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Description
The h2oml rf commands implement the random forest method for regression, binary classification,

and multiclass classification. h2oml rfregress implements random forest regression for continuous

responses; h2oml rfbinclass implements random forest classification for binary responses; and h2oml
rfmulticlass implements random forest classification for multiclass responses (categorical responses

with more than two categories).

The h2oml rf commands provide only measures of performance. See [H2OML] h2oml postestimation

for commands to compute and explain predictions, examine variable importance, and perform other

postestimation analyses.

For an introduction to decision trees and random forest, see [H2OML] Intro.

Quick start
Before running the h2oml rf commands, an H2O cluster must be initialized and data must be imported

to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in Stata in

[H2OML] h2oml.

Perform random forest regression of response y1 on predictors x1 through x100
h2oml rfregress y1 x1-x100

Same as above, but perform classification for binary response y2, report measures of fit for the validation
frame named valid, and set an H2O random-number seed for reproducibility

h2oml rfbinclass y2 x1-x100, validframe(valid) h2orseed(123)

Same as above, but for categorical response y3 and instead of a validation frame, use 3-fold cross-

validation

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123)

Same as above, but set the number of trees to 30, the maximum tree depth to 10, and the number of

predictors to sample to 6

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(6)

Same as above, but use the default exhaustive grid search to select the optimal number of trees and the

maximum tree depth that minimize the log-loss metric

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))
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Same as above, but use a random grid search, set an H2O random-number seed for this search, and limit

the maximum search time to 200 seconds

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

Same as above, but use early stopping for the grid search with the default stopping log-loss metric

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200) ///
stop(5))

Menu
Statistics > H2O machine learning

Syntax
Random forest regression

h2oml rfregress response reg predictors [ , rfopts ]

Random forest binary classification for binary response

h2oml rfbinclass response bin predictors [ , rfopts ]

Random forest multiclass classification for categorical response

h2oml rfmulticlass response mult predictors [ , rfopts ]

response reg, response bin, response mult, and predictors correspond to column names of the current

H2O frame.

https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfSyntaxrfopts
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfSyntaxrfopts
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfSyntaxrfopts


h2oml rf — Random forest for regression and classification 3

rfopts Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of
the response variable) by oversampling minority classes
with h2oml rfbinclass or h2oml rfmulticlass

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area
under the curve (AUC) and area under the precision–recall
curve (AUCPR) and metrics for multiclass classification with
h2oml rfmulticlass

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfSyntaxcvstropts
https://www.stata.com/manuals/h2omlencode_option.pdf#h2omlencode_option
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfSyntaxstopoption
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the performance metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (# [ , stop opts ]) ] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(framename) specifies the H2O frame name of the validation dataset used to evaluate the

performance of the model. This option is often used when the number of observations is large and the

data-splitting approach is the three-way (training-validation-testing) or two-way (training-validation)

https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfSyntaxtuneopts
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionSyntaxreg_metric
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionSyntaxreg_metric
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfOptionsgridspec
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfSyntaxstopoption
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holdout method. For definitions of different data-splitting approaches, see Three-way and two-way

holdout method in [H2OML] Intro. If neither validframe() nor cv[ () ] is specified, the model is
evaluated using the training dataset. Only one of validframe() or cv[ () ] may be specified.

cv(cvspec) and cv use cross-validation to evaluate model performance. cvspec is one of # [ , cvmethod ]
or colname. Only one of cv() or validframe() may be specified.

cv[ (# [ , cvmethod ]) ] specifies the number of folds for cross-validation and, optionally, the cross-
validation method. This option is preferred when the number of observations is small for the training-

validation-testing split method.

cv is a synonym for cv(10).

cvmethod specifies the cross-validationmethod andmay be one of random, modulo, or stratify.

random specifies that training data be randomly split into the specified number of folds. It is

recommended for large datasets and may lead to imbalanced folds. This is the default.

modulo specifies that a deterministic assignment approach that evenly splits data into the spec-

ified number of folds be used. For example, if cv(3, modulo) is specified, then training ob-

servations 1, 4, 7, . . . are assigned to fold 1; observations 2, 5, 8, . . . to fold 2, etc.

stratify specifies to try to evenly distribute observations from the different classes of the

response across all folds. This approach is useful when the number of classes is large and the

available dataset is small. stratify is not allowed when the response is H2O type real.

cv(colname) specifies the name of the variable (H2O column) that is used to split the data into subsets

according to colname. It provides a custom grouping index for the cross-validation split. This option

is suitable when the data are non-i.i.d. or for comparing different models using cross-validation. The

variable should be categorical (H2O data type enum).

balanceclasses is used with h2oml rfbinclass and h2oml rfmulticlass. It specifies to oversam-
ple the minority classes of the response to balance the class distribution. The imbalanced data can lead

to wrong performance evaluation, and oversampling tries to balance data by increasing the minority

classes. This can increase the size of the dataset. Minority classes are not oversampled by default.

h2orseed(#) sets the H2O random-number seed for H2O model reproducibility of the random forest

estimation. This option is not equivalent to the rseed() option available with other commands or

the set seed command. For reproducibility in H2O, see [H2OML] H2O reproducibility and H2O’s

reproducibility page.

encode(encode type) specifies the H2O encoding type to handle categorical variables, which in H2O are

supported as the data type enum. See https://www.stata.com/h2o/h2o18/h2oframe_describe.html for
information on the H2O data types. encode type may be one of enum, enumfreq, onehotexplicit,
binary, eigen, label, or sortbyresponse. For details, see [H2OML] encode option. The default

is encode(enum).

auc is used with h2oml rfmulticlass. It enables calculation of AUC and AUCPR metrics. Because

the computation of these metrics requires a large amount of memory and computational cost, by

default, H2O does not calculate these metrics. This option must be specified if you plan to use the

postestimation command h2omlestat aucmulticlass or to use one of these metrics for the early

stopping. When the number of classes in the response variable is greater than 50, H2O disables this

option.

https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesthreewaysplit
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesthreewaysplit
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/h2o/h2o18/h2oframe_describe.html
https://www.stata.com/manuals/h2omlencode_option.pdf#h2omlencode_option
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaucmulty
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsmultaucpr
https://www.stata.com/manuals/h2omlh2omlestataucmulticlass.pdf#h2omlh2omlestataucmulticlass
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stop and stop(# [ , metric(metric option) tolerance(#) ]) specify the rules for early stopping

for random forest. Early-stopping rules help prevent the overfitting of machine learning methods

and may reduce the generalization error, which measures how well a model predicts outcome for

new data; see Preliminaries in [H2OML] Intro. stop(#) specifies the number of stopping rounds or

training iterations needed to stop model training when the selected stopping metric does not improve

by tolerance(). For example, if metric(logloss) is used and the specified number of training

iterations is 3, the model will stop training after the performance has been scored three consecutive

times without any improvement in logloss by the specified tolerance(). For reproducibility, it is
recommended to use stop() with option scoreevery(#).

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. The list of allowed metrics

is provided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for binary and multiclass classification.

tolerance(#) specifies the tolerance value by which metric() must improve during training. If

the metric() does not improve by # after the number of consecutive grid value configurations

specified in stop(#), the training stops. The default is tolerance(1e-3).

maxtime(#) specifies the maximum run time in seconds for the random forest. No time limitation is

imposed by default.

scoreevery(#) specifies that metrics be scored after every # trees during model training. This option is

useful in combination with stop() for reproducibility. When used with early stopping, the specified

number of iterations needed to stop applies to the number of scoring iterations that H2O has performed.

The default is to use H2O’s assessment of a reasonable ratio of training iterations to scoring time,

which may not always guarantee reproducibility. For details on reproducibility, see [H2OML] H2O

reproducibility.

� � �
Hyperparameter �

When numlist is specified in one or more hyperparameter options below, tuning is performed for those

hyperparameters.

ntrees(# | numlist) specifies the number of trees to build the model. The default is ntrees(50). The
specified number of trees and the actual number of trees used during estimation can differ. This can

happen if the early-stopping rules have been specified or the performance of the model is not changing

after adding an additional tree.

maxdepth(# | numlist) specifies the maximum depth of each tree. The default is maxdepth(20). The
splitting is stopped when the tree’s depth reaches the specified number. Adeeper tree provides a better

training accuracy but may overfit the data.

minobsleaf(# | numlist) specifies the minimum number of observations required for splitting a leaf

node. The default is minobsleaf(1). For example, if we specify minobsleaf(50), then the node
will split if the training samples in each of the left and right children are at least 50.

predsampvalue(# | numlist) specifies rules for how to sample predictors. The sampling is without

replacement. The accepted values are {−2, −1} and any integer greater than 1 and less than the

number of predictors 𝑝. If the default predsampvalue(-1) is selected, then in each split, the

square root of the number of predictors are sampled for classification and ⌊𝑝/3⌋ are sampled for

regression. predsampvalue(-2) specifies that all predictors will be used. Finally, for 𝑑 > 0,

https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesprelim
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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predsampvalue(d) indicates that from the total number of predictors, 𝑑 ≤ 𝑝 will be sampled.

predsampvalue() reduces the correlation among trees and introduces additional randomness to the

estimation method that might improve generalization of the model to new data.

samprate(# | numlist) specifies the sampling rate for the observations. The sampling is without re-

placement. The sampling rate must be in the range (0, 1]. The default is samprate(0.632). The
observation sampling introduces an additional randomization to the estimation method that might

improve generalization of the model to the new data.

minsplitthreshold(# | numlist) specifies the threshold for the required minimum relative improve-

ment in the impurity measure in order for a split to occur. The default is minsplitthreshold(1e-
05). A well-tuned minsplitthreshold() increases generalization because it precludes splits that

lead to overfitting.

binscat(# | numlist) specifies the number of bins to be included in the histogram for each categor-

ical (H2O type enum) predictor. The specified number should be greater than 1. The default is

binscat(1024). The histogram is used to split the tree node at the optimal point. Categorical

predictors are split by first assigning an integer to each distinct level. Then the method bins the

ordered integers according to the specified number of bins. Finally, the optimal split point is selected

among the bins. For details, see https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-

params/nbins_cats.html. For categorical predictors with many levels, a larger value of binscat()
leads to overfitting, and a smaller value adds randomness to the split decisions. Therefore, binscat()
is an important tuning parameter for datasets that contain categorical variables with many levels.

binsroot(# | numlist) specifies the number of bins to use at the root node of each tree for splitting

continuous (H2O type real or int) predictors. For the subsequent nodes, the specified # is divided

by 2, and the resulting number is used for splitting. The default is binsroot(1024). This option is
used in combination with binscont(), which controls the point when the method stops dividing by
2. The histogram is used to split the node at the optimal point. As the tree gets deeper, each subsequent

node includes predictors with a smaller range, and the bins are uniformly spread over this range. If the

number of observations in a node is smaller than the specified value, then the method creates empty

bins. If the number of bins is large, the method evaluates each individual observation as a potential

split point, which may increase the computation time. The number specified in binscont() must be

smaller than the number specified in binsroot().

binscont(# | numlist) specifies the minimum number of bins in the histogram for the continuous (H2O

type real or int) predictors. The default is binscont(20). This option is used in combination with
binsroot(). The number specified in binsroot() must be greater than the number specified in

binscont().

In practice, a model is more generalizable to other datasets if binsroot() and binscat() are small and

tends to overfit for large values of binscont(), binsroot(), and binscat().

� � �
Tuning �

tune(tune opts) specifies options for the grid search method for tuning hyperparameters. In machine

learning, hyperparameter tuning is an important step in selecting a model that can be generalized

to other datasets. Because of the high dimensionality of hyperparameters and their types (continu-

ous, discrete, and categorical), manually setting and testing hyperparameters is time consuming and

inefficient. Grid search methods are designed to achieve optimal model performance within spec-

ified constraints such as time allocated for tuning or computational resources. Tuning begins with

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesHyperparametertuning


h2oml rf — Random forest for regression and classification 8

the selection of the predetermined hyperparameters that you want to tune. Below, we describe the

available suboptions for controlling the tuning procedure. tune opts may be metric(), grid(),
maxmodels(), maxtime(), stop[ () ], or nooutput.

metric(metric option) specifies the metric for tuning. Allowed metrics are provided in

[H2OML] metric option. The default is metric(deviance) for regression and metric(log-
loss) for classification.

grid(gridspec) specifies whether to implement an exhaustive search or a random search for all hy-

perparameter combinations. gridspec is one of cartesian or random[ , h2orseed(#) ].
grid(cartesian) implements an exhaustive search for every possible combination in the search
space. This approach is recommended if the number of hyperparameters or the search space is

small. The default is grid(cartesian).

grid(random[ , h2orseed(#) ]) implements a random search for all hyperparameter combi-

nations. It is recommended to use grid(random) with maxmodels() and maxtime() to

reduce the computation time. If maxtime(), maxmodels(), or stop() is specified, then

grid(random) is implied.

h2orseed(#) sets an H2O random-number seed for the random grid search for reproducibility.

See [H2OML]H2O reproducibility and H2O’s reproducibility page for details. The behavior

of h2orseed() is different from the rseed() option allowed by many commands and the

set seed command.

maxmodels(#) specifies the maximum number of models to be considered in a grid search. By

default, all possible configurations are considered. If this option is specified, grid(random) is

implied.

maxtime(#) specifies the maximum run time for the grid search in seconds. By default, there is no

time limitation. If this option is specified, grid(random) is implied. This option can be specified

with option maxmodels() during the grid search. If maxtime() is also specified for the model

training, then each model building starts with a limit equal to the minimum of the maxtime() for

the model training, and the remaining time is used for the grid search.

stop and stop(# [ , metric(metric option) tolerance(#) ]) specify the rules for early stopping

for the grid search. This option implies grid(random). stop(#) specifies the number of grid

value configurations needed to stop the grid search when the selected metric does not improve

by tolerance(). For example, if the selected metric is the default for the binary and multiclass
classification (metric(logloss)) and we specify stop(3), the grid search will stop after three
consecutive grid values chosen by the grid search do not lead to the improvement of the logloss
by the specified tolerance().

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. Allowed metrics are pro-

vided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for classification.

tolerance(#) specifies the tolerance value by which metric() must improve during the grid

search. If the metric() does not improve by # after the number of consecutive grid value

configurations specified in stop(#), the grid search stops. The default is tolerance(1e-3).

parallel(#) specifies the number of models to build in parallel during the grid search. This option

enables parallel model building, which reduces computational time. The default, parallel(1),
specifies sequential model building. parallel(0) enables adaptive parallelism, in which the

https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
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number of models to be built in parallel is automatically determined by H2O. Any integer greater

than 1 specifies the exact number of models to be built in parallel. This option is particularly

useful for improving speed when tuning many hyperparameters. However, results for models built

in parallel may not be reproducible; see [H2OML] H2O reproducibility for details.

nooutput suppresses the table summarizing hyperparameter tuning.

Remarks and examples
We assume you have read the introduction to decision trees and ensemble methods in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Tuning hyperparameters
Examples of using random forest

Example 1: Random forest binary classification using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Multiclass classification and model performance

Introduction
Like gradient boosting machine (GBM, see Introduction in [H2OML] h2oml gbm), random forest is

a machine learning method used for prediction, model selection, and exploring predictor importance.

And just like GBM, random forest uses an ensemble of decision trees to alleviate the pitfalls of using a

single decision tree. Whereas GBM uses boosting, random forest uses a variation of the so-called bagging

procedure.

The bagging procedure, introduced in [H2OML] Intro, averages an ensemble of unstable decision trees

to reduce the variance in the predictions. Thus, bagging leads to the improvement of the generalization

error (a measure of error in using the model to predict in new data) over using a single decision tree.

However, this reduction in variance is not substantial if the trees in the ensemble are correlated with each

other. For example, if the training data have one strong and several moderately strong predictors, then in

the ensemble of bagged decision trees, the majority of the trees will have this strong predictor as one of

the first splits. Therefore, most of the bagged trees will have a similar structure, resulting in predictors

that are highly correlated.

Random forest (Breiman 2001) is a modification of the bagging procedure that generates an ensemble

of decorrelated trees and then averages them. It generates 𝐵 bootstrap samples of predictors 𝑋𝑏, where

𝑏 = 1, 2, . . . , 𝐵, from the training data. Random forest recursively grows a tree in which, instead of

the full set of 𝑝 predictors, a random sample of 𝑚 predictors is selected as potential split candidates to

generate decorrelated trees. In h2oml rf, the value of 𝐵 can be specified by using the ntrees() option,

and the value of 𝑚 can be specified by using the predsampvalue() option. In practice, 𝑚 = ⌊√𝑝⌋
is recommended for classification and 𝑚 = ⌊𝑝/3⌋ is recommended for regression, where ⌊⋅⌋ is a floor

function that rounds a given number down to the nearest integer. These are the default values of 𝑚 used

by h2oml rf when the predsamplevalue() option is not specified. The size of the bootstrap sample

𝑋𝑏 controls the bias-variance tradeoff of the random forest. The size can be controlled by using the

samprate() option to specify the sampling rate (the fraction of observations to be sampled). By default,

samprate() is set to 0.632.

https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesDecisiontrees
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesEnsemblemethods
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfdefault
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfvalid
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfcv
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfuser
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfexmclass
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesIntroduction
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesBoosting
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesBagging
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesDecisiontrees
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesPreliminaries
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesPreliminaries
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesEnsemblemethods
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Depending on the type of response, you can use one of the h2oml rfregress, h2oml rfbinclass,
or h2oml rfmulticlass commands to perform random forest. h2oml rfregress performs random

forest regression for continuous responses. h2oml rfbinclass performs random forest binary classi-

fication for binary responses. h2oml rfmulticlass performs random forest multiclass classification

for categorical responses. The commands have many common options. To perform random forest using

a validation dataset, you can use the validframe() option to specify the name of a validation frame.

To perform random forest using cross-validation, you can use the cv() option. You can choose be-

tween three cross-validation methods for splitting data among folds by specifying the random, modulo,
or stratify suboption within the cv() option. Alternatively, you can specify a variable in the cv()
option that defines how observations are split into different folds.

For reproducibility, you can use the h2orseed() option to specify a random-number seed for H2O.

This option is different from the rseed() option available with other commands and the set seed
command. For early stopping, you can use the stop[ () ] option. We highly recommend that you al-

ways specify the scoreevery() option with early stopping to ensure reproducibility. For details, see

[H2OML] H2O reproducibility and H2O’s reproducibility page.

Tuning hyperparameters
All h2oml rf commands provide default values for hyperparameters, but you can also specify your

own in the corresponding options. For instance, you can specify the number of trees for random forest

in the ntrees() option or the predictor sampling value in the predsampvalue() option. In practice,

however, you would want to tune your random forest model, that is, let the random forest method select

the values of the model parameters that correspond to the best-fitting model according to some metric.

You can do this by specifying a possible range of grid values for each hyperparameter you intend to tune

and controlling the grid search by using the tune() option. Currently, h2oml rf provides two grid search

strategies: an exhaustive (Cartesian) grid search with tune(grid(cartesian)) and a random grid

searchwith tune(grid(random)). And several performancemetrics are available in tune(metric()).

Tuning hyperparameters of the machine learning method is a complex and iterative procedure. Under-

standing the steps is important for the correct specification of the options provided. A brief overview

of these steps is provided below, and a deeper treatment can be found in Hyperparameter tuning in

[H2OML] Intro.

Step 1: Choose the data-splitting approach

Use either a three-way holdout method in which data are separated into training, validation, and testing

datasets or, if the number of observations is low, a two-way holdout method (training and testing) with

𝑘-fold cross-validation. Recall that the optimal hyperparameters are selected using the results of the
metric on the validation set (validframe()) or cross-validation (cv()), not on the training set.

Step 2: Select the hyperparameters and performance metric

From the list of hyperparameters such as ntrees() or maxdepth(), select the ones that require tuning
for your application. When numlist is specified in one or more of the hyperparameter options, tuning

is implemented based on the specified grid search suboptions in the tune() option. For instance,

you can specify the desired performance metric in the tune(metric()) option; see [H2OML] met-

ric option for supported metrics. The default metric is specific to each command. There is no sys-

tematic guidance on how many and which hyperparameters to choose: the inclusion of tuning hyper-

parameters depends on the data, machine learning method, and prior knowledge of the researcher.

https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesHyperparametertuning
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesthreewaysplit
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesk-foldcross-validation
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
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The performance metric should be selected carefully because it may affect the estimation results. For

example, for the classification problem, if the data are imbalanced, metric accuracy is not recom-

mended and a more appropriate metric, such as aucpr, is preferred. For more details, see metric

options.

Step 3: Select the grid search strategy and search space

If the number of hyperparameters is large, then a random grid search specified via the

tune(grid(random)) option is a better choice than an exhaustive grid search that is performed

by default or when the tune(grid(cartesian)) option is specified. For the first run, it is recom-

mended that you specify a large search space and try to overfit the model. Then, on subsequent runs,

you should narrow the search space on high-performance hyperparameters and apply early-stopping

rules by specifying the tune(stop()) option to avoid overfitting.

Step 4: Use the best-performing hyperparameter configuration

Depending on your research problem, use the best-performing hyperparameter configuration to fit the

final model on the testing dataset.

Below, we demonstrate the use of options in various applications. In this entry, we focus on the syntax

and output of commands. For a more research-focused exposition, see [H2OML] h2oml.

Examples of using random forest
In this section, we demonstrate some of the uses of h2oml rf. Most of the options available in h2oml rf

are also supported in h2oml gbm. Currently, the only option that h2oml rf supports but h2oml gbm does

not is predsampvalue(). Conversely, the options loss(), monotone(), lrate(), lratedecay(),
and predsamprate() are supported by h2oml gbm but not by h2oml rf. If you have already read the

examples presented in [H2OML] h2oml gbm, then the discussions of command syntax in the examples

below might seem repetitive because the two commands are similar, but we use h2oml rf instead of the

corresponding h2oml gbm commands in this entry.

The examples are presented under the following headings.

Example 1: Random forest binary classification using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Multiclass classification and model performance

Examples 1 through 4 demonstrate random forest binary classification, but their discussion applies to

all h2oml rf commands. Example 5 demonstrates random forest multiclass classification. Detailed steps

for tuning a random forest model are provided in example 10 in [H2OML] h2oml.

Example 1: Random forest binary classification using default settings
For demonstration purposes, we start with random forest binary classification using the default set-

tings. In practice, however, you would rarely use the default settings because the performance of the

model is improved during training by specifying options that allow optimization or tuning of hyperpa-

rameters.

Consider the social pressure dataset, socialpressure, borrowed from Gerber, Green, and Larimer

(2008), which examines whether social pressure can be used to increase voter turnout in elections in

the United States. The data on voting behavior were gathered from Michigan before the August 2006

primary election using a large mailing campaign.

https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaccuracy
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaucpr
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfdefault
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfvalid
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfcv
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfuser
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfexmclass
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexsix
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
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We start by opening the dataset and then putting the data into an H2O frame, Recall that h2o init ini-

tiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe
change makes the specified frame the current H2O frame. For details, see Prepare your data for H2O

machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r19/socialpressure
(Social pressure data)
. h2o init
(output omitted )

. _h2oframe put, into(social)
Progress (%): 0 100
. _h2oframe change social

We use random forest binary classification of the response voted on predictors gender, g2000,
g2002, p2000, p2004, treatment, and age, and we specify the h2orseed(19) option for reproducibil-

ity. For convenience, we introduce a global macro predictors that stores the predictors.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml rfbinclass voted $predictors, h2orseed(19)
Progress (%): 0 3.9 7.9 36.0 81.9 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: social Training = 229,461
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 12 No. of bins cat. = 1,024
avg = 18.2 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .5740521
Mean class error .3958885

AUC .6704081
AUCPR .4669581

Gini coefficient .3408163
MSE .1952073

RMSE .4418227

The header provides information about themodel characteristics and data. The Frame section contains
information about the H2O training frame. In this example, our training frame is social with 229,461

observations. The Model parameters portion reports the information about hyperparameters. Multiple

values are reported for some hyperparameters. For example, there are two values for the number of trees.

One reports the number of trees as specified by the user. In our case, it is the default 50. The actual
value shows the number of trees actually used during training. These numbers may differ when an early

stopping rule is applied such as when the stop() option is specified. Similarly, for Tree depth, there
are four values. Input max reports the user-specified value, and min and max report the actual minimum

andmaximum depths achieved during training. The last twomay be different from the default value of 20

https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesPrepareyourdataforH2OmachinelearninginStata
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesPrepareyourdataforH2OmachinelearninginStata
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2Osetup
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because maxdepth() enforces a possible maximum depth the tree can achieve, but the method can stop

splitting earlier. The Metric summary table reports the seven classification performance metrics for the

training frame. In general, metrics values are used to compare different models. Depending on whether

the method implements regression, binary classification, or multiclass classification, the reported metrics

change. For the definition of metrics, see [H2OML] metric option.

Even though the above output is for binary classification, a similar interpretation applies for regres-

sion and multiclass classification using the h2oml rfregress and h2oml rfmulticlass commands,

respectively.

Example 2: Using validation data and early stopping
Example 1 illustrates the simple use of the h2oml rfbinclass command. In practice, we want a

model that minimizes overfitting. Aswe discussed inModel selection inmachine learning in [H2OML] In-

tro, there are two main approaches to check for overfitting: by using a validation dataset or by cross-

validation. The former is recommended when the number of observations is large and the latter otherwise

(see example 3).

Continuing with example 1, we use the h2oframe split command to randomly split the social
frame into a training frame (80% of observations) and validation frame (20% of observations), which we

named train and valid, respectively. We also change the current frame to train.

. _h2oframe split social, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

We now use the validframe() option with h2oml rfbinclass to specify the validation frame:

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
Progress (%): 0 14.0 30.0 43.9 56.0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .5744728 .5723461
Mean class error .3955656 .3970816

AUC .6696099 .6725455
AUCPR .4661055 .4700511

Gini coefficient .3392199 .345091
MSE .1954345 .1943139

RMSE .4420798 .4408105

https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfdefault
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesModelselectioninmachinelearning
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfcv
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Compared with example 1, the output contains additional information about the validation frame.

There are 183,607 training and 45,854 validation observations. The important information here is the

performance metrics for the validation frame, the Validation column of the Metric summary table.

The validation frame is used during tuning to select the best model and control for overfitting. See

example 10 in [H2OML] h2oml and example 5 in [H2OML] h2oml gbm for tuning.

In some cases, we can greatly improve the generalization of the model, that is, improve model predic-

tion on the new testing dataset, by using early stopping. Early stopping allows you to stop adding trees

when the metric computed on the validation sample (or on the cross-validation sample if the cv[ () ] op-
tion was specified) does not improve after a prespecified number of iterations. This prevents overfitting.

In this example, we use stop(5) to halt the training of random forest when the stopping metric does not

improve after 5 iterations. By default, the stopping metric is Log loss. For reproducibility, we specify
the scoreevery() option together with the stop() option. The scoreevery() option controls how

frequently the metric score is updated. For example, scoreevery(1) means the score is updated after

adding each tree to the ensemble. For details, see [H2OML] H2O reproducibility.

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
> stop(5) scoreevery(1)
Progress (%): 0 21.9 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 182,945
Validation: valid Validation = 45,854

Model parameters
Number of trees = 50

actual = 12
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 16.8 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: Log loss Tolerance = .001
Metric summary

Metric Training Validation

Log loss .5771652 .5735485
Mean class error .4003924 .398497

AUC .6640448 .6712069
AUCPR .4583645 .468647

Gini coefficient .3280896 .3424138
MSE .1964515 .1948558

RMSE .4432285 .4414248

Note: Metric is scored after every tree.

We see several differences compared with the first output in this example. First, as expected, now the

actual number of trees is less than the specified number of trees (12 versus 50). In addition, the log-loss

metric for both the training frame and validation frame slightly increased, which means early stopping

might not be beneficial for the current model.

https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfdefault
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexsix
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmtune
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbm
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility


h2oml rf — Random forest for regression and classification 15

Example 3: Using cross-validation
In this example, we illustrate the use of h2oml rfbinclass with the default parameters and cross-

validation.

Continuing with example 2, we keep the frame train as our current training data. In the h2oml
rf commands, cross-validation is performed by specifying the cv() option. This option supports three

methods for folds assignment: random, modulo, and stratified. The random method is the default and

is preferred with large datasets. Here, to demonstrate, we use 5-fold cross-validation with modulo fold

assignment, which assigns each observation to a fold based on the modulo operation. We type

. h2oml rfbinclass voted $predictors, cv(5, modulo) h2orseed(19)
Progress (%): 0 10.6 21.3 30.6 39.3 62.0 83.3 83.3 90.6 98.6 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation = 183,607

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5744728 .5741153
Mean class error .3955656 .396895

AUC .6696099 .6706381
AUCPR .4661055 .4675035

Gini coefficient .3392199 .3412763
MSE .1954345 .1953061

RMSE .4420798 .4419344

The output now provides information about the cross-validation assignment method, the number of

folds, and, in the second column of the Metric summary table, the cross-validated metrics.

The three fold-assignment methods are useful when the data are i.i.d. If the dataset requires a specific

grouping for cross-validation, then a new categorical variable can be created and specified in the cv(col-
name) option. Random forest then uses those variable values to split the data into folds. To demonstrate,

in our H2O frame, we generate a new column named foldvar, which contains a hypothetical grouping
for the fold assignment.

. _h2oframe generate foldvar = 1

. _h2oframe replace foldvar = 2 in 20/35

. _h2oframe replace foldvar = 3 in 36/63

. _h2oframe factor foldvar, replace

https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesk-foldcross-validation
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesk-foldcross-validation
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfvalid
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The last command converts the type of foldvar into H2O’s enum type, which is required by the cv()
option. Now we can perform cross-validation with the fold assignment determined by foldvar.

. h2oml rfbinclass voted $predictors, cv(foldvar) h2orseed(19)
Progress (%): 0 4.5 20.9 37.0 56.4 75.0 75.0 85.5 97.0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation: foldvar Cross-validation = 183,607
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5744728 .6689446
Mean class error .3955656 .4134973

AUC .6696099 .6015317
AUCPR .4661055 .3785627

Gini coefficient .3392199 .2030635
MSE .1954345 .2243841

RMSE .4420798 .473692
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Example 4: User-specified hyperparameters
In examples 2 and 3, we used, respectively, validation and cross-validation with default values for

all hyperparameters. Continuing with example 2, suppose we now want to try some specific values of

several hyperparameters (the number of trees, predictor sampling value, and predictor sampling rate) by

including, respectively, the ntrees(50), predsampvalue(3), and samprate(0.7) options.

. h2oml rfbinclass voted $predictors, cv(5, modulo) h2orseed(19)
> ntrees(50) predsampvalue(3) samprate(0.7)
Progress (%): 0 6.6 15.0 22.3 28.9 41.9 59.6 77.9 83.3 83.3 89.3 95.3 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation = 183,607

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = 3

Input max = 20 Sampling rate = .7
min = 20 No. of bins cat. = 1,024
avg = 20.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5763545 .57595
Mean class error .3967958 .3973574

AUC .6651064 .6650558
AUCPR .4577942 .4583547

Gini coefficient .3302127 .3301117
MSE .1961533 .1961127

RMSE .442892 .4428462

The output is similar to previous examples, except that it now reports our specified values of 50

for the number of trees, 3 for the predictor sampling value, and 0.7 for the observation sampling rate.

Compared with example 3, all validation metrics improved. Although we specified our own parameter

values, in practice, these values are typically chosen by performing tuning. For example, see example 10

in [H2OML] h2oml.

https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfvalid
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfcv
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexsix
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
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Example 5: Multiclass classification and model performance
In this example, we show how to implement multiclass classification and which performance metrics

to use to measure the performance of the model. For this example, we will use a well-known iris dataset,

where the goal is to predict a class of iris plant. This dataset was used in Fisher (1936) and originally col-

lected by Anderson (1935). We start by initializing a cluster, opening the dataset in Stata, and importing

the dataset as an H2O frame.

. h2o init
(output omitted )

. use https://www.stata-press.com/data/r19/iris
(Iris data)
. _h2oframe put, into(iris)

We then split the data into training and validation frames, with 80% of observations in the training

frame, and use the training frame as our current frame.

. _h2oframe split iris, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

For convenience, we define a global macro predictors to store the names of the predictors. Next we
run random forest multiclass classification using 500 trees and default values for other hyperparameters.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, validframe(valid) h2orseed(19)
> ntrees(500)
Progress (%): 0 28.2 61.1 86.5 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.4 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .1128858 .0952996
Mean class error .0487805 .037037

MSE .0356783 .0307455
RMSE .1888871 .1753439

The output is almost identical to the output for the regression we described in detail in examples 1

and 2, except we have different performance metrics.

https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionSyntaxmulticlass_metric
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfdefault
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrfRemarksandexamplesrfvalid
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For computing and reportingAUC andAUCPRmetrics after themulticlass classification, see example 6.

Even though the example is for the GBM, similar steps apply for the random forest.

Stored results
h2oml rf stores the following in e():
Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes (with classification)

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(auc) 1 if auc; 0 otherwise (with multiclass classification)

e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise (with classification)

e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfregress, h2oml rfbinclass, or h2oml rfmulticlass
e(cmdline) command as typed

e(subcmd) rfregress, rfbinclass, or rfmulticlass
e(method) randomforest
e(method type) regression or classification
e(class type) binary or multiclass (with classification)

e(method full name) full method name

e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmmulti
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e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Methods and formulas
For methods and formulas for random forest implementation, see https://docs.h2o.ai/h2o/latest-

stable/h2o-docs/data-science/drf.html. For a mapping of h2oml rf option names to the H2O options, see

[H2OML] H2O option mapping.
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