Trigonometric functions

Contents

- **acos(x)**: the radian value of the arccosine of \(x \)
 - **Domain**: \(-1\) to 1
 - **Range**: 0 to \(\pi \)

- **acosh(x)**: the inverse hyperbolic cosine of \(x \)
 - \(\text{acosh}(x) = \ln(x + \sqrt{x^2 - 1}) \)
 - **Domain**: 1 to 8.9e+307
 - **Range**: 0 to 709.77

- **asin(x)**: the radian value of the arcsine of \(x \)
 - **Domain**: \(-1\) to 1
 - **Range**: \(-\pi/2\) to \(\pi/2 \)

- **asinh(x)**: the inverse hyperbolic sine of \(x \)
 - \(\text{asinh}(x) = \ln(x + \sqrt{x^2 + 1}) \)
 - **Domain**: \(-8.9e+307\) to 8.9e+307
 - **Range**: \(-709.77\) to 709.77

- **atan(x)**: the radian value of the arctangent of \(x \)

- **atan2(y, x)**: the radian value of the arctangent of \(y/x \), where the signs of the parameters \(y \) and \(x \) are used to determine the quadrant of the answer

- **atanh(x)**: the inverse hyperbolic tangent of \(x \)

- **cos(x)**: the cosine of \(x \), where \(x \) is in radians

- **cosh(x)**: the hyperbolic cosine of \(x \)

- **sin(x)**: the sine of \(x \), where \(x \) is in radians

- **sinh(x)**: the hyperbolic sine of \(x \)

- **tan(x)**: the tangent of \(x \), where \(x \) is in radians

- **tanh(x)**: the hyperbolic tangent of \(x \)
atan(x)
Description: the radian value of the arctangent of x
Domain: $-8e+307$ to $8e+307$
Range: $-\pi/2$ to $\pi/2$

atan2(y, x)
Description: the radian value of the arctangent of y/x, where the signs of the parameters y and x are used to determine the quadrant of the answer
Domain y: $-8e+307$ to $8e+307$
Domain x: $-8e+307$ to $8e+307$
Range: $-\pi$ to π

atanh(x)
Description: the inverse hyperbolic tangent of x
\[
\text{atanh}(x) = \frac{1}{2} \left\{ \ln(1 + x) - \ln(1 - x) \right\}
\]
Domain: -1 to 1
Range: $-8e+307$ to $8e+307$

cos(x)
Description: the cosine of x, where x is in radians
Domain: $-1e+18$ to $1e+18$
Range: -1 to 1

cosh(x)
Description: the hyperbolic cosine of x
\[
\cosh(x) = \frac{\exp(x) + \exp(-x)}{2}
\]
Domain: -709 to 709
Range: 1 to $4.11e+307$

sin(x)
Description: the sine of x, where x is in radians
Domain: $-1e+18$ to $1e+18$
Range: -1 to 1

sinh(x)
Description: the hyperbolic sine of x
\[
\sinh(x) = \frac{\exp(x) - \exp(-x)}{2}
\]
Domain: -709 to 709
Range: $-4.11e+307$ to $4.11e+307$

tan(x)
Description: the tangent of x, where x is in radians
Domain: $-1e+18$ to $1e+18$
Range: $-1e+17$ to $1e+17$ or missing

tanh(x)
Description: the hyperbolic tangent of x
\[
\tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}
\]
Domain: $-8e+307$ to $8e+307$
Range: -1 to 1 or missing
Technical note

The trigonometric functions are defined in terms of radians. There are 2π radians in a circle. If you prefer to think in terms of degrees, because there are also 360 degrees in a circle, you may convert degrees into radians by using the formula $r = d\pi/180$, where d represents degrees and r represents radians. Stata includes the built-in constant `_pi`, equal to π to machine precision. Thus, to calculate the sine of θ, where θ is measured in degrees, you could type

\[
\sin(\theta*_pi/180)
\]

`atan()` similarly returns radians, not degrees. The arccotangent can be obtained as

\[
\arccot(x) = \pi/2 - \arctan(x)
\]

Reference

Also see

[FN] Functions by category
[D] `egen` — Extensions to generate
[D] `generate` — Create or change contents of variable
[M-5] `sin()` — Trigonometric and hyperbolic functions
[U] 13.3 Functions