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Description
Finite mixture models (FMMs) are used to classify observations, to adjust for clustering, and to model

unobserved heterogeneity. In finite mixture modeling, the observed data are assumed to belong to unob-

served subpopulations called classes, and mixtures of probability densities or regression models are used

to model the outcome of interest. After fitting the model, class membership probabilities can also be

predicted for each observation. This entry discusses some fundamental and theoretical aspects of FMMs

and illustrates these aspects with a worked example.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Finite mixture models
Mixture of normal distributions—FMM by example
Beyond mixtures of distributions

Introduction
The main concept in finite mixture modeling is that the observed data come from distinct, but unob-

served, subpopulations. To illustrate, we plot the observed distribution of a whole population (solid line)

and the unobserved densities of two underlying subpopulations (dashed lines).
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Mixture of two normal distributions

The observed distribution looks approximately normal, with a slight asymmetry because of more

values falling above zero than below. This asymmetry occurs because the distribution is a mixture of

two normal densities; the right-hand density skews the distribution to the right. We can use FMMs to

estimate the means and variances of the two underlying densities along with their proportions in the

overall population.
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More generally, we can use FMMs tomodelmixtures containing any number of subpopulations, and the

subpopulation-specific models need not be limited to amixture of normal densities. FMMs allowmixtures

of linear and generalized linear regression models, including models for binary, ordinal, nominal, and

count responses, and allow the inclusion of covariates with subpopulation-specific effects. We can also

make inferences about each subpopulation and classify individual observations into a subpopulation.

Because of their flexibility, FMMs have been used extensively in various fields to classify observations,

to adjust for clustering, and to model unobserved heterogeneity. Mixtures of normal densities with equal

variances can be used to approximate any arbitrary continuous distribution, which makes FMMs a popular

tool to model multimodal, skewed, or asymmetrical data. A mixture of regression models can be used

to model phenomena such as clustering of internet traffic (Jorgensen 2004), demand for medical care

(Deb and Trivedi 1997), disease risk (Schlattmann, Dietz, and Böhning 1996), and perceived consumer

risk (Wedel and DeSarbo 1993). A mixture of a count model and a degenerate point mass distribution

is often used for modeling zero-inflated and truncated count outcomes; see, for example, Jones et al.

(2013, chap. 11). McLachlan and Peel (2000) and Frühwirth-Schnatter (2006) provide a comprehensive

treatment of finite mixture modeling.

From a broader statistical perspective, FMMs are related to latent class analysis (LCA) models; both

are used to identify classes using information from manifest (observed) variables. The difference is that

FMMs allow parameters in a regressionmodel for a single dependent variable to differ across classes while

traditional LCA fits intercept-only models to multiple dependent variables. FMM is also a subset of struc-

tural equation modeling (SEM) where the latent variable is assumed to be categorical; see [SEM] Intro 1,

[SEM] Intro 2, [SEM] gsem, and Skrondal and Rabe-Hesketh (2004, chap. 3) for a theoretical discussion.

If your latent variable is continuous and your manifest variables are discrete, you can use item response

theory models; see [IRT] irt. If both your latent variable and manifest variables are continuous, you can

fit a structural equation model; see [SEM] sem.

Throughout this manual, we use the terms “class”, “group”, “type”, or “component” to refer to an

unobserved subpopulation. We use the terms “class probability” or “component probability” to refer to

the probability of belonging to a given component in the mixture. Class probabilities are also referred to

in the literature as “mixing weights” or “mixing proportions”.

Finite mixture models
FMMs are probabilistic models that combine two or more density functions. In an FMM, the observed

responses y are assumed to come from 𝑔 distinct classes 𝑓1, 𝑓2, . . . , 𝑓𝑔 in proportions 𝜋1, 𝜋2, . . . , 𝜋𝑔. In

its simplest form, we can write the density of a 𝑔-component mixture model as

𝑓(y) =
𝑔

∑
𝑖=1

𝜋𝑖𝑓𝑖(y|x′β𝑖)

where 𝜋𝑖 is the probability for the 𝑖th class, 0 ≤ 𝜋𝑖 ≤ 1 and ∑ 𝜋𝑖 = 1, and 𝑓𝑖(⋅) is the conditional
probability density function for the observed response in the 𝑖th class model.

https://www.stata.com/manuals/semintro1.pdf#semIntro1
https://www.stata.com/manuals/semintro2.pdf#semIntro2
https://www.stata.com/manuals/semgsem.pdf#semgsem
https://www.stata.com/manuals/irtirt.pdf#irtirt
https://www.stata.com/manuals/semsem.pdf#semsem
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fmm uses the multinomial logistic distribution to model the probabilities for the latent classes. The

probability for the 𝑖th latent class is given by

𝜋𝑖 = exp(𝛾𝑖)
∑𝑔

𝑗=1 exp(𝛾𝑗)

where 𝛾𝑖 is the linear prediction for the 𝑖th latent class. By default, the first latent class is the base level
so that 𝛾1 = 0 and exp(𝛾1) = 1.

The likelihood is computed as the sum of the probability-weighted conditional likelihood from each

latent class; see Methods and formulas in [FMM] fmm for details.

Mixture of normal distributions—FMM by example
The 1872 Hidalgo stamp of Mexico was printed on different paper types, which was typical of stamps

of that era. For collectors, a stamp from a printing that used thicker paper is more valuable. We can use

an FMM to predict the probability that a stamp is from a printing that used thick paper.

stamp.dta contains data on 485 measurements of stamp thickness, recorded to a thousandth of a

millimeter. Here we plot the histogram of the measurements.

. use https://www.stata-press.com/data/r19/stamp
(1872 Hidalgo stamp of Mexico)
. histogram thickness, bins(80)
(bin=80, start=.06, width=.0008875)
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At a minimum, the histogram suggests bimodality in the data, but we follow Izenman and Sommer

(1988) and fit a mixture of three normal distributions to the data, each with its own mean and variance.

We also estimate the proportion that each distribution contributes to the overall density. You can think of

the three distributions as representing three different types of paper (thick, medium, thin) that the stamps

were printed on. More specifically, our model is

𝑓(y) = 𝜋1𝑁(𝜇1, 𝜎2
1) + 𝜋2𝑁(𝜇2, 𝜎2

2) + 𝜋3𝑁(𝜇3, 𝜎2
3)

https://www.stata.com/manuals/fmmfmm.pdf#fmmfmmMethodsandformulas
https://www.stata.com/manuals/fmmfmm.pdf#fmmfmm
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The probability of being in each class is estimated using multinomial logistic regression

𝜋1 = 1
1 + exp(𝛾2) + exp(𝛾3)

𝜋2 = exp(𝛾2)
1 + exp(𝛾2) + exp(𝛾3)

𝜋3 = exp(𝛾3)
1 + exp(𝛾2) + exp(𝛾3)

where the 𝛾𝑖 are intercepts in the multinomial logit model. By default, the first class is treated as the

base, so 𝛾1 = 0.

To fit this model, we type

. fmm 3: regress thickness

We type fmm 3: because we have a mixture of three components. We type regress thickness to

tell fmm to fit a linear regression model for each component. With no covariates, regress reduces to

estimating the mean and variance of a Gaussian (normal) density for each component.

The result of typing our estimation command is

. fmm 3: regress thickness
Fitting class model:
Iteration 0: (class) log likelihood = -532.8249
Iteration 1: (class) log likelihood = -532.8249
Fitting outcome model:
Iteration 0: (outcome) log likelihood = 1949.1228
Iteration 1: (outcome) log likelihood = 1949.1228
Refining starting values:
Iteration 0: (EM) log likelihood = 1396.8814
Iteration 1: (EM) log likelihood = 1404.8995
Iteration 2: (EM) log likelihood = 1412.4626
Iteration 3: (EM) log likelihood = 1416.9678
Iteration 4: (EM) log likelihood = 1419.0044
Iteration 5: (EM) log likelihood = 1419.0582
Iteration 6: (EM) log likelihood = 1417.9719
Iteration 7: (EM) log likelihood = 1416.4213
Iteration 8: (EM) log likelihood = 1414.8176
Iteration 9: (EM) log likelihood = 1413.3462
Iteration 10: (EM) log likelihood = 1412.0695
Iteration 11: (EM) log likelihood = 1410.992
Iteration 12: (EM) log likelihood = 1410.0961
Iteration 13: (EM) log likelihood = 1409.3574
Iteration 14: (EM) log likelihood = 1408.7518
Iteration 15: (EM) log likelihood = 1408.2578
Iteration 16: (EM) log likelihood = 1407.8564
Iteration 17: (EM) log likelihood = 1407.5315
Iteration 18: (EM) log likelihood = 1407.2694
Iteration 19: (EM) log likelihood = 1407.0695
Iteration 20: (EM) log likelihood = 1406.9013
note: EM algorithm reached maximum iterations.
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Fitting full model:
Iteration 0: Log likelihood = 1516.5252
Iteration 1: Log likelihood = 1517.1348 (not concave)
Iteration 2: Log likelihood = 1517.8203 (not concave)
Iteration 3: Log likelihood = 1518.153
Iteration 4: Log likelihood = 1518.6491
Iteration 5: Log likelihood = 1518.8474
Iteration 6: Log likelihood = 1518.8484
Iteration 7: Log likelihood = 1518.8484
Finite mixture model Number of obs = 485
Log likelihood = 1518.8484

Coefficient Std. err. z P>|z| [95% conf. interval]

1.Class (base outcome)

2.Class
_cons .6410696 .1625089 3.94 0.000 .3225581 .9595812

3.Class
_cons .8101538 .1493673 5.42 0.000 .5173992 1.102908

Class: 1
Response: thickness
Model: regress

Coefficient Std. err. z P>|z| [95% conf. interval]

thickness
_cons .0712183 .0002011 354.20 0.000 .0708242 .0716124

var(e.thic~s) 1.71e-06 4.49e-07 1.02e-06 2.86e-06

Class: 2
Response: thickness
Model: regress

Coefficient Std. err. z P>|z| [95% conf. interval]

thickness
_cons .0786016 .0002496 314.86 0.000 .0781123 .0790909

var(e.thic~s) 5.74e-06 9.98e-07 4.08e-06 8.07e-06

Class: 3
Response: thickness
Model: regress

Coefficient Std. err. z P>|z| [95% conf. interval]

thickness
_cons .0988789 .0012583 78.58 0.000 .0964127 .1013451

var(e.thic~s) .0001967 .0000223 .0001575 .0002456



fmm intro — Introduction to finite mixture models 6

The output shows four iteration logs. The first three are for models that are fit to obtain starting values.

Finding good starting values is often challenging for mixture models. fmm provides a variety of options

for specifying and computing starting values; see Options in [FMM] fmm for more information.

The first output table presents the estimated class probabilities on a multinomial logistic scale. We

can transform these estimates into probabilities as follows:

𝜋1 = 1
1 + exp(0.64) + exp(0.81)

≈ 0.19

𝜋2 = exp(0.64)
1 + exp(0.64) + exp(0.81)

≈ 0.37

𝜋3 = exp(0.81)
1 + exp(0.64) + exp(0.81)

≈ 0.44

More conveniently, we can use the estat lcprob command, which calculates these probabilities and

the associated standard errors and confidence intervals; see [FMM] estat lcprob.

. estat lcprob
Latent class marginal probabilities Number of obs = 485

Delta-method
Margin std. err. [95% conf. interval]

Class
1 .1942968 .0221242 .1545535 .2413428
2 .3688746 .0286318 .3147305 .4265356
3 .4368286 .027885 .383149 .49203

The three remaining tables of the fmm output show the estimated means and variances of each normal

distribution.

The resulting mixture density, with maximum likelihood estimates of means, variances, and class

probabilities, is given by

0.19 × 𝑁(0.071, 0.0000017) + 0.37 × 𝑁(0.079, 0.0000057) + 0.44 × 𝑁(0.099, 0.0001967)

https://www.stata.com/manuals/fmmfmm.pdf#fmmfmmOptions
https://www.stata.com/manuals/fmmfmm.pdf#fmmfmm
https://www.stata.com/manuals/fmmestatlcprob.pdf#fmmestatlcprob
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This equation gives the predicted density of stamp thickness, and we can plot it against the empirical

distribution of stamp thickness as follows:

. predict den, density marginal

. histogram thickness, bins(80) addplot(line den thickness) legend(pos(6))
(bin=80, start=.06, width=.0008875)
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We see that the first two components with small variances model the left-hand side of the empirical

distribution, whereas the third component with much larger variance covers the long tail on the right-hand

side of the empirical distribution.

We can use the predictions of the posterior probability of class membership to evaluate the probability

of being in each class for each stamp. For the first stamp in our dataset, the probability of being in class 3,

the thick paper type, is 1.

. predict pr*, classposteriorpr

. format %4.3f pr*

. list thickness pr* in 1, abbreviate(10)

thickness pr1 pr2 pr3

1. .06 0.000 0.000 1.000
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Because there are no covariates in the model, the posterior probabilities are the same for any stamp

with a given thickness and are as follows.

thickness pr1 pr2 pr3

.06 0.000 0.000 1.000
.064 0.000 0.000 1.000
.065 0.001 0.000 0.999
.066 0.026 0.000 0.974
.068 0.723 0.001 0.276
.069 0.915 0.001 0.083
.07 0.960 0.002 0.037

.071 0.965 0.007 0.028

.072 0.937 0.026 0.037

.073 0.789 0.134 0.076

.074 0.335 0.525 0.140

.075 0.038 0.838 0.123

.076 0.002 0.910 0.088

.077 0.000 0.930 0.070

.078 0.000 0.936 0.064

.079 0.000 0.930 0.070
.08 0.000 0.912 0.088

.081 0.000 0.871 0.129

.082 0.000 0.788 0.212

.083 0.000 0.635 0.365

.084 0.000 0.406 0.594

.085 0.000 0.185 0.815

.086 0.000 0.060 0.940

.087 0.000 0.015 0.985

.088 0.000 0.003 0.997

.089 0.000 0.001 0.999
.09-.131 0.000 0.000 1.000

The third mixture component has a relatively large variance, so the four thinnest measures end up

being incorrectly classified into the thick paper type. Because stamp thickness cannot be negative, we

can improve the model fit if we use a density with support only on the positive real line, such as the

lognormal distribution.

. fmm 3: glm thickness, family(lognormal)
(output omitted )
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We plot the predicted density from the mixture of normals with the density from the mixture of log-

normals.
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The mixture of lognormals correctly classifies the thinnest stamps into the thin paper type, which is

confirmed by the predicted posterior probabilities.

thickness pr1 pr2 pr3

.06 .889 0 .111
.064 .992 0 .008
.065 .994 0 .006
.066 .996 0 .004
.068 .997 0 .003
.069 .997 0 .003
.07 .996 0 .004

.071 .996 0 .004

.072 .995 0 .005

.073 .992 0 .008

.074 .987 .001 .011

.075 .965 .017 .018

.076 .849 .124 .027

.077 .532 .437 .031

.078 .233 .741 .026

.079 .102 .874 .024
.08 .056 .915 .028

.081 .041 .911 .048

.082 .039 .85 .111

.083 .042 .654 .305

.084 .034 .288 .678

.085 .017 .056 .928

.086 .006 .006 .988

.087 .002 0 .998

.088 .001 0 .999
.89-.131 0 0 1
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Beyond mixtures of distributions
We have just scratched the surface of what can be done with fmm. We can fit mixtures of linear and

generalized linear regression models where the effect of the covariates and the covariates themselves

differ by class; see [FMM] fmm estimation for a list of supported outcome models. We can also model

class probabilities with common or class-specific covariates.

More complicated FMMs can be fit using gsem within the LCA framework. gsem allows more than

one response variable per component and more than one categorical latent variable; see, for instance,

[SEM] Example 54g, where we fit a mixture of Poisson regression models to multiple responses. See

Latent class analysis (LCA) in [SEM] Intro 2 and Latent class models in [SEM] Intro 5 for an overview

of latent class modeling with gsem.
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