h2omlexplore — Explore models after grid search				
Description	Quick start	Menu	Syntax	
Remarks and examples	Stored results	Reference	Also see	

Description

h2omlexplore allows you to compare models with different hyperparameter configurations after h2omlestat gridsummary. In the process of tuning hyperparameters with h2oml gbm and h2oml rf, you can use h2omlestat gridsummary to report the specified metric for different hyperparameter configurations. h2omlexplore allows you to further explore a few selected models by reporting several performance metrics.

Quick start

After performing multiclass classification and obtaining the grid-search summary, view the performance metrics of the models with IDs 2, 4, and 8

h2oml rfmulticlass y1 x1-x20, ntrees(10(5)100) maxdepth(3(1)10) h2omlestat gridsummary h2omlexplore id = 248

Menu

Statistics > H2O machine learning

Syntax

h2omlexplore id = # | numlist

where # is a grid ID from h2omlestat gridsummary corresponding to a model with the desired hyperparameter configuration, and *numlist* is a list of grid IDs.

Remarks and examples

Building a machine learning model that generalizes well to new data involves choosing an appropriate method and selecting a model by tuning hyperparameters. We can perform a grid search using gradient boosting and random forest methods and then use h2omlestat gridsummary to report the hyperparameter configurations that achieve the top performance based on the specified metric. In some cases, you may decide to choose the best-performing model reported in h2omlestat gridsummary; in other cases, you may want to explore other well-performing models further, which you can do using h2omlexplore. With h2omlexplore, you can report several performance metrics for models with different hyperparameter configurations.

Example 1: Exploring different models

In example 1 of [H2OML] **h2omlselect**, we used the social pressure dataset (Gerber, Green, and Larimer 2008) to implement a hyperparameter tuning, and we used the h2omlselect command to select the second-best model, which was comparably less complex than the best model. In that example, our decision was based on the area under the precision–recall curve (AUCPR) metric. Suppose now we want to compare those two models based on different performance metrics to make sure that the same pattern holds.

We start by opening the social pressure dataset in Stata and then putting the data into an H2O frame. Recall that h2o init initiates an H2O cluster, _h2oframe put loads the current Stata dataset in an H2O frame, and _h2oframe change makes the specified frame the current H2O frame. We use the _h2oframe split command to randomly split the social frame into a training frame (80% observations) and a validation frame (20% of observations), which we name train and valid, respectively. We also change the current frame to train. For details, see *Prepare your data for H2O machine learning in Stata* in [H2OML] h2oml and see [H2OML] H2O setup.

```
. use https://www.stata-press.com/data/r19/socialpressure
(Social pressure data)
. h2o init
 (output omitted)
. _h2oframe _put, into(social)
Progress (%): 0 100
. _h2oframe _split social, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe _change train
```

We define a global macro, predictors, to store the names of our predictors. We perform random forest binary classification, and we specify the maxdepth() and predsampvalue() options to tune the maximum tree depth and predictor sampling rate hyperparameters. For illustration, we use the AUCPR metric for tuning.

```
. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age
. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
> ntrees(200) maxdepth(3(3)12) predsampvalue(-1, 1(2)8) tune(metric(aucpr))
Progress (%): 0 100
Random forest binary classification using H20
Response: voted
Frame: Number of observations:
Training: train Training = 183,607
Validation: valid Validation = 45,854
Tuning information for hyperparameters
Method: Cartesian
Metric: AUCPR
```

Hyperparameters	Minimum	Grid values Maximum	Selected
Max. tree depth	3	12	6
Pred. sampling value	-1	7	7

```
Model parameters
```

```
Number of trees = 200
actual = 200
Tree depth:
Input max = 6
min = 6
avg = 6.0
max = 6
Min. obs. leaf split = 1
```

Pred. sampling value	=	7
Sampling rate	=	.632
No. of bins cat.	=	1,024
No. of bins root	=	1,024
No. of bins cont.	=	20
Min. split thresh.	=	.00001

Metric summary

Metric	Training	Validation
Log loss Mean class error AUC AUCPR Gini coefficient MSE RMSE	.5724664 .3935492 .6705554 .4658395 .3411109 .1946923 .4412395	.5705699 .3943867 .6734867 .4725543 .3469735 .1935647 .4399599

Next we obtain the grid-search summary by using the h2omlestat gridsummary command. This command lists the configuration of the hyperparameters we are tuning ranked by AUCPR.

. h2d	omlestat gr	idsummary	
Grid	summary us	ing H2O	
ID	Max. tree depth	Pred. sampling value	AUCPR
1	6	7	.4725543
2	6	5	.4723736
3	6	3	.4714554
4	9	3	.4712076
5	6	-1	.4708614
6	12	-1	.4706606
7	9	-1	.4705794
8	9	5	.4689799
9	9	7	.4682457
10	9	1	.4674565

. .

To compare the first two models based on other metrics, we use the h2omlexplore command.

. h2omlexplore id = 1 2

Performance metric summary using H2O Training frame : train Validation frame: valid

	Model in	ndex
	1	2
Training		
No. of observations	183,607	183,607
Log loss	.5724664	.57237
Mean class error	.3935492	.3979593
AUC	.6705554	.671146
AUCPR	.4658395	.4670326
Gini coefficient	.3411109	.342292
MSE	.1946923	.1946602
RMSE	.4412395	.4412031
Validation		
No. of observations	45,854	45,854
Log loss	.5705699	.5704978
Mean class error	.3943867	.3945857
AUC	.6734867	.6737527
AUCPR	.4725543	.4723736
Gini coefficient	.3469735	.3475054
MSE	. 1935647	.1935627
RMSE	. 4399599	.4399576

The first section of the output corresponds to the training metrics, while the second presents the validated metrics of the specified models. For each of the metrics, we see that the difference between the best and second-best models is not substantial. Therefore, the decision to switch to the less complex model may be justified.

Stored results

h2omlexplore stores the following in r():		
Macros r(id)	model IDs	
Matrices r(table)	performance metrics for selected models	

Reference

Gerber, A. S., D. P. Green, and C. W. Larimer. 2008. Social pressure and voter turnout: Evidence from a large-scale field experiment. American Political Science Review 102: 33–48. https://doi.org/10.1017/S000305540808009X.

Also see

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.