Description

graph box draws vertical box plots. In a vertical box plot, the \(y \) axis is numerical, and the \(x \) axis is categorical.

\[
\text{. graph box } y1 \text{ y2, over(cat_var)}
\]

The encoding and the words used to describe the encoding are

- **outside value**
- **adjacent line**
- **whiskers**
- **box**
- **whiskers**
- **adjacent line**

graph hbox draws horizontal box plots. In a horizontal box plot, the numerical axis is still called the \(y \) axis, and the categorical axis is still called the \(x \) axis, but \(y \) is presented horizontally, and \(x \) vertically.
Quick start

Box plot of v1

```
graph box v1
```

Add boxes for v2 and v3

```
graph box v1 v2 v3
```

As above, but as a horizontal box plot

```
graph hbox v1 v2 v3
```

Box plots for v1 and v2 at each level of categorical variable catvar1

```
graph box v1 v2, over(catvar1)
```

Add a box showing the overall box plots of v1 and v2 over all levels of catvar1

```
graph box v1 v2, over(catvar1, total)
```

Boxes for each level of catvar1 grouped by levels of catvar2

```
graph box v1, over(catvar1) over(catvar2)
```

As above, but with levels of catvar2 grouped by levels of catvar1

```
graph box v1, over(catvar2) over(catvar1)
```

A separate graph area for each level of catvar2

```
graph box v1 v2, by(catvar2)
```

As above, but with separate boxes for each category of catvar1 within each graph area

```
graph box v1, over(catvar1) by(catvar2)
```

Change the labels for the boxes to “Group 1” and “Group 2”

```
graph box v1, over(catvar1, relabel(1 "Group 1" 2 "Group 2"))
```
Menu

Graphics > Box plot

Syntax

```
graph box yvars [if] [in] [weight] [, options]
```

```
graph hbox yvars [if] [in] [weight] [, options]
```

where `yvars` is a `varlist`

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group_options</code></td>
<td>groups over which boxes are drawn</td>
</tr>
<tr>
<td><code>yvar_options</code></td>
<td>variables that are the boxes</td>
</tr>
<tr>
<td><code>boxlook_options</code></td>
<td>how the boxes look</td>
</tr>
<tr>
<td><code>legending_options</code></td>
<td>how variables are labeled</td>
</tr>
<tr>
<td><code>axis_options</code></td>
<td>how numerical <code>y</code> axis is labeled</td>
</tr>
<tr>
<td><code>title_and_other_options</code></td>
<td>titles, added text, aspect ratio, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>group_options</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>over(varname[, over_subopts])</code></td>
<td>categories; option may be repeated</td>
</tr>
<tr>
<td><code>nofill</code></td>
<td>omit empty categories</td>
</tr>
<tr>
<td><code>missing</code></td>
<td>keep missing value as category</td>
</tr>
<tr>
<td><code>allcategories</code></td>
<td>include all categories in the dataset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>yvar_options</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ascategory</code></td>
<td>treat <code>yvars</code> as first <code>over()</code> group</td>
</tr>
<tr>
<td><code>asyvars</code></td>
<td>treat first <code>over()</code> group as <code>yvars</code></td>
</tr>
<tr>
<td><code>cw</code></td>
<td>calculate variable statistics omitting missing values of any variable</td>
</tr>
</tbody>
</table>
boxlook_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nooutsides</td>
<td>do not plot outside values</td>
</tr>
<tr>
<td>box(#, barlook_options)</td>
<td>look of #th box</td>
</tr>
<tr>
<td>pcycle(#)</td>
<td>box styles before pstyles recycle</td>
</tr>
<tr>
<td>intensity[*]#</td>
<td>intensity of fill</td>
</tr>
<tr>
<td>lvlensity[*]#</td>
<td>intensity of outline</td>
</tr>
<tr>
<td>medtype(line</td>
<td>cline</td>
</tr>
<tr>
<td>medline(line_options)</td>
<td>look of line if medtype(cline)</td>
</tr>
<tr>
<td>medmarker(marker_options)</td>
<td>look of marker if medtype(marker)</td>
</tr>
<tr>
<td>cwhiskers</td>
<td>use custom whiskers</td>
</tr>
<tr>
<td>lines(line_options)</td>
<td>look of custom whiskers</td>
</tr>
<tr>
<td>alsize(#)</td>
<td>width of adjacent line; default is 67</td>
</tr>
<tr>
<td>capsize(#)</td>
<td>height of cap on adjacent line; default is 0</td>
</tr>
<tr>
<td>marker(#, marker_options marker_label_options)</td>
<td>look of #th marker and label for outside values</td>
</tr>
<tr>
<td>outergap[*]#</td>
<td>gap between edge and first box and between last box and edge</td>
</tr>
<tr>
<td>boxgap(#)</td>
<td>gap between boxes; default is 33</td>
</tr>
</tbody>
</table>

legending_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>legend_options</td>
<td>control of yvar legend</td>
</tr>
<tr>
<td>nolabel</td>
<td>use yvar names, not labels, in legend</td>
</tr>
<tr>
<td>yvaroptions(over_subopts)</td>
<td>over_subopts for yvars; seldom specified</td>
</tr>
<tr>
<td>showyvars</td>
<td>label yvars on x axis; seldom specified</td>
</tr>
</tbody>
</table>

axis_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yalternate</td>
<td>put numerical y axis on right (top)</td>
</tr>
<tr>
<td>xalternate</td>
<td>put categorical x axis on top (right)</td>
</tr>
<tr>
<td>yreverse</td>
<td>reverse y axis</td>
</tr>
<tr>
<td>axis_scale_options</td>
<td>y-axis scaling and look</td>
</tr>
<tr>
<td>axis_label_options</td>
<td>y-axis labeling</td>
</tr>
<tr>
<td>ytitle(...)</td>
<td>y-axis titling</td>
</tr>
</tbody>
</table>
title_and_other_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>text(...)</td>
<td>add text on graph; x range [0, 100]</td>
</tr>
<tr>
<td>yline(...)</td>
<td>add y lines to graph</td>
</tr>
<tr>
<td>aspect_option</td>
<td>constrain aspect ratio of plot region</td>
</tr>
<tr>
<td>std_options</td>
<td>titles, graph size, saving to disk</td>
</tr>
<tr>
<td>by(varlist, ...)</td>
<td>repeat for subgroups</td>
</tr>
</tbody>
</table>

The `over_subopts`—used in `over(varname, over_subopts)` and, on rare occasion, in `yvaroptions(over_subopts)”—are

<table>
<thead>
<tr>
<th>over_subopts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>add total group</td>
</tr>
<tr>
<td>relabel(# "text" ...)</td>
<td>change axis labels</td>
</tr>
<tr>
<td>label(cat_axis_label_options)</td>
<td>rendition of labels</td>
</tr>
<tr>
<td>axis(cat_axis_line_options)</td>
<td>rendition of axis line</td>
</tr>
<tr>
<td>gap[]#</td>
<td>gap between boxes within <code>over()</code> category</td>
</tr>
<tr>
<td>sort(varname)</td>
<td>put boxes in prespecified order</td>
</tr>
<tr>
<td>sort(#)</td>
<td>put boxes in median order</td>
</tr>
<tr>
<td>descending</td>
<td>reverse default or specified box order</td>
</tr>
</tbody>
</table>

`aweights, fweights, and pweights` are allowed; see [U] 11.1.6 `weight` and see note concerning weights in [D] `collapse`.

Options

Options are presented under the following headings:

- **group_options**
- **yvar_options**
- **boxlook_options**
- **legending_options**
- **axis_options**
- **title_and_other_options**

Suboptions for use with over() and yvaroptions()

group_options

`over(varname[, over_subopts])` specifies a categorical variable over which the `yvars` are to be repeated. `varname` may be string or numeric. Up to two `over()` options may be specified when multiple `yvars` are specified, and up to three `over()`s may be specified when one `yvar` is specified; see Examples of syntax under Remarks and examples below.

`nofill` specifies that missing subcategories be omitted. See the description of the `nofill` option in [G-2] `graph bar`.

Note

Some options have suboptions that are used in `over()` and `yvaroptions()`. These suboptions are listed in the `over_subopts` and `yvar_subopts` sections. For example, the `std_options` option has suboptions `titles`, `graph size`, and `saving to disk`. These suboptions can be used in `over()` and `yvaroptions()` to specify the desired options. The `group_options` section describes the `over()` option, which is used to specify a categorical variable over which the `yvars` are to be repeated. The `yvar_options` section describes the `yvaroptions()` option, which is used to specify options for a single `yvar`. The `boxlook_options` section describes the `boxlook()` option, which is used to specify the appearance of the box plots. The `legending_options` section describes the `legending()` option, which is used to specify the legend for the box plots. The `axis_options` section describes the `axis()` option, which is used to specify the appearance of the axes. The `title_and_other_options` section describes the `title()` and `other()` options, which are used to specify the title and other options for the box plots.
missing specifies that missing values of the \texttt{over()} variables be kept as their own categories, one for ., another for .a, etc. The default is to ignore such observations. An \texttt{over()} variable is considered to be missing if it is numeric and contains a missing value or if it is string and contains “”.

\texttt{allcategories} specifies that all categories in the entire dataset be retained for the \texttt{over()} variables. When \texttt{if} or \texttt{in} is specified without \texttt{allcategories}, the graph is drawn, completely excluding any categories for the \texttt{over()} variables that do not occur in the specified subsample. With the \texttt{allcategories} option, categories that do not occur in the subsample still appear in the legend, and zero-height bars are drawn where these categories would appear. Such behavior can be convenient when comparing graphs of subsamples that do not include completely common categories for all \texttt{over()} variables. This option has an effect only when \texttt{if} or \texttt{in} is specified or if there are missing values in the variables. \texttt{allcategories} may not be combined with \texttt{by()}.

\texttt{yvar options}

\texttt{ascategory} specifies that the \texttt{yvars} be treated as the first \texttt{over()} group. The important effect of this is to move the captioning of the variables from the legend to the categorical \texttt{x} axis. See the description of \texttt{ascategory} in [G-2] \texttt{graph bar}.

\texttt{asyvars} specifies that the first \texttt{over()} group be treated as \texttt{yvars}. The important effect of this is to move the captioning of the first \texttt{over} group from the categorical \texttt{x} axis to the legend. See the description of \texttt{asyvars} in [G-2] \texttt{graph bar}.

\texttt{cw} specifies casewise deletion. If \texttt{cw} is specified, observations for which any of the \texttt{yvars} are missing are ignored. The default is to calculate statistics for each box by using all the data possible.

\texttt{boxlook options}

\texttt{noutside} specifies that the outside values not be plotted or used in setting the scale of the \texttt{y} axis. \texttt{box(#, barlook_options)} specifies the look of the \texttt{yvar} boxes. \texttt{box(1, \ldots)} refers to the box associated with the first \texttt{yvar}, \texttt{box(2, \ldots)} refers to the box associated with the second, and so on. You specify \texttt{barlook_options}. Those options are borrowed from \texttt{graph bar} for boxes. The most useful \texttt{barlook_option} is \texttt{color(colorstyle)}, which sets the color and opacity of the box. For instance, you might specify \texttt{box(1, color(green))} to make the box associated with the first \texttt{yvar} green. See [G-4] \texttt{colorstyle} for a list of color choices and see [G-3] \texttt{barlook_options} for information on the other \texttt{barlook_options}.

\texttt{pcycle(#)} specifies how many variables are to be plotted before the \texttt{pstyle} (see [G-4] \texttt{pstyle}) of the boxes for the next variable begins again at the \texttt{pstyle} of the first variable—\texttt{p1box} (with the boxes for the variable following that using \texttt{p2box} and so on). Put another way: \# specifies how quickly the look of boxes is recycled when more than \# variables are specified. The default for most schemes is \texttt{pcycle(15)}.

\texttt{intensity(#)} and \texttt{intensity(*#)} specify the intensity of the color used to fill the inside of the box. \texttt{intensity(#)} specifies the intensity, and \texttt{intensity(*#)} specifies the intensity relative to the default. By default, the box is filled with the color of its border, attenuated. Specify \texttt{intensity(*#)}, \# < 1, to attenuate it more and specify \texttt{intensity(*#)}, \# > 1, to amplify it.
Specify `intensity(0)` if you do not want the box filled at all. If you are using a scheme that draws the median line in the background color such as `s2mono`, also specify option `medtype(line)` to change the median line to be in the color of the outline of the box.

`lintensity(#)` and `lintensity(*#)` specify the intensity of the line used to outline the box. `lintensity(#)` specifies the intensity, and `lintensity(*#)` specifies the intensity relative to the default.

By default, the box is outlined at the same intensity at which it is filled or at an amplification of that, which depending on your chosen scheme; see [G-4] Schemes intro. If you want the box outlined in the darkest possible way, specify `intensity(255)`. If you wish simply to amplify the outline, specify `intensity(*#), # > 1`, and if you wish to attenuate the outline, specify `intensity(*#), # < 1`.

`medtype(), medline(), and medmarker()` specify how the median is to be indicated in the box.

`medtype(line)` is the default. A line is drawn across the box at the median. Here options `medline()` and `medmarker()` are irrelevant.

`medtype(cline)` specifies a custom line be drawn across the box at the median. The default custom line is usually a different color. You can, however, specify option `medline(line_options)` to control exactly how the line is to look; see [G-3] line_options.

`medtype(marker)` specifies a marker be placed in the box at the median. Here you may also specify option `medmarker(marker_options)` to specify the look of the marker; see [G-3] marker_options.

`cwhiskers, lines(line_options), alsize(#), and capsize(#)` specify the look of the whiskers.

cwhiskers specifies that custom whiskers are desired. The default custom whiskers are usually dimmer, but you may specify option `lines(line_options)` to specify how the custom whiskers are to look; see [G-3] line_options.

`alsize(#)` and `capsize(#)` specify the width of the adjacent line and the height of the cap on the adjacent line. You may specify these options whether or not you specify cwhiskers. `alsize()` and `capsize()` are specified in percentage-of-box-width units; the defaults are `alsize(67)` and `capsize(0)`. Thus the adjacent lines extend two-thirds the width of a box and, by default, have no caps. Caps refer to whether the whiskers look like

[this]

or this

If you want caps, try `capsize(5)`.

`marker(#, marker_options marker_label_options)` specifies the marker and label to be used to display the outside values. See [G-3] marker_options and [G-3] marker_label_options.

`outergap(*#)` and `outergap(#)` specify the gap between the edge of the graph to the beginning of the first box and the end of the last box to the edge of the graph.

`outergap(*#)` specifies that the default be modified. Specifying `outergap(*1.2)` increases the gap by 20%, and specifying `outergap(*.8)` reduces the gap by 20%.

`outergap(#)` specifies the gap as a percentage-of-box-width units. `outergap(50)` specifies that the gap be half the box width.
boxgap(#) specifies the gap to be left between yvar boxes as a percentage-of-box-width units. The default is boxgap(33).

boxgap() affects only the yvar boxes. If you want to change the gap for the first, second, or third over() group, specify the over_subopt gap() inside the over() itself; see Suboptions for use with over() and yvaroptions() below.

legending_options

legend_options allows you to control the legend. If more than one yvar is specified, a legend is produced. Otherwise, no legend is needed because the over() groups are labeled on the categorical x axis. See [G-3] legend_options, and see Treatment of multiple yvars versus treatment of over() groups under Remarks and examples below.

nolabel specifies that, in automatically constructing the legend, the variable names of the yvars be used in preference to their labels.

yvaroptions(over_subopts) allows you to specify over_subopts for the yvars. This is seldom done.

showyvars specifies that, in addition to building a legend, the identities of the yvars be shown on the categorical x axis. If showyvars is specified, it is typical to also specify legend(off).

axis_options

yalternate and xalternate switch the side on which the axes appear.

Used with graph box, yalternate moves the numerical y axis from the left to the right; xalternate moves the categorical x axis from the bottom to the top.

Used with graph hbox, yalternate moves the numerical y axis from the bottom to the top; xalternate moves the categorical x axis from the left to the right.

If your scheme by default puts the axes on the opposite sides, then yalternate and xalternate reverse their actions.

yreverse specifies that the numerical y axis have its scale reversed so that it runs from maximum to minimum.

axis_scale_options specify how the numerical y axis is scaled and how it looks; see [G-3] axis_scale_options. There you will also see option xscale() in addition to yscale(). Ignore xscale(), which is irrelevant for box plots.

axis_label_options specify how the numerical y axis is to be labeled. The axis_label_options also allow you to add and suppress grid lines; see [G-3] axis_label_options. There you will see that, in addition to options ylabel(), ytick(), ..., ymtick(), options xlabel(), ..., xmtick() are allowed. Ignore the x*() options, which are irrelevant for box plots.

ytitle() overrides the default title for the numerical y axis; see [G-3] axis_title_options. There you will also find option xtitle() documented, which is irrelevant for box plots.
title_and_other_options

text() adds text to a specified location on the graph; see [G-3] added_text_options. The basic syntax of text() is

```
text(#_y #_x "text")
```

text() is documented in terms of twoway graphs. When used with box plots, the “numeric” x axis is scaled to run from 0 to 100.

yline() adds horizontal (box) or vertical (hbox) lines at specified y values; see [G-3] added_line_options. The xline() option, also documented there, is irrelevant for box plots. If your interest is in adding grid lines, see [G-3] axis_label_options.

aspect_option allows you to control the relationship between the height and width of a graph’s plot region; see [G-3] aspect_option.

std_options allow you to add titles, control the graph size, save the graph on disk, and much more; see [G-3] std_options.

by(varlist, ...) draws separate plots within one graph; see [G-3] by_option and see Use with by() under Remarks and examples below.

Suboptions for use with over() and yvaroptions()

total specifies that, in addition to the unique values of over(varname), a group be added reflecting all the observations. When multiple over()s are specified, total may be specified in only one of them.

relabel(# "text" ...) specifies text to override the default category labeling. See the description of the relabel() option in [G-2] graph bar for more information about this useful option.

label(cat_axis_label_options) determines other aspects of the look of the category labels on the x axis. Except for label(labcolor()) and label(labsize()), these options are seldom specified; see [G-3] cat_axis_label_options.

axis(cat_axis_line_options) specifies how the axis line is rendered. This is a seldom specified option. See [G-3] cat_axis_line_options.

gap(#) and gap(*#) specify the gap between the boxes in this over() group. gap(#) is specified in percentage-of-box-width units, so gap(67) means two-thirds the width of a box. gap(*#) allows modifying the default gap. gap(*1.2) would increase the gap by 20% and gap(*.8) would decrease the gap by 20%.

To understand the distinction between over(..., gap()) and option boxgap(), consider

```
. graph box before after, boxgap(...) over(sex, gap(...))
```

boxgap() sets the distance between the before and after boxes. over(...,gap()) sets the distance between the boxes for males and females. Similarly, in

```
. graph box before after, boxgap(...) over(sex, gap(...))
   over(agegrp, gap(...))
```

over(sex, gap()) sets the gap between males and females, and over(agegrp, gap()) sets the gap between age groups.
sort(varname) and sort(#) control how the boxes are ordered. See How boxes are ordered and Reordering the boxes under Remarks and examples below.

sort(varname) puts the boxes in the order of varname; see Putting the boxes in a prespecified order under Remarks and examples below.

sort(#) puts the boxes in order of their medians. # refers to the yvar number on which the ordering should be performed; see Putting the boxes in median order under Remarks and examples below.

descending specifies that the order of the boxes—default or as specified by sort()—be reversed.

Remarks and examples

Remarks are presented under the following headings:

- Introduction
- Examples of syntax
- Treatment of multiple yvars versus treatment of over() groups
- How boxes are ordered
- Reordering the boxes
- Putting the boxes in a prespecified order
- Putting the boxes in median order
- Use with by()
- Video example
- History

Also see [G-2] graph bar. Most of what is said there applies equally well to box plots.

Introduction

graph box draws vertical box plots:

```
. use https://www.stata-press.com/data/r16/bplong
   (fictional blood pressure data)
. graph box bp, over(when) over(sex)
    ytitle("Systolic blood pressure")
    title("Response to Treatment, by Sex")
    subtitle("(120 Preoperative Patients)"
             " "
    note("Source: Fictional Drug Trial, StataCorp, 2003")
```

![Box plot example](image)
graph hbox draws horizontal box plots:

```
use https://www.stata-press.com/data/r16/nlsw88, clear
(NLSW, 1988 extract)
graph hbox wage, over(ind, sort(1)) nooutside
  ytitle("")
  title("Hourly wage, 1988, woman aged 34–46", span)
  subtitle(""
```

Examples of syntax

Below we show you some `graph box` commands and tell you what each would do:

- `graph box bp`
 One big box showing statistics on blood pressure.

- `graph box bp_before bp_after`
 Two boxes, one showing average blood pressure before, and the other, after.

- `graph box bp, over(agegrp)`
 `#of_agegrp` boxes showing blood pressure for each age group.

- `graph box bp_before bp_after, over(agegrp)`
 `2×#of_agegrp` boxes showing blood pressure, before and after, for each age group. The grouping would look like this (assuming three age groups):

```
<table>
<thead>
<tr>
<th></th>
<th>agegrp 1</th>
<th>agegrp 2</th>
<th>agegrp 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
graph box bp, over(agegrp) over(sex)
{-#of_agegrps × #of_sexes boxes showing blood pressure for each age group, repeated for each sex. The grouping would look like this:

```
- - - - - -
age_1 age_2 age_3 age_1 age_2 age_3
males females
```

graph box bp, over(sex) over(agegrp)
Same as above, but ordered differently. In the previous example we typed over(agegrp) over(sex). This time, we reverse it:

```
- - - - - -
male female male female male female
age_1 age_2 age_3
```

graph box bp_before bp_after, over(agegrp) over(sex)
2 × #of_agegrps × #of_sexes boxes showing blood pressure, before and after, for each age group, repeated for each sex. The grouping would look like this:

```
- - - - - - - - - - - -
age_1 age_2 age_3 age_1 age_2 age_3
males females
```

Treatment of multiple yvars versus treatment of over() groups

Consider two datasets containing the same data but organized differently. The datasets contain blood pressure before and after an intervention. In the first dataset, the data are organized the wide way; each patient is an observation. A few of the data are

<table>
<thead>
<tr>
<th>patient</th>
<th>sex</th>
<th>agegrp</th>
<th>bp_before</th>
<th>bp_after</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>30-45</td>
<td>143</td>
<td>153</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>30-45</td>
<td>163</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>30-45</td>
<td>153</td>
<td>168</td>
</tr>
</tbody>
</table>
In the second dataset, the data are organized the long way; each patient is a pair of observations. The corresponding observations in the second dataset are

<table>
<thead>
<tr>
<th>patient</th>
<th>sex</th>
<th>agegrp</th>
<th>when</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>30-45</td>
<td>Before</td>
<td>143</td>
</tr>
<tr>
<td>1</td>
<td>Male</td>
<td>30-45</td>
<td>After</td>
<td>153</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>30-45</td>
<td>Before</td>
<td>163</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>30-45</td>
<td>After</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>30-45</td>
<td>Before</td>
<td>153</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>30-45</td>
<td>After</td>
<td>168</td>
</tr>
</tbody>
</table>

Using the first dataset, we might type

```
. use https://www.stata-press.com/data/r16/bpwide, clear
(fictional blood press data)
. graph box bp_before bp_after, over(sex)
```
Using the second dataset, we could type

```
. use https://www.stata-press.com/data/r16/bplong, clear
. graph box bp, over(when) over(sex)
```

The two graphs are virtually identical. They differ in that

<table>
<thead>
<tr>
<th></th>
<th>multiple yvars</th>
<th>over() groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>boxes different colors</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>boxes identified via . .</td>
<td>legend</td>
<td>axis label</td>
</tr>
</tbody>
</table>

Option `ascategory` will cause multiple yvars to be presented as if they were the first over() group, and option `asyvars` will cause the first over() group to be presented as if they were multiple yvars. Thus

```
. graph box bp, over(when) over(sex) asyvars
```

would produce the first chart and

```
. graph box bp_before bp_after, over(sex) ascategory
```

would produce the second.

How boxes are ordered

The default is to place the boxes in the order of the yvars and to order each over(varname) group according to the values of varname. Let us consider some examples:

```
graph box bp_before bp_after

Boxes appear in the order specified, bp_before and bp_after.
```

```
graph box bp, over(when)

Boxes are ordered according to the values of variable when.
```

If variable when is a numeric, the lowest when number comes first, followed by the next lowest, and so on. This is true even if variable when has a value label. Say that when = 1 has been labeled “Before” and when = 2, labeled “After”. The boxes will be in the order Before followed by After.
If variable \texttt{when} is a string, the boxes will be ordered by the sort order of the values of the variable (that is, alphabetically, but with capital letters placed before lowercase letters). If variable \texttt{when} contains “Before” and “After”, the boxes will be in the order After followed by Before.

\texttt{graph box bp_before bp_after, over(sex)}

Boxes appear in the order specified, \texttt{bp_before} and \texttt{bp_after}, and are repeated for each \texttt{sex}, which will be ordered as explained above.

\texttt{graph box bp_before bp_after, over(sex) over(agegrp)}

Boxes appear in the order specified, \texttt{bp_before} and \texttt{bp_after}, repeated for \texttt{sex} ordered on the values of variable \texttt{sex}, repeated for \texttt{agegrp} ordered on the values of variable \texttt{agegrp}.

\section*{Reordering the boxes}

There are two ways you may wish to reorder the boxes:

1. You want to control the order in which the elements of each \texttt{over()} group appear. String variable \texttt{when} might contain “After” and “Before”, but you want the boxes to appear in the order Before and After.

2. You wish to order the boxes according to their median values. You wish to draw the graph

\texttt{. graph box wage, over(industry)}

and you want the industries ordered by \texttt{wage}.

We will consider each of these desires separately.

\section*{Putting the boxes in a prespecified order}

You have drawn the graph

\texttt{. graph box bp, over(when) over(sex)}

Variable \texttt{when} is a string containing “Before” and “After”. You wish the boxes to be in that order.

To do that, you create a new numeric variable that orders the group as you would like:

\texttt{. generate order = 1 if when=="Before"}
\texttt{. replace order = 2 if when=="After"}

You may name the variable and create it however you wish, but be sure that there is a one-to-one correspondence between the new variable and the \texttt{over()} group’s values. You then specify \texttt{over()}’s \texttt{sort(varname)} option:

\texttt{. graph box bp, over(when, sort(order)) over(sex)}

If you want to reverse the order, you may specify the \texttt{descending} suboption:

\texttt{. graph box bp, over(when, sort(order) descending) over(sex)}

\section*{Putting the boxes in median order}

You have drawn the graph

\texttt{. graph hbox wage, over(industry)}

and now wish to put the boxes in median order, lowest first. You type

\texttt{. graph hbox wage, over(industry, sort(1))}
If you wanted the largest first, you would type
 . graph hbox wage, over(industry, sort(1) descending)

The 1 in sort(1) refers to the first (and here only) `yvar`. If you had multiple `yvars`, you might type
 . graph hbox wage benefits, over(industry, sort(1))

and you would have a chart showing `wage` and `benefits` sorted on `wage`. If you typed
 . graph hbox wage benefits, over(industry, sort(2))

the graph would be sorted on `benefits`.

Use with by()

`graph box` and `graph hbox` may be used with `by()`, but in general, you will want to use `over()` in preference to `by()`. Box charts are explicitly categorical and do an excellent job of presenting summary statistics for multiple groups in one chart.

A good use of `by()`, however, is when the graph would otherwise be long. Consider the graph
 . use https://www.stata-press.com/data/r16/nlsw88, clear
 (NLSW, 1988 extract)
 . graph hbox wage, over(ind) over(union)

In the above graph, there are 12 industry categories and two union categories, resulting in 24 separate boxes. The graph, presented at normal size, would be virtually unreadable. One way around that problem would be to make the graph longer than usual,
 . graph hbox wage, over(ind) over(union) ysize(7)

See *Charts with many categories* in [G-2] `graph bar` for more information about that solution. The other solution would be to introduce union as a `by()` category rather than an `over()` category:
 . graph hbox wage, over(ind) by(union)
Below we do precisely that, adding some extra options to produce a good-looking chart:

```stata
    . graph hbox wage, over(ind, sort(1)) nooutside
    ytitle(""")
    by(
        union,
        title("Hourly wage, 1988, woman aged 34-46", span)
        subtitle(" ")
        note("Source: 1988 data from NLS, U.S. Dept. of Labor, 
        Bureau of Labor Statistics", span)
    )
```

The title options were specified inside the `by()` so that they would not be applied to each graph separately; see [G-3] _by_option_.

Video example

Box plots in Stata

History

Box plots have been used in geography and climatology, under the name “dispersion diagrams”, since at least 1933; see Crowe (1933). His figure 1 shows all the data points, medians, quartiles, and octiles by month for monthly rainfalls for Glasgow, 1868–1917. His figure 2, a map of Europe with several climatic stations, shows monthly medians, quartiles, and octiles.

Methods and formulas

For a description of box plots, see Cleveland (1993, 25–27).

Summary statistics are obtained from `summarize`; see [R] _summarize_.

The upper and lower adjacent values are as defined by Tukey (1977):

Let _x_ represent a variable for which adjacent values are being calculated. Define _x_(i) as the _i_ th ordered value of _x_, and define _x_[25] and _x_[75] as the 25th and 75th percentiles.
Define U as $x_{[75]} + \frac{3}{2}(x_{[75]} - x_{[25]})$. The upper adjacent value is defined as x_i, such that $x_{(i)} \leq U$ and $x_{(i+1)} > U$.

Define L as $x_{[25]} - \frac{3}{2}(x_{[75]} - x_{[25]})$. The lower adjacent value is defined as x_i, such that $x_{(i)} \geq L$ and $x_{(i-1)} < L$.

References

Also see

[G-2] *graph bar* — Bar charts

[R] *lv* — Letter-value displays

[R] *summarize* — Summary statistics