
Title stata.com

Random-number functions

Contents Functions Remarks and examples Methods and formulas
Acknowledgments References Also see

Contents
rbeta(a,b) beta(a,b) random variates, where a and b are the beta distribution

shape parameters
rbinomial(n,p) binomial(n,p) random variates, where n is the number of trials and

p is the success probability
rcauchy(a,b) Cauchy(a,b) random variates, where a is the location parameter and

b is the scale parameter
rchi2(df) χ2, with df degrees of freedom, random variates
rexponential(b) exponential random variates with scale b
rgamma(a,b) gamma(a,b) random variates, where a is the gamma shape parameter

and b is the scale parameter
rhypergeometric(N,K,n) hypergeometric random variates
rigaussian(m,a) inverse Gaussian random variates with mean m and shape param-

eter a
rlaplace(m,b) Laplace(m,b) random variates with mean m and scale parameter b

rlogistic() logistic variates with mean 0 and standard deviation π/
√

3

rlogistic(s) logistic variates with mean 0, scale s, and standard deviation sπ/
√

3
rlogistic(m,s) logistic variates with mean m, scale s, and standard deviation

sπ/
√

3
rnbinomial(n,p) negative binomial random variates
rnormal() standard normal (Gaussian) random variates, that is, variates from

a normal distribution with a mean of 0 and a standard deviation
of 1

rnormal(m) normal(m,1) (Gaussian) random variates, where m is the mean and
the standard deviation is 1

rnormal(m,s) normal(m,s) (Gaussian) random variates, where m is the mean and
s is the standard deviation

rpoisson(m) Poisson(m) random variates, where m is the distribution mean
rt(df) Student’s t random variates, where df is the degrees of freedom
runiform() uniformly distributed random variates over the interval (0, 1)
runiform(a,b) uniformly distributed random variates over the interval (a, b)
runiformint(a,b) uniformly distributed random integer variates on the interval [a, b]

1

http://stata.com

2 Random-number functions

rweibull(a,b) Weibull variates with shape a and scale b
rweibull(a,b,g) Weibull variates with shape a, scale b, and location g
rweibullph(a,b) Weibull (proportional hazards) variates with shape a and scale b
rweibullph(a,b,g) Weibull (proportional hazards) variates with shape a, scale b, and

location g

Functions
The term “pseudorandom number” is used to emphasize that the numbers are generated by formulas

and are thus not truly random. From now on, we will drop the “pseudo” and just say random numbers.

For information on setting the random-number seed, see [R] set seed.

runiform()
Description: uniformly distributed random variates over the interval (0, 1)

runiform() can be seeded with the set seed command; see [R] set seed.
Range: c(epsdouble) to 1− c(epsdouble)

runiform(a,b)
Description: uniformly distributed random variates over the interval (a, b)
Domain a: c(mindouble) to c(maxdouble)
Domain b: c(mindouble) to c(maxdouble)
Range: a+ c(epsdouble) to b− c(epsdouble)

runiformint(a,b)
Description: uniformly distributed random integer variates on the interval [a, b]

If a or b is nonintegral, runiformint(a,b) returns runiformint(floor(a),
floor(b)).

Domain a: −253 to 253 (may be nonintegral)
Domain b: −253 to 253 (may be nonintegral)
Range: −253 to 253

rbeta(a,b)
Description: beta(a,b) random variates, where a and b are the beta distribution shape parameters

Besides using the standard methodology for generating random variates from a given
distribution, rbeta() uses the specialized algorithms of Johnk (Gentle 2003), Atkinson
and Whittaker (1970, 1976), Devroye (1986), and Schmeiser and Babu (1980).

Domain a: 0.05 to 1e+5
Domain b: 0.15 to 1e+5
Range: 0 to 1 (exclusive)

https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetseed.pdf#rsetseed

Random-number functions 3

rbinomial(n,p)
Description: binomial(n,p) random variates, where n is the number of trials and p is the success

probability
Besides using the standard methodology for generating random variates from
a given distribution, rbinomial() uses the specialized algorithms of Ka-
chitvichyanukul (1982), Kachitvichyanukul and Schmeiser (1988), and Kemp (1986).

Domain n: 1 to 1e+11
Domain p: 1e–8 to 1−1e–8
Range: 0 to n

rcauchy(a,b)
Description: Cauchy(a,b) random variates, where a is the location parameter and b is the scale

parameter
Domain a: −1e+300 to 1e+300
Domain b: 1e–100 to 1e+300
Range: c(mindouble) to c(maxdouble)

rchi2(df)
Description: χ2, with df degrees of freedom, random variates
Domain df : 2e–4 to 2e+8
Range: 0 to c(maxdouble)

rexponential(b)
Description: exponential random variates with scale b
Domain b: 1e–323 to 8e+307
Range: 1e–323 to 8e+307

rgamma(a,b)
Description: gamma(a,b) random variates, where a is the gamma shape parameter and b is the

scale parameter
Methods for generating gamma variates are taken from Ahrens and Dieter (1974),
Best (1983), and Schmeiser and Lal (1980).

Domain a: 1e–4 to 1e+8
Domain b: c(smallestdouble) to c(maxdouble)
Range: 0 to c(maxdouble)

rhypergeometric(N,K,n)
Description: hypergeometric random variates

The distribution parameters are integer valued, where N is the population size, K is
the number of elements in the population that have the attribute of interest, and n is
the sample size.
Besides using the standard methodology for generating random variates from a
given distribution, rhypergeometric() uses the specialized algorithms of Ka-
chitvichyanukul (1982) and Kachitvichyanukul and Schmeiser (1985).

Domain N : 2 to 1e+6
Domain K: 1 to N−1
Domain n: 1 to N−1
Range: max(0,n−N +K) to min(K,n)

4 Random-number functions

rigaussian(m,a)
Description: inverse Gaussian random variates with mean m and shape parameter a

rigaussian() is based on a method proposed by Michael, Schucany, and
Haas (1976).

Domain m: 1e–10 to 1000
Domain a: 0.001 to 1e+10
Range: 0 to c(maxdouble)

rlaplace(m,b)
Description: Laplace(m,b) random variates with mean m and scale parameter b
Domain m: −1e+300 to 1e+300
Domain b: 1e–300 to 1e+300
Range: c(mindouble) to c(maxdouble)

rlogistic()

Description: logistic variates with mean 0 and standard deviation π/
√

3

The variates x are generated by x = invlogistic(0,1,u), where u is a random
uniform(0,1) variate.

Range: c(mindouble) to c(maxdouble)

rlogistic(s)
Description: logistic variates with mean 0, scale s, and standard deviation sπ/

√
3

The variates x are generated by x = invlogistic(0,s,u), where u is a random
uniform(0,1) variate.

Domain s: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rlogistic(m,s)
Description: logistic variates with mean m, scale s, and standard deviation sπ/

√
3

The variates x are generated by x = invlogistic(m,s,u), where u is a random
uniform(0,1) variate.

Domain m: c(mindouble) to c(maxdouble)
Domain s: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rnbinomial(n,p)
Description: negative binomial random variates

If n is integer valued, rnbinomial() returns the number of failures before the
nth success, where the probability of success on a single trial is p. n can also be
nonintegral.

Domain n: 1e–4 to 1e+5
Domain p: 1e–4 to 1−1e–4
Range: 0 to 253 − 1

Random-number functions 5

rnormal()
Description: standard normal (Gaussian) random variates, that is, variates from a normal distribution

with a mean of 0 and a standard deviation of 1
Range: c(mindouble) to c(maxdouble)

rnormal(m)
Description: normal(m,1) (Gaussian) random variates, where m is the mean and the standard

deviation is 1
Domain m: c(mindouble) to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rnormal(m,s)
Description: normal(m,s) (Gaussian) random variates, where m is the mean and s is the standard

deviation
The methods for generating normal (Gaussian) random variates are taken from
Knuth (1998, 122–128); Marsaglia, MacLaren, and Bray (1964); and Walker (1977).

Domain m: c(mindouble) to c(maxdouble)
Domain s: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)

rpoisson(m)
Description: Poisson(m) random variates, where m is the distribution mean

Poisson variates are generated using the probability integral transform methods of
Kemp and Kemp (1990, 1991) and the method of Kachitvichyanukul (1982).

Domain m: 1e–6 to 1e+11
Range: 0 to 253 − 1

rt(df)
Description: Student’s t random variates, where df is the degrees of freedom

Student’s t variates are generated using the method of Kinderman and Monahan
(1977, 1980).

Domain df : 1 to 253 − 1
Range: c(mindouble) to c(maxdouble)

rweibull(a,b)
Description: Weibull variates with shape a and scale b

The variates x are generated by x = invweibulltail(a,b,0,u), where u is a
random uniform(0,1) variate.

Domain a: 0.01 to 1e+6
Domain b: 1e–323 to 8e+307
Range: 1e–323 to 8e+307

6 Random-number functions

rweibull(a,b,g)
Description: Weibull variates with shape a, scale b, and location g

The variates x are generated by x = invweibulltail(a,b,g,u), where u is a
random uniform(0,1) variate.

Domain a: 0.01 to 1e+6
Domain b: 1e–323 to 8e+307
Domain g: −8e+307 to 8e+307
Range: g + c(epsdouble) to 8e+307

rweibullph(a,b)
Description: Weibull (proportional hazards) variates with shape a and scale b

The variates x are generated by x = invweibullphtail(a,b,0,u), where u is a
random uniform(0,1) variate.

Domain a: 0.01 to 1e+6
Domain b: 1e–323 to 8e+307
Range: 1e–323 to 8e+307

rweibullph(a,b,g)
Description: Weibull (proportional hazards) variates with shape a, scale b, and location g

The variates x are generated by x = invweibullphtail(a,b,g,u), where u is a
random uniform(0,1) variate.

Domain a: 0.01 to 1e+6
Domain b: 1e–323 to 8e+307
Domain g: −8e+307 to 8e+307
Range: g + c(epsdouble) to 8e+307

Remarks and examples stata.com

It is ironic that the first thing to note about random numbers is how to make them reproducible.
Before using a random-number function, type

set seed #

where # is any integer between 0 and 231 − 1, inclusive, to draw the same sequence of random
numbers. It does not matter which integer you choose as your seed; they are all equally good. See
[R] set seed.

runiform() is the basis for all the other random-number functions because all the other random-
number functions transform uniform (0, 1) random numbers to the specified distribution.

runiform() implements the 64-bit Mersenne Twister (mt64), the stream 64-bit Mersenne Twister
(mt64s), and the 32-bit “keep it simple stupid” (kiss32) random-number generators (RNGs) for
generating uniform (0, 1) random numbers. runiform() uses the mt64 RNG by default.

runiform() uses the kiss32 RNG only when the user version is less than 14 or when the RNG
has been set to kiss32; see [P] version for details about setting the user version. We recommend
that you do not change the default RNG, but see [R] set rng for details.

http://stata.com
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/pversion.pdf#pversion
https://www.stata.com/manuals/rsetrng.pdf#rsetrng

Random-number functions 7

Technical note

Although we recommend that you use runiform(), we made generator-specific versions of
runiform() available for advanced users who want to hardcode their generator choice. The function
runiform mt64() always uses the mt64 RNG to generate uniform (0, 1) random numbers, the function
runiform mt64s() always uses the mt64s RNG to generate uniform (0, 1) random numbers, the
function runiform kiss32() always uses the kiss32 RNG to generate uniform (0, 1) random
numbers. In fact, generator-specific versions are available for all the implemented distributions. For
example, rnormal mt64(), rnormal mt64s, and rnormal kiss32() use transforms of mt64,
mt64s, and kiss32 uniform variates, respectively, to generate standard normal variates.

Technical note
Both the mt64 and the kiss32 RNGs produce uniform variates that pass many tests for randomness.

Many researchers prefer the mt64 to the kiss32 RNG because the mt64 generator has a longer period
and a finer resolution and requires a higher dimension before patterns appear; see Matsumoto and
Nishimura (1998).

The mt64 RNG has a period of 219937 − 1 and a resolution of 2−53; see Matsumoto and
Nishimura (1998). Each stream of the mt64s RNG contains 2128 random numbers, and mt64s has a
resolution of 2−53; see Haramoto et al. (2008). The kiss32 RNG has a period of about 2126 and a
resolution of 2−32; see Methods and formulas below.

Technical note
This technical note explains how to restart a RNG from its current spot.

The current spot in the sequence of a RNG is part of the state of a RNG. If you tell me the state
of a RNG, I know where it is in its sequence, and I can compute the next random number. The state
of a RNG is a complicated object that requires more space than the integers used to seed a generator.
For instance, an mt64 state is a 5011-digit, base-16 number preceded by three letters.

If you want to restart a RNG from where it left off, you should store the current state in a macro
and then set the state of the RNG when you want to restart it. For example, suppose we set a seed
and draw some random numbers.

. set obs 3
Number of observations (_N) was 0, now 3.

. set seed 12345

. generate x = runiform()

. list x

x

1. .3576297
2. .4004426
3. .6893833

8 Random-number functions

We store the state of the RNG so that we can pick up right here in the sequence.
. local rngstate "‘c(rngstate)’"

We draw some more random numbers.
. replace x = runiform()
(3 real changes made)

. list x

x

1. .5597356
2. .5744513
3. .2076905

Now, we set the state of the RNG to where it was and draw those same random numbers again.
. set rngstate ‘rngstate’

. replace x = runiform()
(0 real changes made)

. list x

x

1. .5597356
2. .5744513
3. .2076905

Methods and formulas
All the nonuniform generators are based on the uniform mt64, mt64s, and kiss32 RNGs.

The mt64 RNG is well documented in Matsumoto and Nishimura (1998) and on their website
http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html. The mt64 RNG implements the 64-bit
version discussed at http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt64.html. The mt64s RNG
is based on a method proposed by Haramoto et al. (2008). The default seed of all three RNGs is
123456789.

kiss32 generator

The kiss32 uniform RNG implemented in runiform() is based on George Marsaglia’s
(G. Marsaglia, 1994, pers. comm.) 32-bit pseudorandom-integer generator kiss32. The integer
kiss32 RNG is composed of two 32-bit pseudorandom-integer generators and two 16-bit integer
generators (combined to make one 32-bit integer generator). The four generators are defined by the
recursions

xn = 69069xn−1 + 1234567 mod 232 (1)

yn = yn−1(I + L13)(I +R17)(I + L5) (2)

zn = 65184
(
zn−1 mod 216

)
+ int

(
zn−1/2

16
)

(3)

wn = 63663
(
wn−1 mod 216

)
+ int

(
wn−1/2

16
)

(4)

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html

Random-number functions 9

In (2), the 32-bit word yn is viewed as a 1×32 binary vector; L is the 32×32 matrix that produces a
left shift of one (L has 1s on the first left subdiagonal, 0s elsewhere); and R is L transpose, affecting
a right shift by one. In (3) and (4), int(x) is the integer part of x.

The integer kiss32 RNG produces the 32-bit random integer

Rn = xn + yn + zn + 216wn mod 232

The kiss32 uniform RNG implemented in runiform() takes the output from the integer kiss32
RNG and divides it by 232 to produce a real number on the interval (0, 1). (Zeros are discarded, and
the first nonzero result is returned.)

The recursion (5)–(8) have, respectively, the periods

232 (5)

232 − 1 (6)

(65184 · 216 − 2)/2 ≈ 231 (7)

(63663 · 216 − 2)/2 ≈ 231 (8)

Thus the overall period for the integer kiss32 RNG is

232 · (232 − 1) · (65184 · 215 − 1) · (63663 · 215 − 1) ≈ 2126

When Stata first comes up, it initializes the four recursions in kiss32 by using the seeds

x0 = 123456789

y0 = 521288629

z0 = 362436069

w0 = 2262615

Successive calls to the kiss32 uniform RNG implemented in runiform() then produce the sequence

R1

232
,
R2

232
,
R3

232
, . . .

Hence, the kiss32 uniform RNG implemented in runiform() gives the same sequence of random
numbers in every Stata session (measured from the start of the session) unless you reinitialize the
seed. The full seed is the set of four numbers (x, y, z, w), but you can reinitialize the seed by simply
issuing the command

. set seed #

where # is any integer between 0 and 231 − 1, inclusive. When this command is issued, the initial
value x0 is set equal to #, and the other three recursions are restarted at the seeds y0, z0, and w0

given above. The first 100 random numbers are discarded, and successive calls to the kiss32 uniform
RNG implemented in runiform() give the sequence

R ′101
232

,
R ′102
232

,
R ′103
232

, . . .

10 Random-number functions

However, if the command

. set seed 123456789

is given, the first 100 random numbers are not discarded, and you get the same sequence of random
numbers that the kiss32 RNG produces when Stata restarts; also see [R] set seed.

Acknowledgments
We thank the late George Marsaglia, formerly of Florida State University, for providing his kiss32

RNG.

We thank John R. Gleason (retired) of Syracuse University for directing our attention to
Wichura (1988) for calculating the cumulative normal density accurately, for sharing his experi-
ences about techniques with us, and for providing C code to make the calculations.

We thank Makoto Matsumoto and Takuji Nishimura for deriving the Mersenne Twister and
distributing their code for their generator so that it could be rapidly and effectively tested.

References
Ahrens, J. H., and U. Dieter. 1974. Computer methods for sampling from gamma, beta, Poisson, and binomial

distributions. Computing 12: 223–246. https://doi.org/10.1007/BF02293108.

Atkinson, A. C., and J. C. Whittaker. 1970. Algorithm AS 134: The generation of beta random variables with one
parameter greater than and one parameter less than 1. Applied Statistics 28: 90–93. https://doi.org/10.2307/2346828.

. 1976. A switching algorithm for the generation of beta random variables with at least one parameter less than
1. Journal of the Royal Statistical Society, Series A 139: 462–467. https://doi.org/10.2307/2344350.

Best, D. J. 1983. A note on gamma variate generators with shape parameters less than unity. Computing 30: 185–188.
https://doi.org/10.1007/BF02280789.

Buis, M. L. 2007. Stata tip 48: Discrete uses for uniform(). Stata Journal 7: 434–435.

Devroye, L. 1986. Non-uniform Random Variate Generation. New York: Springer.

Gentle, J. E. 2003. Random Number Generation and Monte Carlo Methods. 2nd ed. New York: Springer.

Gopal, K. 2016. How to generate random numbers in Stata. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2016/03/10/how-to-generate-random-numbers-in-stata/.

Gould, W. W. 2012a. Using Stata’s random-number generators, part 1. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/.

. 2012b. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog: Not
Elsewhere Classified.
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.

. 2012c. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-
with-replacement/.

. 2012d. Using Stata’s random-number generators, part 4: Details. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/.

Grayling, M. J., and A. P. Mander. 2018. Calculations involving the multivariate normal and multivariate t distributions
with and without truncation. Stata Journal 18: 826–843.

Haramoto, H., M. Matsumoto, T. Nishimura, F. Panneton, and P. L’Ecuyer. 2008. Efficient jump ahead for F2-linear
random number generators. INFORMS Journal on Computing 20: 385–390. https://doi.org/10.1287/ijoc.1070.0251.

Hilbe, J. M. 2010. Creating synthetic discrete-response regression models. Stata Journal 10: 104–124.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://doi.org/10.1007/BF02293108
https://doi.org/10.2307/2346828
https://doi.org/10.2307/2344350
https://doi.org/10.1007/BF02280789
http://www.stata-journal.com/article.html?article=pr0032
http://blog.stata.com/2016/03/10/how-to-generate-random-numbers-in-stata/
http://blog.stata.com/2016/03/10/how-to-generate-random-numbers-in-stata/
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/
http://www.stata-journal.com/article.html?article=st0542
http://www.stata-journal.com/article.html?article=st0542
https://doi.org/10.1287/ijoc.1070.0251
http://www.stata-journal.com/article.html?article=st0186
http://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
http://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/

Random-number functions 11

Kachitvichyanukul, V. 1982. Computer Generation of Poisson, Binomial, and Hypergeometric Random Variables. PhD
thesis, Purdue University.

Kachitvichyanukul, V., and B. W. Schmeiser. 1985. Computer generation of hypergeometric random variates. Journal
of Statistical Computation and Simulation 22: 127–145. https://doi.org/10.1080/00949658508810839.

. 1988. Binomial random variate generation. Communications of the Association for Computing Machinery 31:
216–222. https://doi.org/10.1145/42372.42381.

Kemp, A. W., and C. D. Kemp. 1990. A composition-search algorithm for low-parameter Poisson generation. Journal
of Statistical Computation and Simulation 35: 239–244. https://doi.org/10.1080/00949659008811246.

Kemp, C. D. 1986. A modal method for generating binomial variates. Communications in Statistics—Theory and
Methods 15: 805–813. https://doi.org/10.1080/03610928608829152.

Kemp, C. D., and A. W. Kemp. 1991. Poisson random variate generation. Applied Statistics 40: 143–158.
https://doi.org/10.2307/2347913.

Kinderman, A. J., and J. F. Monahan. 1977. Computer generation of random variables using the ratio of uniform
deviates. ACM Transactions on Mathematical Software 3: 257–260. https://doi.org/10.1145/355744.355750.

. 1980. New methods for generating Student’s t and gamma variables. Computing 25: 369–377.
https://doi.org/10.1007/BF02285231.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. 3rd ed. Reading, MA:
Addison–Wesley.

Lee, S. 2015. Generating univariate and multivariate nonnormal data. Stata Journal 15: 95–109.

Lukácsy, K. 2011. Generating random samples from user-defined distributions. Stata Journal 11: 299–304.

Marsaglia, G., M. D. MacLaren, and T. A. Bray. 1964. A fast procedure for generating normal random variables.
Communications of the Association for Computing Machinery 7: 4–10. https://doi.org/10.1145/363872.363883.

Matsumoto, M., and T. Nishimura. 1998. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on Modeling and Computer Simulation 8: 3–30.
https://doi.org/10.1145/272991.272995.

Michael, J. R., W. R. Schucany, and R. W. Haas. 1976. Generating random variates using transformations with
multiple roots. American Statistician 30: 88–90. https://doi.org/10.2307/2683801.

Schmeiser, B. W., and A. J. G. Babu. 1980. Beta variate generation via exponential majorizing functions. Operations
Research 28: 917–926. https://doi.org/10.1287/opre.28.4.917.

Schmeiser, B. W., and R. Lal. 1980. Squeeze methods for generating gamma variates. Journal of the American
Statistical Association 75: 679–682. https://doi.org/10.2307/2287668.

Walker, A. J. 1977. An efficient method for generating discrete random variables with general distributions. ACM
Transactions on Mathematical Software 3: 253–256. https://doi.org/10.1145/355744.355749.

Wichura, M. J. 1988. Algorithm AS241: The percentage points of the normal distribution. Applied Statistics 37:
477–484. https://doi.org/10.2307/2347330.

Also see
[FN] Functions by category

[D] egen — Extensions to generate

[D] generate — Create or change contents of variable

[R] set rng — Set which random-number generator (RNG) to use

[R] set rngstream — Specify the stream for the stream random-number generator

[R] set seed — Specify random-number seed and state

[M-5] runiform() — Uniform and nonuniform pseudorandom variates

[U] 13.3 Functions

https://doi.org/10.1080/00949658508810839
https://doi.org/10.1145/42372.42381
https://doi.org/10.1080/00949659008811246
https://doi.org/10.1080/03610928608829152
https://doi.org/10.2307/2347913
https://doi.org/10.1145/355744.355750
https://doi.org/10.1007/BF02285231
http://www.stata-journal.com/article.html?article=st0371
http://www.stata-journal.com/article.html?article=st0229
https://doi.org/10.1145/363872.363883
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://doi.org/10.2307/2683801
https://doi.org/10.1287/opre.28.4.917
https://doi.org/10.2307/2287668
https://doi.org/10.1145/355744.355749
https://doi.org/10.2307/2347330
https://www.stata.com/manuals/fnfunctionsbycategory.pdf#fnFunctionsbycategory
https://www.stata.com/manuals/degen.pdf#degen
https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/rsetrng.pdf#rsetrng
https://www.stata.com/manuals/rsetrngstream.pdf#rsetrngstream
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/m-5runiform.pdf#m-5runiform()
https://www.stata.com/manuals/u13.pdf#u13.3Functions

12 Random-number functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

