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Example 1a — Mixture of linear regression models

Description Remarks and examples References Also see

Description
In this example, we show how to fit FMMs with covariates, and we illustrate how you might

determine the number of latent classes. For an example without covariates and for a conceptual
overview of FMMs, see [FMM] fmm intro.

Remarks and examples stata.com

Medical expenditures vary greatly from person to person. We believe that some of the variation
may be due to having different types of medical care users. We might think of these types as low
spenders, average spenders, and high spenders. Because we cannot necessarily tell which group a
person belongs to, an FMM may be appropriate for these data.

We use an abbreviated version of mus03data.dta from Cameron and Trivedi (2022, chap. 3).
mus03sub.dta contains information on the log of medical expenditures, lmedexp. For brevity, we
use only the variables female, age, income, and totchr, the last variable recording the number of
chronic health problems.

First, let us look at the distribution of medical expenditures.

. use https://www.stata-press.com/data/r18/mus03sub
(Abbreviated dataset mus203mepsmedexp from Cameron and Trivedi (2022))

. histogram lmedexp, bins(100) normal
(bin=100, start=1.0986123, width=.10642325)
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The variable lmedexp looks approximately normally distributed. Indeed, it looks as if it may come
from a single normal distribution. However, our model includes covariates, and this histogram does
not give us an indication of how the regression models may differ across groups. We start by fitting
the three-group model, but we will certainly want to check whether a model with a single distribution
or with two distributions is a better fit for these data.
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. fmm 3: regress lmedexp income c.age##c.age totchr i.sex

Fitting class model:

Iteration 0: (class) log likelihood = -3246.3993
Iteration 1: (class) log likelihood = -3246.3993

Fitting outcome model:

Iteration 0: (outcome) log likelihood = -4700.2736
Iteration 1: (outcome) log likelihood = -4700.2736

Refining starting values:

Iteration 0: (EM) log likelihood = -7482.765
Iteration 1: (EM) log likelihood = -7327.5583
Iteration 2: (EM) log likelihood = -7271.2407
Iteration 3: (EM) log likelihood = -7254.4109
Iteration 4: (EM) log likelihood = -7246.0793
Iteration 5: (EM) log likelihood = -7238.679
Iteration 6: (EM) log likelihood = -7231.9742
Iteration 7: (EM) log likelihood = -7226.4046
Iteration 8: (EM) log likelihood = -7222.1152
Iteration 9: (EM) log likelihood = -7219.0098
Iteration 10: (EM) log likelihood = -7216.9001
Iteration 11: (EM) log likelihood = -7215.5809
Iteration 12: (EM) log likelihood = -7214.8641
Iteration 13: (EM) log likelihood = -7214.5912
Iteration 14: (EM) log likelihood = -7214.6342
Iteration 15: (EM) log likelihood = -7214.8937
Iteration 16: (EM) log likelihood = -7215.2936
Iteration 17: (EM) log likelihood = -7215.7769
Iteration 18: (EM) log likelihood = -7216.3017
Iteration 19: (EM) log likelihood = -7216.8377
Iteration 20: (EM) log likelihood = -7217.3632
note: EM algorithm reached maximum iterations.

Fitting full model:

Iteration 0: Log likelihood = -4734.6429
Iteration 1: Log likelihood = -4733.3724
Iteration 2: Log likelihood = -4732.1323
Iteration 3: Log likelihood = -4731.0186
Iteration 4: Log likelihood = -4729.3225
Iteration 5: Log likelihood = -4727.7218
Iteration 6: Log likelihood = -4727.6741
Iteration 7: Log likelihood = -4727.6738

Finite mixture model Number of obs = 2,955
Log likelihood = -4727.6738

Coefficient Std. err. z P>|z| [95% conf. interval]

1.Class (base outcome)

2.Class
_cons 1.162296 .292186 3.98 0.000 .5896216 1.73497

3.Class
_cons -1.153202 .3188697 -3.62 0.000 -1.778175 -.5282289
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Class: 1
Response: lmedexp
Model: regress

Coefficient Std. err. z P>|z| [95% conf. interval]

lmedexp
income .0059804 .002604 2.30 0.022 .0008768 .0110841

age .1201823 .2926979 0.41 0.681 -.4534951 .6938597

c.age#c.age -.0007572 .0019417 -0.39 0.697 -.0045628 .0030483

totchr .9223744 .0810612 11.38 0.000 .7634974 1.081251

sex
Female .0576508 .1453985 0.40 0.692 -.227325 .3426266

_cons .6300965 10.96433 0.06 0.954 -20.8596 22.11979

var(e.lmed~p) 1.43183 .1533984 1.160642 1.766382

Class: 2
Response: lmedexp
Model: regress

Coefficient Std. err. z P>|z| [95% conf. interval]

lmedexp
income .0023725 .0012209 1.94 0.052 -.0000205 .0047655

age .2136658 .1075408 1.99 0.047 .0028897 .424442

c.age#c.age -.0013195 .0007152 -1.84 0.065 -.0027213 .0000823

totchr .3106586 .0292864 10.61 0.000 .2532583 .3680589

sex
Female -.0918924 .0543976 -1.69 0.091 -.1985097 .0147249

_cons -.9546721 4.017561 -0.24 0.812 -8.828947 6.919602

var(e.lmed~p) .7966127 .0805009 .6534764 .9711013

Class: 3
Response: lmedexp
Model: regress

Coefficient Std. err. z P>|z| [95% conf. interval]

lmedexp
income .0009315 .0048146 0.19 0.847 -.0085049 .0103679

age -.2645947 .2637125 -1.00 0.316 -.7814618 .2522724

c.age#c.age .0015761 .001754 0.90 0.369 -.0018616 .0050138

totchr .186475 .0647115 2.88 0.004 .0596427 .3133072

sex
Female -.1761484 .1371471 -1.28 0.199 -.4449517 .0926549

_cons 20.79524 9.853989 2.11 0.035 1.481775 40.1087

var(e.lmed~p) .3846891 .0983236 .2331038 .634849
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That is a lot of output! Let’s start with the part of the output that is probably familiar if you
have used regress. We have one regression table for each class. The coefficient estimates here are
interpreted just as you do the coefficients from a linear regression model. Because the dependent
variable is log transformed, we can interpret the coefficients in terms of a percentage change. For
example, a one-unit increase in totchr results in an 18.6% increase in medical expenditures for
class 3, all else held constant. The estimates for each class also include a variance term. So, we see
that the first class has much higher variability than the third.

The first table in the output gives the coefficients for the latent class membership, next to 1.Class,
2.Class, and 3.Class at the top of the table. These coefficients can be interpreted in the same
manner as you interpret the coefficients from multinomial logistic regression (mlogit), which is to
say that they are difficult to interpret. However, the postestimation command estat lcprob will turn
them into probabilities.

. estat lcprob, nose

Latent class marginal probabilities Number of obs = 2,955

Margin

Class
1 .2215875
2 .708474
3 .0699385

We see that individuals in the population fall into the three classes in proportions 0.22, 0.71, and
0.07. Notice that we specified the nose option above. estat lcprob can be slow because it is time
consuming to compute standard errors when there are a lot of covariates in the model. When fitting
preliminary models, we might not be concerned about standard errors of the latent class probabilities,
so we use the nose option to speed things up.

We have estimated that about 22% of observations are in group 1, about 71% are in group 2, and
about 7% are in group 3. But, we still do not know which group corresponds to which spending
class. If we want to calculate the level of spending for each group, we can use estat lcmean to
calculate the marginal means for each class; see [FMM] estat lcmean.

. estat lcmean

Latent class marginal means Number of obs = 2,955

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

1
lmedexp 7.185846 .1572402 45.70 0.000 6.877661 7.494031

2
lmedexp 8.143981 .0469051 173.63 0.000 8.052049 8.235914

3
lmedexp 10.15809 .1712913 59.30 0.000 9.822369 10.49382

We see that class 1 corresponds to low spenders, class 2 corresponds to average spenders, class 3
corresponds to high spenders.

Because medical expenditures for class 1 and class 2 are relatively close to each other, compared
with class 3, we may be tempted to fit a model with two classes. We may also compare our model
with a model with one class, which reduces to a linear regression.

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rmlogit.pdf#rmlogit
https://www.stata.com/manuals/fmmestatlcprob.pdf#fmmestatlcprob
https://www.stata.com/manuals/fmmestatlcmean.pdf#fmmestatlcmean


Example 1a — Mixture of linear regression models 5

First, we store our estimates from the model with three latent classes with the name fmm3 by
using estimates store.

. estimates store fmm3

Then, we fit a model with two classes and then a model with one class, storing the results of each
model in fmm2 and fmm1, respectively.

. fmm 2: regress lmedexp income c.age##c.age totchr i.sex

(output omitted )
. estimates store fmm2

. fmm 1: regress lmedexp income c.age##c.age totchr i.sex

(output omitted )
. estimates store fmm1

Finally, we use estimates stats to compare the models.

. estimates stats fmm1 fmm2 fmm3

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

fmm1 2,955 . -4807.386 7 9628.772 9670.711
fmm2 2,955 . -4758.177 15 9546.354 9636.223
fmm3 2,955 . -4727.674 23 9501.348 9639.147

Note: BIC uses N = number of observations. See [R] IC note.

The Akaike information criterion (AIC) clearly favors the three-component model, whereas the
Bayesian information criterion (BIC) marginally favors the two-component model; see [R] estat ic for
more information about the two criteria.

We will proceed with the three-component model.

Technical note

We might be tempted to use a likelihood-ratio test (see [R] lrtest) to help us decide how many
latent classes to fit. However, a model with g−1 classes with covariates for the mean is not nested in
the model extended to g classes because of the additional equation for the mean of the gth component.
The model with g− 1 classes could be viewed as the model with g classes with variance components
of the gth class model going to zero. But the parameter value of zero lies on the boundary of the
parameter space, and the standard regularity conditions necessary for the likelihood-ratio test do not
hold. See McLachlan and Peel (2000, 185) for a detailed explanation.
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Also see
[FMM] fmm intro — Introduction to finite mixture models

[FMM] fmm: regress — Finite mixtures of linear regression models

[FMM] estat lcmean — Latent class marginal means

[FMM] estat lcprob — Latent class marginal probabilities
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