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abs(x) the absolute value of x

ceil(x) the unique integer n such that n− 1 < x ≤ n; x (not “.”) if x is
missing, meaning that ceil(.a) = .a

cloglog(x) the complementary log-log of x

comb(n,k) the combinatorial function n!/{k!(n− k)!}
digamma(x) the digamma() function, d lnΓ(x)/dx

exp(x) the exponential function ex

expm1(x) ex − 1 with higher precision than exp(x)− 1 for small values of
|x|

floor(x) the unique integer n such that n ≤ x < n+ 1; x (not “.”) if x is
missing, meaning that floor(.a) = .a

int(x) the integer obtained by truncating x toward 0 (thus, int(5.2) = 5
and int(-5.8) = −5); x (not “.”) if x is missing, meaning
that int(.a) = .a

invcloglog(x) the inverse of the complementary log-log function of x

invlogit(x) the inverse of the logit function of x

ln(x) the natural logarithm, ln(x)

ln1m(x) the natural logarithm of 1−x with higher precision than ln(1−x)
for small values of |x|

ln1p(x) the natural logarithm of 1+x with higher precision than ln(1+x)
for small values of |x|

lnfactorial(n) the natural log of n factorial = ln(n!)

lngamma(x) ln{Γ(x)}
log(x) a synonym for ln(x)

log10(x) the base-10 logarithm of x

log1m(x) a synonym for ln1m(x)

log1p(x) a synonym for ln1p(x)

logit(x) the log of the odds ratio of x, logit(x) = ln {x/(1− x)}
max(x1,x2,. . .,xn) the maximum value of x1, x2, . . . , xn
min(x1,x2,. . .,xn) the minimum value of x1, x2, . . . , xn
mod(x,y) the modulus of x with respect to y

reldif(x,y) the “relative” difference |x− y|/(|y|+ 1); 0 if both arguments are
the same type of extended missing value; missing if only one
argument is missing or if the two arguments are two different
types of missing
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round(x,y) or round(x) x rounded in units of y or x rounded to the nearest integer if the
argument y is omitted; x (not “.”) if x is missing (meaning
that round(.a) = .a and that round(.a,y) = .a if y is not
missing) and if y is missing, then “.” is returned

sign(x) the sign of x: −1 if x < 0, 0 if x = 0, 1 if x > 0, or missing if
x is missing

sqrt(x) the square root of x
sum(x) the running sum of x, treating missing values as zero
trigamma(x) the second derivative of lngamma(x) = d2 lnΓ(x)/dx2

trunc(x) a synonym for int(x)

Functions
abs(x)

Description: the absolute value of x
Domain: −8e+307 to 8e+307
Range: 0 to 8e+307

ceil(x)
Description: the unique integer n such that n− 1 < x ≤ n; x (not “.”) if x is missing, meaning

that ceil(.a) = .a

Also see floor(x), int(x), and round(x).
Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307

cloglog(x)
Description: the complementary log-log of x

cloglog(x) = ln{−ln(1− x)}
Domain: 0 to 1
Range: −8e+307 to 8e+307

comb(n,k)
Description: the combinatorial function n!/{k!(n− k)!}
Domain n: integers 1 to 1e+305
Domain k: integers 0 to n
Range: 0 to 8e+307 or missing

digamma(x)
Description: the digamma() function, d lnΓ(x)/dx

This is the derivative of lngamma(x). The digamma(x) function is sometimes called
the psi function, ψ(x).

Domain: −1e+15 to 8e+307
Range: −8e+307 to 8e+307 or missing
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exp(x)
Description: the exponential function ex

This function is the inverse of ln(x). To compute ex − 1 with high precision for
small values of |x|, use expm1(x).

Domain: −8e+307 to 709
Range: 0 to 8e+307

expm1(x)
Description: ex − 1 with higher precision than exp(x)− 1 for small values of |x|
Domain: −8e+307 to 709
Range: −1 to 8e+307

floor(x)
Description: the unique integer n such that n ≤ x < n+ 1; x (not “.”) if x is missing, meaning

that floor(.a) = .a

Also see ceil(x), int(x), and round(x).
Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307

int(x)
Description: the integer obtained by truncating x toward 0 (thus, int(5.2) = 5 and int(-5.8) =

−5); x (not “.”) if x is missing, meaning that int(.a) = .a

One way to obtain the closest integer to x is int(x+sign(x)/2), which simplifies
to int(x+0.5) for x ≥ 0. However, use of the round() function is preferred. Also
see round(x), ceil(x), and floor(x).

Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307

invcloglog(x)
Description: the inverse of the complementary log-log function of x

invcloglog(x) = 1− exp{−exp(x)}
Domain: −8e+307 to 8e+307
Range: 0 to 1 or missing

invlogit(x)
Description: the inverse of the logit function of x

invlogit(x) = exp(x)/{1 + exp(x)}
Domain: −8e+307 to 8e+307
Range: 0 to 1 or missing
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ln(x)
Description: the natural logarithm, ln(x)

This function is the inverse of exp(x). The logarithm of x in base b can be calculated
via logb(x) = loga(x)/ loga(b). Hence,
log5(x) = ln(x)/ln(5) = log(x)/log(5) = log10(x)/log10(5)
log2(x) = ln(x)/ln(2) = log(x)/log(2) = log10(x)/log10(2)

You can calculate logb(x) by using the formula that best suits your needs. To compute
ln(1− x) and ln(1 + x) with high precision for small values of |x|, use ln1m(x)
and ln1p(x), respectively.

Domain: 1e–323 to 8e+307
Range: −744 to 709

ln1m(x)
Description: the natural logarithm of 1−x with higher precision than ln(1−x) for small values

of |x|
Domain: −8e+307 to 1− c(epsdouble)
Range: −37 to 709

ln1p(x)
Description: the natural logarithm of 1 +x with higher precision than ln(1 +x) for small values

of |x|
Domain: −1 + c(epsdouble) to 8e+307
Range: −37 to 709

lnfactorial(n)
Description: the natural log of n factorial = ln(n!)

To calculate n!, use round(exp(lnfactorial(n)),1) to ensure that the result is
an integer. Logs of factorials are generally more useful than the factorials themselves
because of overflow problems.

Domain: integers 0 to 1e+305
Range: 0 to 8e+307

lngamma(x)
Description: ln{Γ(x)}

Here the gamma function, Γ(x), is defined by Γ(x) =
∫∞
0
tx−1e−tdt. For integer

values of x > 0, this is ln((x− 1)!).

lngamma(x) for x < 0 returns a number such that exp(lngamma(x)) is equal to
the absolute value of the gamma function, Γ(x). That is, lngamma(x) always returns
a real (not complex) result.

Domain: −2,147,483,648 to 1e+305 (excluding negative integers)
Range: −8e+307 to 8e+307

log(x)
Description: a synonym for ln(x)
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log10(x)
Description: the base-10 logarithm of x
Domain: 1e–323 to 8e+307
Range: −323 to 308

log1m(x)
Description: a synonym for ln1m(x)

log1p(x)
Description: a synonym for ln1p(x)

logit(x)
Description: the log of the odds ratio of x, logit(x) = ln {x/(1− x)}
Domain: 0 to 1 (exclusive)
Range: −8e+307 to 8e+307 or missing

max(x1,x2,. . .,xn)
Description: the maximum value of x1, x2, . . . , xn

Unless all arguments are missing, missing values are ignored.
max(2,10,.,7) = 10
max(.,.,.) = .

Domain x1: −8e+307 to 8e+307 or missing
Domain x2: −8e+307 to 8e+307 or missing
. . .
Domain xn: −8e+307 to 8e+307 or missing
Range: −8e+307 to 8e+307 or missing

min(x1,x2,. . .,xn)
Description: the minimum value of x1, x2, . . . , xn

Unless all arguments are missing, missing values are ignored.
min(2,10,.,7) = 2
min(.,.,.) = .

Domain x1: −8e+307 to 8e+307 or missing
Domain x2: −8e+307 to 8e+307 or missing
. . .
Domain xn: −8e+307 to 8e+307 or missing
Range: −8e+307 to 8e+307 or missing
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mod(x,y)
Description: the modulus of x with respect to y

mod(x, y) = x− y floor(x/y)
mod(x,0) = .

Domain x: −8e+307 to 8e+307
Domain y: 0 to 8e+307
Range: 0 to 8e+307

reldif(x,y)
Description: the “relative” difference |x − y|/(|y| + 1); 0 if both arguments are the same type

of extended missing value; missing if only one argument is missing or if the two
arguments are two different types of missing

Domain x: −8e+307 to 8e+307 or missing
Domain y: −8e+307 to 8e+307 or missing
Range: 0 to 8e+307 or missing

round(x,y) or round(x)
Description: x rounded in units of y or x rounded to the nearest integer if the argument y

is omitted; x (not “.”) if x is missing (meaning that round(.a) = .a and that
round(.a,y) = .a if y is not missing) and if y is missing, then “.” is returned

For y = 1, or with y omitted, this amounts to the closest integer to x; round(5.2,1) is
5, as is round(4.8,1); round(-5.2,1) is−5, as is round(-4.8,1). The rounding
definition is generalized for y 6= 1. With y = 0.01, for instance, x is rounded to
two decimal places; round(sqrt(2),.01) is 1.41. y may also be larger than 1;
round(28,5) is 30, which is 28 rounded to the closest multiple of 5. For y = 0,
the function is defined as returning x unmodified.

For values of x exactly at midpoints, where it may not be clear whether to round up
or down, x is always rounded up to the larger value. For example, round(4.5) is 5
and round(-4.5) is −4. Note that rounding a number is based on the floating-point
number representation of the number instead of the number itself. So round() is
sensitive to representation errors and precision limits. For example, 0.15 has no exact
floating-point number representation. Therefore, round(0.15,0.1) is 0.1 instead of
0.2. See [U] 13.12 Precision and problems therein for details.

Also see int(x), ceil(x), and floor(x).
Domain x: −8e+307 to 8e+307
Domain y: −8e+307 to 8e+307
Range: −8e+307 to 8e+307

sign(x)
Description: the sign of x: −1 if x < 0, 0 if x = 0, 1 if x > 0, or missing if x is missing
Domain: −8e+307 to 8e+307 or missing
Range: −1, 0, 1 or missing

https://www.stata.com/manuals/u13.pdf#u13.12Precisionandproblemstherein
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sqrt(x)
Description: the square root of x
Domain: 0 to 8e+307
Range: 0 to 1e+154

sum(x)
Description: the running sum of x, treating missing values as zero

For example, following the command generate y=sum(x), the jth observation on
y contains the sum of the first through jth observations on x. See [D] egen for an
alternative sum function, total(), that produces a constant equal to the overall sum.

Domain: all real numbers or missing
Range: −8e+307 to 8e+307 (excluding missing)

trigamma(x)
Description: the second derivative of lngamma(x) = d2 lnΓ(x)/dx2

The trigamma() function is the derivative of digamma(x).
Domain: −1e+15 to 8e+307
Range: 0 to 8e+307 or missing

trunc(x)
Description: a synonym for int(x)

Video example
How to round a continuous variable
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[FN] Functions by category
[D] egen — Extensions to generate

[D] generate — Create or change contents of variable

[M-4] Intro — Categorical guide to Mata functions

[U] 13.3 Functions
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