf. interval]

Discrim .852123 .0458445 18.59 0.000 .7622695 .9419765

q1
Diff -.7071339 .1034574 -6.84 0.000 -.9099066 -.5043612

q2
Diff -.1222008 .0963349 -1.27 0.205 -.3110138 .0666122

q3
Diff -1.817693 .1399523 -12.99 0.000 -2.091994 -1.543391

q4
Diff .3209596 .0976599 3.29 0.001 .1295498 .5123695

q5
Diff 1.652719 .1329494 12.43 0.000 1.392144 1.913295

q6
Diff .6930617 .1031842 6.72 0.000 .4908243 .8952991

q7
Diff 1.325001 .1205805 10.99 0.000 1.088668 1.561335

q8
Diff -2.413443 .1691832 -14.27 0.000 -2.745036 -2.08185

q9
Diff -1.193206 .1162054 -10.27 0.000 -1.420965 -.965448

Looking at the output table, we see that the first row reports the estimate of the item discrimination

parameter, labeled Discrim. In a 1PLmodel, this parameter is shared by all items. The estimate of 0.85

suggests the items are not particularly discriminating; that is, in the vicinity of a given difficulty estimate,

any two students with distinct abilities would have similar predicted probabilities of responding correctly
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to an item. The remaining rows report the estimates of the difficulty parameters, labeled Diff, for each
item. The items appear to cover a wide range of the item difficulty spectrum, with item q8 being the

lowest (�̂�8 = −2.41) and item q5 being the highest (�̂�5 = 1.65).
We use estat report to arrange the output in a particular sort order, which, in our example, makes

it easy to see which items are easy and which are hard; see [IRT] estat report for details.

. estat report, sort(b) byparm
One-parameter logistic model Number of obs = 800
Log likelihood = -4142.3516

Coefficient Std. err. z P>|z| [95% conf. interval]

Discrim .852123 .0458445 18.59 0.000 .7622695 .9419765

Diff
q8 -2.413443 .1691832 -14.27 0.000 -2.745036 -2.08185
q3 -1.817693 .1399523 -12.99 0.000 -2.091994 -1.543391
q9 -1.193206 .1162054 -10.27 0.000 -1.420965 -.965448
q1 -.7071339 .1034574 -6.84 0.000 -.9099066 -.5043612
q2 -.1222008 .0963349 -1.27 0.205 -.3110138 .0666122
q4 .3209596 .0976599 3.29 0.001 .1295498 .5123695
q6 .6930617 .1031842 6.72 0.000 .4908243 .8952991
q7 1.325001 .1205805 10.99 0.000 1.088668 1.561335
q5 1.652719 .1329494 12.43 0.000 1.392144 1.913295

To visualize the item locations on the difficulty spectrum, we plot the ICCs for all items using

irtgraph icc; see [IRT] irtgraph icc for details.

. irtgraph icc, blocation legend(off) xlabel(,alt)
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The probabilities represent the expected scores for each item along the latent trait continuum. For the

1PLmodel, the midpoint probability for each item corresponds with the estimated difficulty parameter.

The sum of the probabilities gives us the expected score on the whole test. A plot of the expected

score against the latent trait is called a test characteristic curve (TCC). Below we plot the TCC for our

model using irtgraph tcc; see [IRT] irtgraph tcc for details. The scorelines(2 7) option specifies

that droplines corresponding to the expected scores of 2 and 7 also be plotted. According to the estimated

TCC, these expected scores correspond with the latent trait locations −2.1 and 1.6, respectively.

https://www.stata.com/manuals/irtestatreport.pdf#irtestatreport
https://www.stata.com/manuals/irtirtgraphicc.pdf#irtirtgraphicc
https://www.stata.com/manuals/irtirtgraphtcc.pdf#irtirtgraphtcc
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. irtgraph tcc, scorelines(2 7)
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The invariance property of IRT holds only if themodel fits the data. One informalmethod to check item

fit is to superimpose empirical proportions on an ICC. If the predicted ICC follows closely the empirical

trace line implied by the proportions, an item is assumed to have a satisfactory fit.

To calculate the empirical proportions, we predict the latent trait and collapse the items by the latent

trait. We then call irtgraph icc with option addplot() to superimpose the proportions on the ICC.

. predict Theta, latent
(option ebmeans assumed)
(using 7 quadrature points)
. collapse q*, by(Theta)
. irtgraph icc q1, addplot(scatter q1 Theta)
> title(”ICC and empirical proportions for q1”)
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ICC and empirical proportions for q1

We see that the fit of the ICC to the implied empirical trace line is poor. This is true for all items in the

model. It is possible that a 2PLmodel may be more appropriate for this item. Before we fit a 2PLmodel,

we store our estimates for later use.

. estimates store onep
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To fit a 2PLmodel to the data, we type

. use https://www.stata-press.com/data/r19/masc1, clear
(Data from De Boeck & Wilson (2004))
. irt 2pl q1-q9
Fitting fixed-effects model:
Iteration 0: Log likelihood = -4275.6606
Iteration 1: Log likelihood = -4269.7861
Iteration 2: Log likelihood = -4269.7825
Iteration 3: Log likelihood = -4269.7825
Fitting full model:
Iteration 0: Log likelihood = -4146.9386
Iteration 1: Log likelihood = -4119.3568
Iteration 2: Log likelihood = -4118.4716
Iteration 3: Log likelihood = -4118.4697
Iteration 4: Log likelihood = -4118.4697
Two-parameter logistic model Number of obs = 800
Log likelihood = -4118.4697

Coefficient Std. err. z P>|z| [95% conf. interval]

q1
Discrim 1.615292 .2436467 6.63 0.000 1.137754 2.092831

Diff -.4745635 .074638 -6.36 0.000 -.6208513 -.3282757

q2
Discrim .6576171 .1161756 5.66 0.000 .4299171 .885317

Diff -.1513023 .1202807 -1.26 0.208 -.3870481 .0844435

q3
Discrim .9245051 .1569806 5.89 0.000 .6168289 1.232181

Diff -1.70918 .242266 -7.05 0.000 -2.184012 -1.234347

q4
Discrim .8186403 .1284832 6.37 0.000 .5668179 1.070463

Diff .3296791 .1076105 3.06 0.002 .1187663 .5405919

q5
Discrim .8956621 .1535128 5.83 0.000 .5947825 1.196542

Diff 1.591164 .2325918 6.84 0.000 1.135293 2.047036

q6
Discrim .9828441 .147888 6.65 0.000 .6929889 1.272699

Diff .622954 .1114902 5.59 0.000 .4044373 .8414708

q7
Discrim .3556064 .1113146 3.19 0.001 .1374337 .5737791

Diff 2.840278 .8717471 3.26 0.001 1.131685 4.548871

q8
Discrim 1.399926 .233963 5.98 0.000 .9413668 1.858485

Diff -1.714416 .1925531 -8.90 0.000 -2.091814 -1.337019

q9
Discrim .6378452 .1223972 5.21 0.000 .3979512 .8777392

Diff -1.508254 .2787386 -5.41 0.000 -2.054571 -.9619361
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Now each item has its own discrimination parameter that models the slope of the ICC for that item. In

a 1PLmodel, the discrimination for all items was estimated to be 0.85. Looking at item q1 in the output

table above, we see that its discrimination is estimated to be 1.62, which corresponds to a steeper slope

and should result in a better item fit.

Because the 1PL model is nested in a 2PL model, we can perform a likelihood-ratio test to see which

model is preferred.

. lrtest onep .
Likelihood-ratio test
Assumption: onep nested within .
LR chi2(8) = 47.76

Prob > chi2 = 0.0000

The near-zero significance level favors the model that allows for a separate discrimination parameter for

each item.

Continuing with the 2PL model, we can also plot the amount of information an item provides for

estimating the latent trait. A plot of item information against the latent trait is called an item information

function (IIF). We use irtgraph iif to obtain the IIFs for all items in the model; see [IRT] irtgraph iif

for details.

. irtgraph iif, legend(pos(1) ring(0) region(lcolor(black)))
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Item information functions

For a 2PL model, IIFs are unimodal and symmetric, and each item provides the maximum amount

of information at its estimated difficulty parameter. The height of an IIF and therefore the amount of

information an item provides around the difficulty parameter is proportional to the item’s estimated dis-

crimination. Items q1 and q8 are most discriminating and have the steepest IIFs.

https://www.stata.com/manuals/irtirtgraphiif.pdf#irtirtgraphiif
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We can sum up all the IIFs to obtain a test information function (TIF). The TIF plot tells us how well

the instrument can estimate person locations; see [IRT] irtgraph tif for details.

. irtgraph tif, se
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The test provides maximum information for persons approximately located at 𝜃 = −0.5. As we

move away from that point in either direction, the standard error of the TIF increases, and the instrument

provides less and less information about 𝜃.
The TIF is useful in designing instruments targeted at obtaining precise estimates of a person’s latent

trait level at specified intervals. If our interest lies in identifying gifted and remedial students, we would

like the instrument to be more precise at the extrema of the ability range. If we wish to have a similar

precision of ability estimate across the entire ability range, we would like to see a relatively flat TIF.

Because the TIF is a sum of IIFs, we can obtain the desired shape of the TIF by incorporating items

targeted at a specified ability interval.

The last binary model, not shown here, is a 3PLmodel. This model adds to the 2PLmodel by accom-

modating the possibility of guessing. We discuss this model in the [IRT] irt 3pl entry.

https://www.stata.com/manuals/irtirtgraphtif.pdf#irtirtgraphtif
https://www.stata.com/manuals/irtirt3pl.pdf#irtirt3pl
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Example 2: Categorical IRT models
Categorical IRTmodels includemodels for ordered and unordered responses. Herewe present a graded

response model (GRM) for ordered responses.

The GRM is an extension of the 2PLmodel to categorical outcomes. To illustrate the model, we use the

data from Zheng and Rabe-Hesketh (2007). charity.dta contains five survey questions, ta1 through

ta5, measuring faith and trust in charity organizations. Responses are strongly agree (0), agree (1),

disagree (2), and strongly disagree (3). Higher scores indicate higher levels of distrust. Here we list the

first five observations.

. use https://www.stata-press.com/data/r19/charity
(Data from Zheng & Rabe-Hesketh (2007))
. list in 1/5, nolabel

ta1 ta2 ta3 ta4 ta5

1. . 2 1 1 .
2. 0 0 0 0 0
3. 1 1 2 0 2
4. 1 2 2 0 1
5. . 1 1 1 1

Looking across the first row, we see that the first respondent did not provide an answer to items ta1
and ta5, answered 2 on item ta2, and answered 1 on items ta3 and ta4. All irt commands exclude

missing items for a given observation from the likelihood calculation but keep the nonmissing items for

that observation. If you wish to remove the entire observation from the model, add the listwise option

at estimation time.
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We fit a GRM as follows:

. irt grm ta1-ta5
Fitting fixed-effects model:
Iteration 0: Log likelihood = -5559.6414
Iteration 1: Log likelihood = -5473.9434
Iteration 2: Log likelihood = -5467.4082
Iteration 3: Log likelihood = -5467.3926
Iteration 4: Log likelihood = -5467.3926
Fitting full model:
Iteration 0: Log likelihood = -5271.0634
Iteration 1: Log likelihood = -5162.5917
Iteration 2: Log likelihood = -5159.2947
Iteration 3: Log likelihood = -5159.2791
Iteration 4: Log likelihood = -5159.2791
Graded response model Number of obs = 945
Log likelihood = -5159.2791

Coefficient Std. err. z P>|z| [95% conf. interval]

ta1
Discrim .907542 .0955772 9.50 0.000 .7202142 1.09487

Diff
>=1 -1.540098 .1639425 -1.861419 -1.218776
>=2 1.296135 .1427535 1.016343 1.575927
=3 3.305059 .3248468 2.668371 3.941747

ta2
Discrim .9434675 .0967483 9.75 0.000 .7538444 1.133091

Diff
>=1 -1.661331 .167878 -1.990366 -1.332296
>=2 .0068314 .082222 -.1543208 .1679836
=3 2.531091 .2412513 2.058247 3.003935

ta3
Discrim 1.734201 .1554383 11.16 0.000 1.429548 2.038855

Diff
>=1 -1.080079 .0835119 -1.243759 -.9163983
>=2 1.016567 .0796635 .8604297 1.172705
=3 2.232606 .1497814 1.93904 2.526172

ta4
Discrim 1.93344 .1857629 10.41 0.000 1.569351 2.297528

Diff
>=1 -.3445057 .0578468 -.4578833 -.2311282
>=2 1.466254 .0983823 1.273428 1.65908
=3 2.418954 .162392 2.100672 2.737237

ta5
Discrim 1.42753 .1263962 11.29 0.000 1.179798 1.675262

Diff
>=1 -.8552358 .0833158 -1.018532 -.6919399
>=2 .6805315 .07469 .5341418 .8269211
=3 2.074243 .1538858 1.772632 2.375853

Because the GRM is derived in terms of cumulative probabilities, the estimated category difficulties

represent a point at which a person with ability equal to a given difficulty has a 50% chance of responding

in a category equal to or higher than the difficulty designates; see [IRT] irt grm for details. For example,

looking at the estimated parameters of item ta5, we see that a person with 𝜃 = −0.86 has a 50% chance

https://www.stata.com/manuals/irtirtgrm.pdf#irtirtgrm
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of answering 0 versus greater than or equal to 1, a person with 𝜃 = 0.68 has a 50% chance of answering

0 or 1 versus greater than or equal to 2, and a person with 𝜃 = 2.07 has a 50% chance of answering 0, 1,

or 2 versus 3.

We can use irtgraph icc to plot these probabilities; here we show them for item ta5 together with

the estimated category difficulties. In a GRM, the midpoint probability for each category is located at the

estimated category difficulty.

. irtgraph icc ta5, blocation legend(pos(11) ring(0) region(lcolor(black)))
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Boundary characteristic curves

When we plot characteristic curves for categorical items in ways reminiscent of ICCs for binary items,

the resulting curves are called boundary characteristic curves (BCCs).

We can also plot the probabilities of respondents choosing exactly category 𝑘. For categorical items,
the resulting curves are called category characteristic curves (CCCs). In fact, this is the default behavior

of irtgraph icc.

. irtgraph icc ta5, xlabel(-4 -.7 .7 1.85 4)
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The points where the adjacent categories cross represent transitions from one category to the next.

Thus, respondents with low levels of distrust, below approximately 𝜃 = −0.7, are most likely to choose

the first category on item ta5 (strongly agree), respondents located approximately between −0.7 and 0.7

are most likely to choose the second category on item ta5 (agree), and so on.

As in the first example, we can plot the test characteristic function for the whole instrument.

. irtgraph tcc, thetalines(-3/3)
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Because we have 5 items, each with a minimum score of 0 and a maximum score of 3, the expected

score ranges from 0 to 15. We also asked irtgraph icc to plot the expected scores for different values

of 𝜃. For respondents located at 𝜃 = −3 and below, the expected score is less than 1, which means those

respondents are most likely to choose the answer coded 0 on each and every item.

For categorical items, the item information function is no longer unimodal or symmetric, because

each category contributes its own information, which may peak over a different ability range. We see

this in the graph below.

. irtgraph iif, legend(pos(11) ring(0) region(lcolor(black)))
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Because the test information function is the sum of the individual IIFs, its plot will also exhibit peaks

and valleys.

. irtgraph tif, se
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In the above example, we presented the GRM. The irt command also supports other models for

categorical responses; see [IRT] irt nrm for a discussion of the nominal response model (NRM), [IRT] irt

pcm for a discussion of the partial credit model (PCM), and [IRT] irt rsm for a discussion of the rating

scale model (RSM).

In addition to binary and categorical IRT models, the irt command allows you to apply different

models to subsets of items and perform a single calibration for the whole instrument. We call such

models hybrid IRT models; see [IRT] irt hybrid for a further discussion and examples.
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