Matrix functions

	Contents	Functions	Reference	Also see
Contents				
cholesky(M)	the	e Cholesky de then $RR^T =$		S the matrix: if $R = \text{cholesky}(S)$,
coleqnumb(M,s)	the	equation num		iated with column equation <i>s</i> ; <i>missing</i> of be found
colnfreeparms(M)	the	e number of fr	ee parameters i	n columns of M
colnumb(M,s)	the		ber of <i>M</i> assoc annot be found	iated with column name s; missing if
colsof(M)	the	e number of co	olumns of M	
$\operatorname{corr}(M)$	the	e correlation m	natrix of the var	riance matrix
$\det(M)$	the	e determinant o	of matrix M	
diag(M)	the	e square, diago	onal matrix crea	ted from the row or column vector
diagOcnt(M)	the	e number of ze	eros on the diag	onal of M
el(s,i,j)		missing if i of	r j are out of ra	i, j element of the matrix named s ; nge or if matrix s does not exist
<pre>get(systemname)</pre>	a c	opy of Stata in	nternal system	matrix systemname
hadamard(M,N)	a r			$I[i, j] \cdot N[i, j]$ (if M and N are not the rts a conformability error)
I(n)	an	$n \times n$ identity round(n) ide		an integer; otherwise, a round $(n) \times$
inv(M)	the	e inverse of the	e matrix M	
invsym(M)	the	e inverse of M	if M is positiv	e definite
invvech(M)	a s		rix formed by f row or column	illing in the columns of the lower trivector
<pre>invvecp(M)</pre>	a s	-	rix formed by f row or column	illing in the columns of the upper trivector
issymmetric(M)	1 i	f the matrix is	symmetric; oth	nerwise, 0
J(r,c,z)	the	$r \times c$ matrix	containing eler	nents z
matmissing(M)	1 i	f any elements	s of the matrix	are missing; otherwise, 0
<pre>matuniform(r,c)</pre>	the		ces containing he interval (0, 1	uniformly distributed pseudorandom
mreldif(X, Y)	the		erence of X an $ax_{i,j} \{ x_{ij} - y_{ij} \}$	d Y, where the relative difference is $ /(y_{ij} +1) $
<pre>nullmat(matname)</pre>	us	e with the row	-join (,) and co	olumn-join (\\) operators
roweqnumb(M,s)	the		the of M association cannot be f	ciated with row equation s; <i>missing</i> if found
rownfreeparms(M)	the	e number of fr	ee parameters i	n rows of M
rownumb(M,s)		cannot be fou	ind	with row name s; missing if the row
rowsof(M)	the	e number of ro	ws of M	

sweep(M,i)	matrix M with ith row/column swept
trace(M)	the trace of matrix M
vec(M)	a column vector formed by listing the elements of M , starting with the first column and proceeding column by column
vecdiag(M)	the row vector containing the diagonal of matrix M
vech(M)	a column vector formed by listing the lower triangle elements of ${\cal M}$
vecp(M)	a column vector formed by listing the upper triangle elements of ${\cal M}$

Functions

We divide the basic matrix functions into two groups, according to whether they return a matrix or a scalar:

Matrix functions returning a matrix Matrix functions returning a scalar

Matrix functions returning a matrix

In addition to the functions listed below, see [P] **matrix svd** for singular value decomposition, [P] **matrix symeigen** for eigenvalues and eigenvectors of symmetric matrices, and [P] **matrix eigenvalues** for eigenvalues of nonsymmetric matrices.

cholesky(M)

Cholesky(M) Description:	the Cholesky decomposition of the matrix: if $R = \text{cholesky}(S)$, then $RR^T = S$
Domain: Range:	R^T indicates the transpose of R . Row and column names are obtained from M . $n \times n$, positive-definite, symmetric matrices $n \times n$ lower-triangular matrices
corr(M)	
Description:	the correlation matrix of the variance matrix
Domain: Range:	Row and column names are obtained from M . $n \times n$ symmetric variance matrices $n \times n$ symmetric correlation matrices
diag(M)	
Description:	the square, diagonal matrix created from the row or column vector
Domain: Range:	Row and column names are obtained from the column names of M if M is a row vector or from the row names of M if M is a column vector. $1 \times n$ and $n \times 1$ vectors $n \times n$ diagonal matrices
get(systemnam	e)
Description:	a copy of Stata internal system matrix systemname
Domain: Range:	This function is included for backward compatibility with previous versions of Stata. existing names of system matrices matrices

hadamard	(M	,	Ν	I)
----------	---	---	---	---	----

Description: a matrix whose i, j element is $M[i, j] \cdot N[i, j]$ (if M and N are not the same size, this function reports a conformability error) Domain M: $m \times n$ matrices

Domain M.	$m \times n$ matrices
Domain N:	$m \times n$ matrices
Range:	$m \times n$ matrices

I(n)

Description:	an $n \times n$ identity matrix if n is an integer; otherwise, a round (n) \times round (n) identity
	matrix real scalars 1 to c(max_matdim) identity matrices

inv(M)

Description:	the inverse of the matrix M	

If M is singular, this will result in an error.

The function invsym() should be used in preference to inv() because invsym() is more accurate. The row names of the result are obtained from the column names of M, and the column names of the result are obtained from the row names of M. Domain: $n \times n$ nonsingular matrices Range: $n \times n$ matrices

invsym(M)

Description: the inverse of M if M is positive definite

	If M is not positive definite, rows will be inverted until the diagonal terms are zero or
	negative; the rows and columns corresponding to these terms will be set to 0, producing
	a g2 inverse. The row names of the result are obtained from the column names of M ,
р [.]	and the column names of the result are obtained from the row names of M .
Domain:	$n \times n$ symmetric matrices
Range:	$n \times n$ symmetric matrices

invvech(M)

Description: a symmetric matrix formed by filling in the columns of the lower triangle from a row or column vector

Domain: $n(n+1)/2 \times 1$ and $1 \times n(n+1)/2$ vectors Range: $n \times n$ matrices

invvecp(M)

Description:	a symmetric matrix formed by filling in the columns of the upper triangle from a row
	or column vector
Domain:	$n(n+1)/2 \times 1$ and $1 \times n(n+1)/2$ vectors
Range:	$n \times n$ matrices

J(r,c,z)

Description:the $r \times c$ matrix containing elements zDomain r:integer scalars 1 to c(max_matdim)Domain c:integer scalars 1 to c(max_matdim)Domain z:scalars -8e+307 to 8e+307Range: $r \times c$ matrices

matuniform(r,c)

Description: the $r \times c$ matrices containing uniformly distributed pseudorandom numbers on the interval (0, 1)Domain r: integer scalars 1 to c(max_matdim)

Domain c: integer scalars 1 to c(max_matdim)

Range: $r \times c$ matrices

nullmat(matname)

Description: use with the row-join (,) and column-join (\\) operators

Consider the following code fragment, which is an attempt to create the vector (1, 2, 3, 4):

The above program will not work because, the first time through the loop, v will not yet exist, and thus forming (v, 'i') makes no sense. nullmat() relaxes that restriction:

forvalues i = 1/4 {
mat v = (nullmat(v), 'i')

The nullmat() function informs Stata that if v does not exist, the function row-join is to be generalized. Joining nothing with 'i' results in ('i'). Thus the first time through the loop, v = (1) is formed. The second time through, v does exist, so v = (1, 2) is formed, and so on.

nullmat() can be used only with the , and $\ operators$.

Domain: matrix names, existing and nonexisting

Range: matrices including null if matname does not exist

sweep(M,i)

Description: matrix M with ith row/column swept

The row and column names of the resultant matrix are obtained from M, except that the *n*th row and column names are interchanged. If B = sweep(A, k), then

$$\begin{split} B_{kk} &= \frac{1}{A_{kk}} \\ B_{ik} &= -\frac{A_{ik}}{A_{kk}}, \qquad i \neq k \\ B_{kj} &= \frac{A_{kj}}{A_{kk}}, \qquad j \neq k \\ B_{ij} &= A_{ij} - \frac{A_{ik}A_{kj}}{A_{kk}}, \qquad i \neq k, j \neq k \end{split}$$

Domain M:	$n \times n$ matrices
Domain <i>i</i> :	integer scalars 1 to n
Range:	$n \times n$ matrices

vec(M)

Description:	a column vector formed by listing the elements of M, starting with the first column and
	proceeding column by column
Domain:	matrices
Range:	column vectors ($n \times 1$ matrices)

vecdiag(M)

Description: the row vector containing the diagonal of matrix M

	vecdiag() is the opposite of diag(). The row name is set to r1; the column names
_	are obtained from the column names of M.
Domain:	$n \times n$ matrices
Range:	$1 \times n$ vectors

vech(M)

Description:	a column vector formed by listing the lower triangle elements of M
Domain:	$n \times n$ matrices
Range:	$n(n+1)/2 \times 1$ vectors

vecp(M)

Description:	a column vector formed by listing the upper triangle elements of M
Domain:	$n \times n$ matrices
Range:	$n(n+1)/2 \times 1$ vectors

Matrix functions returning a scalar

coleqnumb(M Description: Domain M: Domain s: Range:	the equation number of M associated with column equation s ; <i>missing</i> if the column equation cannot be found
colnfreeparm Description: Domain: Range:	s(M) the number of free parameters in columns of M matrices integer scalars 0 to c(max_matdim)
colnumb(M, s) Description: Domain M: Domain s: Range:	the column number of M associated with column name s ; missing if the column cannot be found
colsof (<i>M</i>) Description: Domain: Range:	the number of columns of M matrices integer scalars 1 to c(max_matdim)
det (<i>M</i>) Description: Domain: Range:	the determinant of matrix M $n \times n$ (square) matrices scalars $-8e+307$ to $8e+307$
diag0cnt(M) Description: Domain: Range:	the number of zeros on the diagonal of M $n \times n$ (square) matrices integer scalars 0 to n
el (s, i, j) Description: Domain s: Domain i: Domain j: Range:	<pre>s[floor(i),floor(j)], the i, j element of the matrix named s; missing if i or j are out of range or if matrix s does not exist strings containing matrix name scalars 1 to c(max_matdim) scalars 1 to c(max_matdim) scalars -8e+307 to 8e+307 or missing</pre>

Domain M:	1 if the matrix is symmetric; otherwise, 0
Domain M:	1 if any elements of the matrix are missing; otherwise, 0
Domain X: Domain Y:	the relative difference of X and Y, where the relative difference is defined as $\max_{i,j}\{ x_{ij}-y_{ij} /(y_{ij} +1)\}$
roweqnumb(M Description: Domain M: Domain s: Range:	the equation number of M associated with row equation s ; missing if the row equation cannot be found matrices
Domain:	s(M) the number of free parameters in rows of M matrices integer scalars 0 to c(max_matdim)
rownumb(M, s) Description: Domain M: Domain s: Range:	the row number of M associated with row name s ; missing if the row cannot be found matrices
rowsof (<i>M</i>) Description: Domain: Range:	the number of rows of M matrices integer scalars 1 to c(max_matdim)
trace(M) Description: Domain: Range:	the trace of matrix M $n \times n$ (square) matrices scalars $-8e+307$ to $8e+307$

Jacques Salomon Hadamard (1865–1963) was born in Versailles, France. He had a tumultuous childhood, eating elephant meat to survive and enduring the premature deaths of two younger sisters. Hadamard taught while working on his doctorate, which he obtained in 1892 from École Normale Supérieure. His dissertation is recognized as the first examination of singularities. Hadamard published a paper on the Riemann zeta function, for which he was awarded the Grand Prix des Sciences Mathématiques in 1892. Shortly after, he became a professor at the University of Bordeaux and made many significant contributions over the course of four years. For example, in 1893 he published a paper on determinant inequalities, giving rise to Hadamard matrices. Then in 1896, he used complex analysis to prove the prime number theorem, and he was awarded the Bordin Prize by the Academy of Sciences for his work on dynamic trajectories. In the following years, he published books on two-dimensional and three-dimensional geometry, as well as an influential paper on functional analysis. He was elected to presidency of the French Mathematical Society in 1906 and as chair of mechanics at the Collège de France in 1909. Faced with the tragic deaths of two of his sons during World War I, Hadamard buried himself in his work. He continued to publish outstanding work in new areas, including probability theory, education, and psychology. In 1956, he was awarded the CNRS Gold Medal for his many contributions.

Reference

Mazýa, V. G., and T. O. Shaposhnikova. 1998. Jacques Hadamard, A Universal mathematician. Providence, RI: American Mathematical Society.

Also see

- [FN] Functions by category
- [D] egen Extensions to generate
- [D] generate Create or change contents of variable
- [M-4] Intro Categorical guide to Mata functions
- [U] 13.3 Functions
- [U] 14.8 Matrix functions

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.