predict treatment — predict for treatment statistics

Description

predict has options to predict potential-outcome means, treatment effects, and treatment effects on the treated after models fit using the entreat() or extreat() option. The predict options are described below.

For standard use of predict, see

- [ERM] eregress predict
- [ERM] eintreg predict
- [ERM] eprobit predict
- [ERM] eoprobit predict

For advanced use of predict, see

- [ERM] predict advanced

Also see [ERM] estat teffects for reports of average treatment statistics.

Syntax

You previously fit a model by using the entreat() or extreat() option,

- eregress y x1 ..., ... entreat(treated = ...) ...
- eintreg yl yu x1 ..., ... entreat(treated = ...) ...
- eprobit y x1 ..., ... entreat(treated = ...) ...
- eoprobit y x1 ..., ... entreat(treated = ...) ...
- xteregress y x1 ..., ... entreat(treated = ...) ...
- xteintreg yl yu x1 ..., ... entreat(treated = ...) ...
- xteprobit y x1 ..., ... entreat(treated = ...) ...
- xteoprobit y x1 ..., ... entreat(treated = ...) ...
- eregress y x1 ..., ... extreat(treated) ...
- eintreg yl yu x1 ..., ... extreat(treated) ...
- eprobit y x1 ..., ... extreat(treated) ...
- eoprobit y x1 ..., ... extreat(treated) ...
- xteregress y x1 ..., ... extreat(treated) ...
- xteintreg yl yu x1 ..., ... extreat(treated) ...
- xteprobit y x1 ..., ... extreat(treated) ...
- xteoprobit y x1 ..., ... extreat(treated) ...

In these cases, predict has extra features. predict’s extra syntax for these features is

predict [type] newvar [if] [in], treatstatistic [treatmodifier oprobitmodifier]
In some cases, more than one new variable needs to be specified:

```
predict [type] {stub* | newvarlist} [if] [in], treatstatistic [treatmodifier oprobitmodifier]
```

treatstatistic
Description

<table>
<thead>
<tr>
<th>pomean</th>
<th>potential-outcome mean (POM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>te</td>
<td>treatment effect (TE)</td>
</tr>
<tr>
<td>tet</td>
<td>treatment effect on the treated (TET)</td>
</tr>
</tbody>
</table>

treatmodifier
Description

<table>
<thead>
<tr>
<th>tlevel(#)</th>
<th>treatment level for which treatstatistic is calculated</th>
</tr>
</thead>
</table>

may be specified as a value recorded in variable treated, such as 1, 2, ... or such as 1, 5, ..., depending on the values recorded.
may also be specified as #1, #2, ..., meaning the first, second, ... values recorded in treated.

oprobitmodifier
Description

<table>
<thead>
<tr>
<th>outlevel(#)</th>
<th>ordered outcome for which treatstatistic is calculated</th>
</tr>
</thead>
</table>

When used after models fit with eoprobit or xteoprobit, treatstatistic is calculated for the specified outcome, or for the first outcome if you do not specify otherwise.
outlevel(#) specifies the outcome for which statistics are to be calculated. # is specified in the same way as with tlevel(), but the meaning is different. In the case of outlevel(), you are specifying the outcome, not the treatment level.

Options

The options for the statistic to be calculated—pomean, te, and tet—are mutually exclusive. You calculate one treatment statistic per predict command.

pomean calculates the POMs for each treatment level. The POMs are the expected value of y that would have been observed if everyone was assigned to each of the treatment levels.

If there were two treatment levels (a control and a treatment), you would type

```
.predict pom1 pom2, pomean
```

If there were three levels, you would type

```
.predict pom1 pom2 pom3, pomean
```

pomean can alternatively be used with tlevel() to produce individual POMs:

```
.predict pom1, pomean tlevel(#1)
.predict pom2, pomean tlevel(#2)
```

If you have fit the model using eoprobit or xteoprobit, the POMs calculated for the examples above would be for y’s first outcome. You can change that. See Predicting treatment effects after eoprobit and xteoprobit in Remarks and examples below.
predict treatment — predict for treatment statistics

`te` calculates the TEs for each treatment level. The TEs are the differences in the POMs. For instance, if there were two treatment levels—a control and a treatment—there would be one treatment effect and it would be `pom2-pom1`. If there were three levels, there would be two treatment effects, `pom2-pom1` and `pom3-pom1`.

If there were two treatment levels—a control and a treatment—you would type

```
.predict te2, te
```

If there were three levels, you would type

```
.predict te2 te3, te
```

`te` can alternatively be used with `tlevel()` to produce individual TEs:

```
.predict te2, te tlevel(#2)
predict te3, te tlevel(#3)
```

If you have fit the model using `eoprobit` or `xteoprobit`, the TEs calculated for the examples above would be for `y`'s first outcome. You can change that. See Predicting treatment effects after `eoprobit` and `xteoprobit` in Remarks and examples below.

`tet` calculates the TETs. The TETs are the differences in the POMs conditioned on treatment level.

If there were two treatment levels—a control and a treatment—you would type

```
.predict tet2, tet
```

If there were three levels, you would type

```
.predict tet2 tet3, tet
```

`tet` can alternatively be used with `tlevel()` to produce individual TETs:

```
.predict tet2, tet tlevel(#2)
predict tet3, tet tlevel(#3)
```

If you have fit the model using `eoprobit` or `xteoprobit`, the TETs calculated for the examples above would be for `y`'s first outcome. You can change that. See Predicting treatment effects after `eoprobit` and `xteoprobit` in Remarks and examples below.

tlevel(#) is optionally used with `pomean`, `te`, or `tet`. Its use is illustrated above.

outlevel(#) is optionally used with `pomean`, `te`, or `tet` with models fit by `eoprobit` and `xteoprobit`. See Predicting treatment effects after `eoprobit` and `xteoprobit` in Remarks and examples below.

Remarks and examples

For an example of `predict` with treatment effects, see [ER] Intro 9.

Remarks are presented under the following headings:

- Predicting treatment effects after `eregress`, `eintreg`, `xtregress`, and `xteintreg`
- Predicting treatment effects after `eoprobit` and `xteoprobit`
- Predicting treatment effects after `eoprobit` and `xteoprobit`
Predicting treatment effects after egress, eintreg, xteregress, and xteintreg

egress, eintreg, xteregress, and xteintreg concern models with a continuous outcome variable. In egress and xteregress models, \(y_i \) is observed. In eintreg and xteintreg models, \(y_i \) is not observed directly, but it is known that \(y_{1i} \leq y_i \leq y_{ui} \).

Thus, the treatment statistics are expressed in the units of \(y \). If \(y \) is blood pressure, the units are presumably mmHG. POMs are in mmHG. TEs and TETs are differences in blood pressure expressed in mmHG.

Predicting treatment effects after eprobit and xteprobit

eprobit and xteprobit concern models with binary outcomes, and predictions are in terms of the probability of a positive outcome. Thus, POMs are probabilities. TEs and TETs are differences in probabilities.

Predicting treatment effects after eoprobit and xteoprobit

eoprobit and xteoprobit concern models with ordinal outcome variables, and predictions are in terms of the probabilities—the probability of each outcome.

Treatment statistics are calculated on the basis of probabilities of outcomes. Thus, POMs are probabilities. TEs and TETs are differences in probabilities.

We want probabilities and differences in probabilities, but you need to specify which probability. The probability for the first outcome? The second?

If you do not specify which and simply type

```
.predict pom1 pom2 pom3, pomean
```

then the POMs are calculated for the first outcome, what eoprobit and xteoprobit call outlevel(#1). If you wanted to obtain the POMs for outlevel(#2), you would type

```
.predict pom1 pom2 pom3, pomean outlevel(#2)
```

If you wanted them for outlevel(#3), you would type

```
.predict pom1 pom2 pom3, pomean outlevel(#3)
```

The same logic applies to calculating TE and TET with the te and tet options. outlevel(#1) is used unless you specify otherwise.

Methods and formulas

Also see

[ERM] eintreg postestimation — Postestimation tools for eintreg and xteintreg
[ERM] eintreg predict — predict after eintreg and xteintreg
[ERM] eoprobit postestimation — Postestimation tools for eoprobit and xteoprobit
[ERM] eoprobit predict — predict after eoprobit and xteoprobit
[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit
[ERM] eprobit predict — predict after eprobit and xteprobit
[ERM] eregress postestimation — Postestimation tools for eregress and xteregess
[ERM] eregress predict — predict after eregress and xteregess