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rbeta(𝑎,𝑏) beta(𝑎,𝑏) random variates, where 𝑎 and 𝑏 are the beta distribution

shape parameters

rbinomial(𝑛,𝑝) binomial(𝑛,𝑝) random variates, where 𝑛 is the number of trials and 𝑝
is the success probability

rcauchy(𝑎,𝑏) Cauchy(𝑎,𝑏) random variates, where 𝑎 is the location parameter and

𝑏 is the scale parameter
rchi2(𝑑𝑓) 𝜒2, with 𝑑𝑓 degrees of freedom, random variates

rexponential(𝑏) exponential random variates with scale 𝑏
rgamma(𝑎,𝑏) gamma(𝑎,𝑏) random variates, where 𝑎 is the gamma shape parameter

and 𝑏 is the scale parameter
rhypergeometric(𝑁,𝐾,𝑛) hypergeometric random variates

rigaussian(𝑚,𝑎) inverse Gaussian random variates with mean 𝑚 and shape

parameter 𝑎
rlaplace(𝑚,𝑏) Laplace(𝑚,𝑏) random variates with mean 𝑚 and scale parameter 𝑏
rlogistic() logistic variates with mean 0 and standard deviation 𝜋/

√
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rlogistic(𝑠) logistic variates with mean 0, scale 𝑠, and standard deviation 𝑠𝜋/
√
3

rlogistic(𝑚,𝑠) logistic variates with mean 𝑚, scale 𝑠, and standard deviation
𝑠𝜋/

√
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rnbinomial(𝑛,𝑝) negative binomial random variates

rnormal() standard normal (Gaussian) random variates, that is, variates from a

normal distribution with a mean of 0 and a standard deviation of 1
rnormal(𝑚) normal(𝑚,1) (Gaussian) random variates, where 𝑚 is the mean and

the standard deviation is 1
rnormal(𝑚,𝑠) normal(𝑚,𝑠) (Gaussian) random variates, where 𝑚 is the mean and

𝑠 is the standard deviation
rpoisson(𝑚) Poisson(𝑚) random variates, where 𝑚 is the distribution mean

rt(𝑑𝑓) Student’s 𝑡 random variates, where 𝑑𝑓 is the degrees of freedom

runiform() uniformly distributed random variates over the interval (0, 1)
runiform(𝑎,𝑏) uniformly distributed random variates over the interval (𝑎, 𝑏)
runiformint(𝑎,𝑏) uniformly distributed random integer variates on the interval [𝑎, 𝑏]
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rweibull(𝑎,𝑏) Weibull variates with shape 𝑎 and scale 𝑏
rweibull(𝑎,𝑏,𝑔) Weibull variates with shape 𝑎, scale 𝑏, and location 𝑔
rweibullph(𝑎,𝑏) Weibull (proportional hazards) variates with shape 𝑎 and scale 𝑏
rweibullph(𝑎,𝑏,𝑔) Weibull (proportional hazards) variates with shape 𝑎, scale 𝑏, and

location 𝑔

Functions
The term “pseudorandom number” is used to emphasize that the numbers are generated by formulas

and are thus not truly random. From now on, we will drop the “pseudo” and just say random numbers.

For information on setting the random-number seed, see [R] set seed.

runiform()
Description: uniformly distributed random variates over the interval (0, 1)

runiform() can be seeded with the set seed command; see [R] set seed.

Range: c(epsdouble) to 1 − c(epsdouble)

runiform(𝑎,𝑏)
Description: uniformly distributed random variates over the interval (𝑎, 𝑏)
Domain 𝑎: c(mindouble) to c(maxdouble)
Domain 𝑏: c(mindouble) to c(maxdouble)
Range: 𝑎 + c(epsdouble) to 𝑏 − c(epsdouble)

runiformint(𝑎,𝑏)
Description: uniformly distributed random integer variates on the interval [𝑎, 𝑏]

If 𝑎 or 𝑏 is nonintegral, runiformint(𝑎,𝑏) returns runiformint(floor(𝑎),
floor(𝑏)).

Domain 𝑎: −253 to 253 (may be nonintegral)

Domain 𝑏: −253 to 253 (may be nonintegral)

Range: −253 to 253

rbeta(𝑎,𝑏)
Description: beta(𝑎,𝑏) random variates, where 𝑎 and 𝑏 are the beta distribution shape parameters

Besides using the standard methodology for generating random variates from a given

distribution, rbeta() uses the specialized algorithms of Johnk (Gentle 2003),

Atkinson and Whittaker (1970, 1976), Devroye (1986), and Schmeiser and Babu

(1980).

Domain 𝑎: 0.05 to 1e+5

Domain 𝑏: 0.15 to 1e+5

Range: 0 to 1 (exclusive)

https://www.stata.com/manuals/fnrandom-numberfunctions.pdf#fnRandom-numberfunctionsrweibull(ab)
https://www.stata.com/manuals/fnrandom-numberfunctions.pdf#fnRandom-numberfunctionsrweibull(abg)
https://www.stata.com/manuals/fnrandom-numberfunctions.pdf#fnRandom-numberfunctionsrweibullph(ab)
https://www.stata.com/manuals/fnrandom-numberfunctions.pdf#fnRandom-numberfunctionsrweibullph(abg)
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
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rbinomial(𝑛,𝑝)
Description: binomial(𝑛,𝑝) random variates, where 𝑛 is the number of trials and 𝑝 is the success

probability

Besides using the standard methodology for generating random variates from a given

distribution, rbinomial() uses the specialized algorithms of Kachitvichyanukul

(1982), Kachitvichyanukul and Schmeiser (1988), and Kemp (1986).

Domain 𝑛: 1 to 1e+11

Domain 𝑝: 1e–8 to 1−1e–8

Range: 0 to 𝑛

rcauchy(𝑎,𝑏)
Description: Cauchy(𝑎,𝑏) random variates, where 𝑎 is the location parameter and 𝑏 is the scale

parameter
Domain 𝑎: −1e+300 to 1e+300

Domain 𝑏: 1e–100 to 1e+300

Range: c(mindouble) to c(maxdouble)

rchi2(𝑑𝑓)
Description: 𝜒2, with 𝑑𝑓 degrees of freedom, random variates

Domain 𝑑𝑓: 2e–4 to 2e+8

Range: 0 to c(maxdouble)

rexponential(𝑏)
Description: exponential random variates with scale 𝑏
Domain 𝑏: 1e–323 to 8e+307

Range: 1e–323 to 8e+307

rgamma(𝑎,𝑏)
Description: gamma(𝑎,𝑏) random variates, where 𝑎 is the gamma shape parameter and 𝑏 is the scale

parameter

Methods for generating gamma variates are taken from Ahrens and Dieter (1974), Best

(1983), and Schmeiser and Lal (1980).

Domain 𝑎: 1e–4 to 1e+8

Domain 𝑏: c(smallestdouble) to c(maxdouble)
Range: 0 to c(maxdouble)
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rhypergeometric(𝑁,𝐾,𝑛)
Description: hypergeometric random variates

The distribution parameters are integer valued, where 𝑁 is the population size, 𝐾 is

the number of elements in the population that have the attribute of interest, and 𝑛 is the

sample size.

Besides using the standard methodology for generating random variates from a given

distribution, rhypergeometric() uses the specialized algorithms of

Kachitvichyanukul (1982) and Kachitvichyanukul and Schmeiser (1985).

Domain 𝑁: 2 to 1e+6

Domain 𝐾: 1 to 𝑁−1

Domain 𝑛: 1 to 𝑁−1

Range: max(0,𝑛 − 𝑁 + 𝐾) to min(𝐾,𝑛)

rigaussian(𝑚,𝑎)
Description: inverse Gaussian random variates with mean 𝑚 and shape parameter 𝑎

rigaussian() is based on a method proposed by Michael, Schucany, and Haas

(1976).

Domain 𝑚: 1e–10 to 1000

Domain 𝑎: 0.001 to 1e+10

Range: 0 to c(maxdouble)

rlaplace(𝑚,𝑏)
Description: Laplace(𝑚,𝑏) random variates with mean 𝑚 and scale parameter 𝑏
Domain 𝑚: −1e+300 to 1e+300

Domain 𝑏: 1e–300 to 1e+300

Range: c(mindouble) to c(maxdouble)

rlogistic()
Description: logistic variates with mean 0 and standard deviation 𝜋/

√
3

The variates 𝑥 are generated by 𝑥 = invlogistic(0,1,𝑢), where 𝑢 is a random

uniform(0,1) variate.

Range: c(mindouble) to c(maxdouble)

rlogistic(𝑠)
Description: logistic variates with mean 0, scale 𝑠, and standard deviation 𝑠𝜋/

√
3

The variates 𝑥 are generated by 𝑥 = invlogistic(0,𝑠,𝑢), where 𝑢 is a random

uniform(0,1) variate.

Domain 𝑠: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)



Random-number functions 5

rlogistic(𝑚,𝑠)
Description: logistic variates with mean 𝑚, scale 𝑠, and standard deviation 𝑠𝜋/

√
3

The variates 𝑥 are generated by 𝑥 = invlogistic(𝑚,𝑠,𝑢), where 𝑢 is a random

uniform(0,1) variate.

Domain 𝑚: c(mindouble) to c(maxdouble)
Domain 𝑠: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rnbinomial(𝑛,𝑝)
Description: negative binomial random variates

If 𝑛 is integer valued, rnbinomial() returns the number of failures before the 𝑛th
success, where the probability of success on a single trial is 𝑝. 𝑛 can also be

nonintegral.

Domain 𝑛: 1e–4 to 1e+5

Domain 𝑝: 1e–4 to 1−1e–4

Range: 0 to 253 − 1

rnormal()
Description: standard normal (Gaussian) random variates, that is, variates from a normal

distribution with a mean of 0 and a standard deviation of 1
Range: c(mindouble) to c(maxdouble)

rnormal(𝑚)
Description: normal(𝑚,1) (Gaussian) random variates, where 𝑚 is the mean and the standard

deviation is 1
Domain 𝑚: c(mindouble) to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rnormal(𝑚,𝑠)
Description: normal(𝑚,𝑠) (Gaussian) random variates, where 𝑚 is the mean and 𝑠 is the standard

deviation

The methods for generating normal (Gaussian) random variates are taken from Knuth

(1998, 122–128); Marsaglia, MacLaren, and Bray (1964); and Walker (1977).

Domain 𝑚: c(mindouble) to c(maxdouble)
Domain 𝑠: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rpoisson(𝑚)
Description: Poisson(𝑚) random variates, where 𝑚 is the distribution mean

Poisson variates are generated using the probability integral transform methods of

Kemp and Kemp (1990, 1991) and the method of Kachitvichyanukul (1982).

Domain 𝑚: 1e–6 to 1e+11

Range: 0 to 253 − 1
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rt(𝑑𝑓)
Description: Student’s 𝑡 random variates, where 𝑑𝑓 is the degrees of freedom

Student’s 𝑡 variates are generated using the method of Kinderman and Monahan

(1977, 1980).

Domain 𝑑𝑓: 1 to 253 − 1

Range: c(mindouble) to c(maxdouble)

rweibull(𝑎,𝑏)
Description: Weibull variates with shape 𝑎 and scale 𝑏

The variates 𝑥 are generated by 𝑥 = invweibulltail(𝑎,𝑏,0,𝑢), where 𝑢 is a

random uniform(0,1) variate.

Domain 𝑎: 0.01 to 1e+6

Domain 𝑏: 1e–323 to 8e+307

Range: 1e–323 to 8e+307

rweibull(𝑎,𝑏,𝑔)
Description: Weibull variates with shape 𝑎, scale 𝑏, and location 𝑔

The variates 𝑥 are generated by 𝑥 = invweibulltail(𝑎,𝑏,𝑔,𝑢), where 𝑢 is a

random uniform(0,1) variate.

Domain 𝑎: 0.01 to 1e+6

Domain 𝑏: 1e–323 to 8e+307

Domain 𝑔: −8e+307 to 8e+307

Range: 𝑔 + c(epsdouble) to 8e+307

rweibullph(𝑎,𝑏)
Description: Weibull (proportional hazards) variates with shape 𝑎 and scale 𝑏

The variates 𝑥 are generated by 𝑥 = invweibullphtail(𝑎,𝑏,0,𝑢), where 𝑢 is a

random uniform(0,1) variate.

Domain 𝑎: 0.01 to 1e+6

Domain 𝑏: 1e–323 to 8e+307

Range: 1e–323 to 8e+307

rweibullph(𝑎,𝑏,𝑔)
Description: Weibull (proportional hazards) variates with shape 𝑎, scale 𝑏, and location 𝑔

The variates 𝑥 are generated by 𝑥 = invweibullphtail(𝑎,𝑏,𝑔,𝑢), where 𝑢 is a

random uniform(0,1) variate.

Domain 𝑎: 0.01 to 1e+6

Domain 𝑏: 1e–323 to 8e+307

Domain 𝑔: −8e+307 to 8e+307

Range: 𝑔 + c(epsdouble) to 8e+307
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Remarks and examples
It is ironic that the first thing to note about random numbers is how to make them reproducible. Before

using a random-number function, type

set seed #

where # is any integer between 0 and 231 − 1, inclusive, to draw the same sequence of random numbers.

It does not matter which integer you choose as your seed; they are all equally good. See [R] set seed.

runiform() is the basis for all the other random-number functions because all the other

random-number functions transform uniform (0, 1) random numbers to the specified distribution.

runiform() implements the 64-bit Mersenne Twister (mt64), the stream 64-bit Mersenne Twister

(mt64s), and the 32-bit “keep it simple stupid” (kiss32) random-number generators (RNGs) for
generating uniform (0, 1) random numbers. runiform() uses the mt64 RNG by default.

runiform() uses the kiss32 RNG only when the user version is less than 14 or when the RNG has been

set to kiss32; see [P] version for details about setting the user version. We recommend that you do not

change the default RNG, but see [R] set rng for details.

Technical note
Although we recommend that you use runiform(), we made generator-specific versions of
runiform() available for advanced users who want to hardcode their generator choice. The function

runiform mt64() always uses the mt64 RNG to generate uniform (0, 1) random numbers, the function

runiform mt64s() always uses the mt64s RNG to generate uniform (0, 1) random numbers, the

function runiform kiss32() always uses the kiss32 RNG to generate uniform (0, 1) random
numbers. In fact, generator-specific versions are available for all the implemented distributions. For

example, rnormal mt64(), rnormal mt64s, and rnormal kiss32() use transforms of mt64,
mt64s, and kiss32 uniform variates, respectively, to generate standard normal variates.

Technical note
Both the mt64 and the kiss32 RNGs produce uniform variates that pass many tests for randomness.

Many researchers prefer the mt64 to the kiss32 RNG because the mt64 generator has a longer period

and a finer resolution and requires a higher dimension before patterns appear; see Matsumoto and

Nishimura (1998).

The mt64 RNG has a period of 219937 − 1 and a resolution of 2−53; see Matsumoto and Nishimura

(1998). Each stream of the mt64s RNG contains 2128 random numbers, and mt64s has a resolution of

2−53; see Haramoto et al. (2008). The kiss32 RNG has a period of about 2126 and a resolution of 2−32;

see Methods and formulas below.

Technical note
This technical note explains how to restart a RNG from its current spot.

The current spot in the sequence of a RNG is part of the state of a RNG. If you tell me the state of a RNG,

I know where it is in its sequence, and I can compute the next random number. The state of a RNG is a

complicated object that requires more space than the integers used to seed a generator. For instance, an

mt64 state is a 5011-digit, base-16 number preceded by three letters.

https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/pversion.pdf#pversion
https://www.stata.com/manuals/rsetrng.pdf#rsetrng
https://www.stata.com/manuals/fnrandom-numberfunctions.pdf#fnRandom-numberfunctionsMethodsandformulas
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If you want to restart a RNG from where it left off, you should store the current state in a macro and then

set the state of the RNG when you want to restart it. For example, suppose we set a seed and draw some

random numbers.

. set obs 3
Number of observations (_N) was 0, now 3.
. set seed 12345
. generate x = runiform()
. list x

x

1. .3576297
2. .4004426
3. .6893833

We store the state of the RNG so that we can pick up right here in the sequence.

. local rngstate ”‘c(rngstate)’”

We draw some more random numbers.

. replace x = runiform()
(3 real changes made)
. list x

x

1. .5597356
2. .5744513
3. .2076905

Now, we set the state of the RNG to where it was and draw those same random numbers again.

. set rngstate ‘rngstate’

. replace x = runiform()
(0 real changes made)
. list x

x

1. .5597356
2. .5744513
3. .2076905

Methods and formulas
All the nonuniform generators are based on the uniform mt64, mt64s, and kiss32 RNGs.

The mt64 RNG is well documented in Matsumoto and Nishimura (1998) and on their website

http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html. The mt64 RNG implements the 64-bit

version discussed at http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt64.html. The mt64s RNG

is based on a method proposed by Haramoto et al. (2008). The default seed of all three RNGs is

123456789.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html
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kiss32 generator
The kiss32 uniform RNG implemented in runiform() is based on George Marsaglia’s (G. Marsaglia,

1994, pers. comm.) 32-bit pseudorandom-integer generator kiss32. The integer kiss32 RNG is

composed of two 32-bit pseudorandom-integer generators and two 16-bit integer generators (combined

to make one 32-bit integer generator). The four generators are defined by the recursions

𝑥𝑛 = 69069 𝑥𝑛−1 + 1234567 mod 232 (1)

𝑦𝑛 = 𝑦𝑛−1(𝐼 + 𝐿13)(𝐼 + 𝑅17)(𝐼 + 𝐿5) (2)

𝑧𝑛 = 65184(𝑧𝑛−1 mod 216) + int(𝑧𝑛−1/216) (3)

𝑤𝑛 = 63663(𝑤𝑛−1 mod 216) + int(𝑤𝑛−1/216) (4)

In (2), the 32-bit word 𝑦𝑛 is viewed as a 1 × 32 binary vector; 𝐿 is the 32 × 32 matrix that produces a

left shift of one (𝐿 has 1s on the first left subdiagonal, 0s elsewhere); and 𝑅 is 𝐿 transpose, affecting a

right shift by one. In (3) and (4), int(𝑥) is the integer part of 𝑥.
The integer kiss32 RNG produces the 32-bit random integer

𝑅𝑛 = 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 + 216𝑤𝑛 mod 232

The kiss32 uniform RNG implemented in runiform() takes the output from the integer kiss32 RNG

and divides it by 232 to produce a real number on the interval (0, 1). (Zeros are discarded, and the first
nonzero result is returned.)

The recursion (5)–(8) have, respectively, the periods

232 (5)

232 − 1 (6)

(65184 ⋅ 216 − 2)/2 ≈ 231 (7)

(63663 ⋅ 216 − 2)/2 ≈ 231 (8)

Thus the overall period for the integer kiss32 RNG is

232 ⋅ (232 − 1) ⋅ (65184 ⋅ 215 − 1) ⋅ (63663 ⋅ 215 − 1) ≈ 2126

When Stata first comes up, it initializes the four recursions in kiss32 by using the seeds

𝑥0 = 123456789
𝑦0 = 521288629
𝑧0 = 362436069
𝑤0 = 2262615

Successive calls to the kiss32 uniform RNG implemented in runiform() then produce the sequence

𝑅1
232 , 𝑅2

232 , 𝑅3
232 , . . .
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Hence, the kiss32 uniform RNG implemented in runiform() gives the same sequence of random

numbers in every Stata session (measured from the start of the session) unless you reinitialize the seed.

The full seed is the set of four numbers (𝑥, 𝑦, 𝑧, 𝑤), but you can reinitialize the seed by simply issuing
the command

. set seed #

where # is any integer between 0 and 231 − 1, inclusive. When this command is issued, the initial value

𝑥0 is set equal to #, and the other three recursions are restarted at the seeds 𝑦0, 𝑧0, and 𝑤0 given above.

The first 100 random numbers are discarded, and successive calls to the kiss32 uniform RNG

implemented in runiform() give the sequence

𝑅 ′
101

232 , 𝑅 ′
102

232 , 𝑅 ′
103

232 , . . .

However, if the command

. set seed 123456789

is given, the first 100 random numbers are not discarded, and you get the same sequence of random

numbers that the kiss32 RNG produces when Stata restarts; also see [R] set seed.
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