
Intro 7 — Model interpretation

Description Remarks and examples References Also see

Description
After you fit a model using one of the ERM commands, you can generally interpret the coefficients

in the usual way. You can also use margins to produce counterfactuals, derivatives, contrasts, potential

outcomes, treatment effects, and effects for any type of change in the covariates.

In this entry, we discuss how to interpret coefficients, how to use margins, and how to use predict.
We demonstrate how this works for a simple linear model, and we discuss how the same margins and

predict commands work for nonlinear and random-effects models.

Remarks and examples
Remarks are presented under the following headings:

Use margins
Endogenous covariates
How to interpret coefficients
How to use and interpret margins
How to use margins in models without endogenous covariates
How to use margins with endogenous covariates
margins with predict(asf)
margins with predict(fixedasf)
When to use which
Using margins with nonlinear and random-effects models
Advanced options: Using margins predict(base()) and predict(fix())

Use margins
In many models, including many that can be fit by the ERM commands, the coefficients have a struc-

tural interpretation. An example of a structural interpretation is, “What would we expect to happen to our

dependent variable if we increased the value of a covariate by one unit for everyone in the population?”

So long as there are no endogenous covariates in the main equation and your model is correctly speci-

fied, the coefficients from all models fit by ERM commands have a structural interpretation. For linear

models you fit with eregress, eintreg, xteregress, and xteintreg, the coefficients almost always

still have a structural interpretation, even if the model has endogenous covariates.

What can we do if our main equation does have endogenous covariates and we are not using a linear

estimator? Use margins, which automatically produces estimates of margins, derivatives, and effects

that fully account for any endogenous covariates. Even if you have a linear model where the coefficients

have a structural interpretation, we recommend you still use margins. The default results from margins
will always have a structural interpretation, and you do not need to worry whether your model meets the

criteria that allow the coefficients to be interpreted.

Here is a simple example. If you fit a model,

. eregress y x1 x2

and then type

. margins, dydx(x1)
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margins will return an estimate of the expected change in y given an instantaneous unit change in x1.
And, because the model is linear, this estimate, its standard error, and confidence intervals will all match

those from the coefficient on x1 in the results of eregress.

With linear models, this result holds even if we believe x1 is endogenous. If we type

. eregress y x1 x2, endogenous(x1 = z1, nomain)

followed by

. margins, dydx(x1)

the results from margins will again match those for the coefficient x1 from eregress.

Things change if we are interested in a result that is not linear in the coefficient estimates. Consider

the following:

. eprobit y x1 x2, endogenous(x1 = z1, nomain)

If we are interested in the average change in the probability of observing y = 1 in the population for an

instantaneous unit change in x1, and we use only the coefficients on x1 and x2, we would not account

for the contribution 𝑒𝑖.y. Prior to the instantaneous change, the probability is

Pr(y𝑖 = 1) = Pr(𝛽0 + 𝛽1x1𝑖 + 𝛽2x2𝑖 + 𝑒𝑖.y > 0)

Saywe computed the probability asΦ(𝛽0+𝛽1x1𝑖+𝛽2x2𝑖). This will not be at the proper starting point
on the nonlinear normal cumulative density curve, because we do not account for the correlation of the

unobservables and the covariates. You do not need to worry about this when you use ERM postestimation

commands. If you type

. margins, dydx(x1)

probability computations account for 𝑒𝑖.y and its correlation with the covariates. The effects produced

have a structural interpretation. That is to say, they have an interpretation as though we could change

values in the population and observe their effect. So the bottom line is use margins. Assuming your

model is correctly specified, the default results from margins will always have a structural interpreta-

tion. See Blundell and Powell (2003), Imbens and Newey (2009), and Wooldridge (2010) for a detailed

description of structural functions with linear and nonlinear endogenous models.

If you want to understand more about why and how, keep reading.
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Endogenous covariates
Sometimes, care must be taken interpreting the coefficients from models when your main equation

contains endogenous covariates. Endogenous covariates in the main equation cause problems, which

means that if your model has no endogenous covariates in the main equation, you have no problems.

The following models have no endogenous covariates in the main equation:

. eregress y x1 x2

. eregress y x1 x2 c.x1#c.x2

. eregress y x1 x2, select(selected = x1 z1 z2) ///
endogenous(z2 = z3 z4, nomain)

. xteprobit y x1 x2

. xteprobit y x1 x2 c.x1#c.x2

. xteprobit y x1 x2, select(selected = x1 z1 z2) ///
endogenous(z2 = z3 z4, nomain)

We showed examples with eregress and xteprobit. We could just as well have shown examples

with any of the other ERM commands. Note that the last model for each command we showed has an

endogenous covariate, but it is not in the main equation.

In any case, if you have no endogenous covariates in the main equation, you interpret coefficients and

use margins and predict just as you usually would. If you have endogenous covariates in eprobit or

eoprobit, do not attempt to interpret your coefficients. Rather, use margins, and interpret the results

as you normally would.

In the rest of the manual entry, when we write about models with or without endogenous covariates,

we mean models with or without endogenous covariates in the main equation.

Models with endogenous covariates in the main equation require care in interpretation, even if you fit

a model as simple as

. eregress y x1, endogenous(x1 = z1, nomain)

There are four ways endogenous covariates can end up in the main equation:

1. You specify endogenous(x1 = ...) to add variable x1 to the main equation.

2. You specify endogenous(x1 = ..., nomain), and you include x1 in the main equation.

3. You specify entreat(treated = ...) to handle endogenous treatment effects. entreat() itself

adds endogenous covariate treated to the main equation.

4. You specify select(selected = ...) to handle endogenous selection, and you include selected
in themain equation. select()makes variable selected endogenous, but it does not automatically

add it to the main equation.

In what follows, we will show examples of endogenous covariates added to the main equation by

option endogenous(), but we could have added them in any of the above ways.

In this manual entry, we depart from our usual practice of naming exogenous covariates x1, x2, . . .
and naming endogenous covariates w1, w2, . . . . We depart from this practice because we will introduce

a situation and then say, “if x1 is exogenous, do this; if it is endogenous, do something else”.
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How to interpret coefficients
For eregress, eintreg, xteregress, and xteintreg, you can almost always interpret your coef-

ficients in the usual way. This is true even if your model has endogenous covariates in the main equation.

What do we mean by “the usual way”?

Say you are interested in the effect of covariate x1. Whether you have typed

. eregress y1 x1 x2

or

. eregress y1 x1 x2, endogenous(x1 = z1, nomain)

or even

. eintreg y1 y2 x1 x2, endogenous(x1 = x2 z1, nomain) ///
endogenous(z1 = x2 z2, nomain) ///
select(selected = x2 z3 z4)

you will have fit a model where

y1𝑖 = · · · + 𝛽1x1𝑖 + · · ·

You interpret the fitted coefficient 𝛽1 as the change in y1 for a one-unit change in x1. That is true
whether x1 is an exogenous or an endogenous covariate. That interpretation sounds obvious, but we will

see cases later where we must be more specific about the questions we ask regarding changes to x1.

Even if x1 is interacted with another covariate, you still interpret the coefficients in the usual way.

Say you have the model

. eregress y1 x1 c.x1#c.x2 x2

you will have fit a model where

y1𝑖 = · · · + 𝛽1x1𝑖 + 𝛽2x1𝑖 × x2𝑖 + · · ·

So a one-unit change in x1 leads to a 𝛽1 +𝛽2x2 change in y1. Again, this is true whether x1 is exogenous

or endogenous.

We said you can “almost always interpret your coefficients in the usual way”. When can you not?

You cannot interpret them in the usual way when all the following are true:

1. The covariate you are trying to interpret is endogenous or is an endogenous treatment.

2. If the covariate is endogenous, it is either binary or ordinal and is so declared in the

endogenous() option using suboption probit or oprobit.

3. That covariate is in the main equation.

4. There is a second endogenous covariate in the main equation.

5. You have designated that each level (category) of the covariate you are interpreting has a dif-

ferent outcome error variance. Or you have designated that the correlation of the outcome

error with the other endogenous errors varies by the levels of the covariate you are interpreting.

You specify these cases by adding suboption povariance or suboption pocorrelation to the

equation for the endogenous covariate of interest.

Whew! We did say that you could “almost always interpret your coefficients in the usual way”.
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Here is one way to specify such a model,

. eregress y1 y2 x1 x2, endogenous(x1 = x2 z1, probit povariance nomain) ///
endogenous(x2 = z2, nomain)

The coefficient on x2 can be interpreted in the usual way. The coefficient on x1 cannot. Why not?

The conditional-on-x2 expectation for y1 depends on the conditional-on-x2 expectation of the error for

y1. Because there is a different error variance when x1 = 0 and when x1 = 1, their expectation no

longer cancels out when we take the expected value of the effect. That’s the “intuitive” answer. Were

we conditioning on the observed value of x1 in the effect (evaluating the treatment effect on the treated),

we would have the same situation. The expectation of the errors would not cancel out. See Treatment in

eregress for the full mathematical explanation.

For all other models, the best approach is to use margins. That should give you comfort, not con-

cern—margins is a clear and safe way to form inferences and to measure and test effects. In fact, feel

free to use margins rather than the coefficients even in regressions where you can “interpret your coef-

ficients in the usual way”. margins will give you exactly the same answers that you will get by looking

at the coefficients. margins also makes it easy to ask what happens if you increase x1 by 100, rather

than by 1. Or to ask what happens if you give each person an additional 100 units of x1 beyond his or

her current endowment. In models with interactions or models with treatments, such questions can be

tedious to answer from the coefficients.

To be completely honest, the coefficients from eprobit and eoprobit models without endogenous

covariates can be interpreted in the same way as the coefficients from probit and oprobit models.

The coefficients are in standard-deviation-of-the-latent-dependent-variable units. If you understood that,

great, go ahead. If you did not, use margins for all post hoc inferences after probit, oprobit, eprobit,
xteprobit, eoprobit, and xteoprobit models. With margins, you can easily make and test state-

ments about how your covariates determine the levels of the probability of a positive outcome and how

changes in your covariate change that probability.

How to use and interpret margins
You can always interpret the results from margins as being structural results. That means we can

interpret them as though we were able to manipulate values in the population and compute the effect of

those manipulations on the dependent variable. Obviously, this assumes the model is correctly specified.

When you have endogenous covariates, margins fully accounts for the correlation that gave rise

to the endogeneity. For an in-depth discussion of interpretation of results of models with endogenous

covariates, see Blundell and Powell (2003), Imbens and Newey (2009), and Wooldridge (2010).

How to use margins in models without endogenous covariates
If your models include no endogenous covariates in the main equation, you can use margins in the

ordinary way. Here is how you would ordinarily use margins. The following model has no endogenous

covariates:

. use https://www.stata-press.com/data/r19/ermexample
(Artificial ERM example data)
. eregress y x1 x2 c.x1#c.x2
(output omitted )

The model fit is

y𝑖 = 𝛽0 + 𝛽1x1𝑖 + 𝛽2x2𝑖 + 𝛽3x1𝑖x2𝑖 + 𝑒𝑖.y

https://www.stata.com/manuals/ermeregress.pdf#ermeregressMethodsandformulasTreatment
https://www.stata.com/manuals/ermeregress.pdf#ermeregress
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Assume that our interest is in the effect of x1. One way to interpret the effect is to interpret the

coefficients: a one-unit increase in x1 increases y by 𝛽1 +𝛽3x2. Another way to interpret the effect is by
using counterfactuals. In these data, what would be the average change in y if x1 were increased by 1?

margins will tell us if we type

. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)
Contrasts of predictive margins Number of obs = 200
Model VCE: OIM
Expression: Average structural function mean, predict()
1._at: x1 = x1
2._at: x1 = x1+1

Delta-method
Contrast std. err. [95% conf. interval]

_at
(2 vs 1) 1.109641 .1750625 .7665246 1.452757

You can learn about margins, its features, and its syntax in [R] margins. We will tell you enough,

however, so that everything we say will make sense.

Assume that the data comprise three subgroups in which we have a special interest. For instance, we

want to know how an increase in x1 would affect each subgroup. margins can tell us that too.

. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)
> over(group)
Contrasts of predictive margins Number of obs = 200
Model VCE: OIM
Expression: Average structural function mean, predict()
Over: group
1._at: 0.group

x1 = x1
1.group

x1 = x1
2.group

x1 = x1
2._at: 0.group

x1 = x1+1
1.group

x1 = x1+1
2.group

x1 = x1+1

Delta-method
Contrast std. err. [95% conf. interval]

_at@group
(2 vs 1) 0 .5561469 .1960937 .1718102 .9404835
(2 vs 1) 1 1.123401 .1754062 .7796108 1.46719
(2 vs 1) 2 1.641114 .2153742 1.218988 2.063239

margins helps us to understand changes that are different in each observation. If we had the simple

model eregress y x1 x2, we know the effect of incrementing x1 is to increase y by ̂𝛽1, whichmight be 3.

The change would be 3 in every observation. In the model we have, however, the effect of incrementing

x1 is to increase y by 𝛽1 + 𝛽3x2. The average effect depends on the distribution of x2.

https://www.stata.com/manuals/rmargins.pdf#rmargins
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margins helps us to understand how a change affects the average in our data and subgroups of our

data. We are using our sample as a proxy for the population and subpopulations, but that is what we

usually do in statistics. We assume that our sample is representative. The issues are the same as we

discussed in [ERM] Intro 5.

If our sample is representative but we want margins to report population-based standard errors, we

need to specify vce(robust) when we fit the model:

. eregress y x1 x2 c.x1#c.x2, vce(robust)

If our sample is not representative, we can weight it with the inverse probability that its observations

were sampled from the underlying population. If we want margins to report population-based standard

errors, we can type

. eregress y x1 x2 c.x1#c.x2 [pw = weight], vce(robust)

or type

. eregress y x1 x2 c.x1#c.x2 [pw = weight]

We can type either because specifying [pw=weight] implies vce(robust).

Even when we do specify or imply vce(robust), margins will report sample standard errors by

default. To obtain population-based standard errors, we must specify or imply vce(robust) when we

fit the model, and when we use margins, we must specify its vce(unconditional) option:

. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r)) ///
vce(unconditional)

In the linear regression example we have been discussing, we included an interaction in the model

and used margins to report averages. We used margins because the interaction caused changes to vary

observation by observation. Probit and ordered probit models produce predictions that vary observation

by observation even inmodels with no interactions. Consider the following probit model, which is almost

the simplest one possible:

. eprobit y_p x1

The model is

Pr(positive outcome) = Pr(𝛽0 + 𝛽1x1𝑖 + 𝑒𝑖.y p > 0) = normal(𝛽0 + 𝛽1x1)

Assume that our interest is in x1 just as it was previously. The effect of a one-unit increase in x1 is to

increase the normal index by ̂𝛽1. Simple, right? No, it is not. The effect in probabilities of that change

varies observation by observation. Here is how the results vary if ̂𝛽1 were 0.5 and we incremented x1
by 1. The effect depends on each subject’s initial probability of a positive outcome:

Subject’s original Subject’s new

Pr(pos. outcome) Increment by Pr(pos. outcome) Difference

0.01 0.5 s.d. 0.03 0.02

0.10 0.5 s.d. 0.22 0.12

0.20 0.5 s.d. 0.37 0.17

0.40 0.5 s.d. 0.60 0.20

0.50 0.5 s.d. 0.69 0.19

0.60 0.5 s.d. 0.77 0.17

0.90 0.5 s.d. 0.96 0.06

0.99 0.5 s.d. 1.00 0.01

https://www.stata.com/manuals/ermintro5.pdf#ermIntro5
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Asubject whose original probability was 0.40 experiences an increase of 0.20 when x1 is incremented

by 1. Meanwhile, a subject whose probability was 0.90 experiences a mere 0.06 increase.

Using margins, we can obtain the average changes in probabilities in the data due to incrementing

x1 by 1. We type

. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)
Contrasts of adjusted predictions Number of obs = 200
Model VCE: OIM
Expression: Average structural function probability, predict()
1._at: x1 = x1
2._at: x1 = x1+1

Delta-method
Contrast std. err. [95% conf. interval]

_at
(2 vs 1) .2961685 .0287644 .2397912 .3525458

We can obtain the changes for each of the three subgroups too:

. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)
> over(group)
Contrasts of adjusted predictions Number of obs = 200
Model VCE: OIM
Expression: Average structural function probability, predict()
Over: group
1._at: 0.group

x1 = x1
1.group

x1 = x1
2.group

x1 = x1
2._at: 0.group

x1 = x1+1
1.group

x1 = x1+1
2.group

x1 = x1+1

Delta-method
Contrast std. err. [95% conf. interval]

_at@group
(2 vs 1) 0 .3857775 .051078 .2856664 .4858885
(2 vs 1) 1 .2944176 .0294406 .2367152 .3521201
(2 vs 1) 2 .2096478 .0202614 .1699363 .2493594

Counterfactuals are useful in complicated linear models—we had an interaction in ours—and in non-

linear models whether simple or complicated.
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How to use margins with endogenous covariates
Let’s start with a reasonably simple model, namely,

. eregress y x1 x2, endogenous(x1 = z1, nomain)

The model is

y𝑖 = 𝛽0 + 𝛽1x1𝑖 + 𝛽2x2𝑖 + 𝑒𝑖.y
x1𝑖 = 𝛾0 + 𝛾1z1𝑖 + 𝑒𝑖.x1

where 𝜌 = corr(𝑒.x1, 𝑒.y) and is nonzero.

Let’s imagine that y is a health outcome and x1 is a 0/1 variable indicating whether a treatment was

administered that is expected to improve the outcome. Observations are people, and people choose for

themselves whether to have the treatment. Given the story, we should fit the model by typing

. eregress y i.x1 x2, endogenous(x1 = z1, probit nomain)

Nonetheless, we are going to fit the model without the probit specification and factor-variable no-

tation for endogenous covariate x1:

. eregress y x1 x2, endogenous(x1 = z1, nomain)

We omit probit only because it will be easier for us to explain. We need to show you some math,

and the math will be simpler in the linear model case.

What is important is that 𝜌 is likely to be nonzero, no matter how the model is fit. 𝜌 is the correlation

between 𝑒.y and 𝑒.x1. 𝑒.y includes all the unobserved things that affect how well the treatment works.

𝑒.x1 includes all the unobserved things that affect whether individuals choose the treatment. 𝜌 is likely

to be nonzero and positive because people who believe that they are more likely to benefit from the

treatment (𝑒.y > 0) should be more likely to choose the treatment (𝑒.x1 > 0).

Thus, the best prediction of y that we can make for people like person 1 in our data—people who

have the same value of x1, x2, and z1—includes the effect of ̂𝜌, albeit indirectly. The best prediction of
y we can make for people like person 1 is that their expected value of y will be

̂y1 = ̂𝛽0 + ̂𝛽1x11 + ̂𝛽2x21 + ̂𝑒1.y

̂𝑒1.y is our estimate of the expected value of 𝑒.y in the first observation. Expected values of errors

are often 0, but not in this case. This one depends on 𝜌. Given that we know the values x11 and z11, we

have an estimate of 𝑒1.x1, namely,

̂𝑒1.x1 = x11 − ̂𝛾0 − ̂𝛾1z11

Because 𝑒.x1 and 𝑒.y are correlated, we can produce an estimate of 𝑒1.y given ̂𝑒1.x1 and ̂𝜌. It is a
detail, but the formula is

̂𝑒1.y = 𝜌 × s.d.(𝑒.y)
s.d.(𝑒.x1)

× ̂𝑒1.x1

The value of ̂𝑒1.y can be calculated, and the best prediction we can make for people like person 1

includes it and is

̂y1 = ̂𝛽0 + ̂𝛽1x11 + ̂𝛽2x21 + ̂𝑒1.y
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margins with predict(asf)
Let us temporarily consider x1 to be continuous. We do this to consider what happens if we add 1 to

x1.

What is the best prediction we can make for people like person 1 if x1 was incremented by 1? It is

̂𝑦1 = ̂𝛽0 + ̂𝛽1(x11 + 1) + ̂𝛽2x21 + ̂𝑒1.y

The above is how margins with the default method, predict(asf), makes the calculation for each

observation in the data. Observation by observation, it calculates

̂𝑦𝑖 = ̂𝛽0 + ̂𝛽1(x1𝑖 + 1) + ̂𝛽2x2𝑖 + ̂𝑒𝑖.y (1)

margins includes ̂𝑒𝑖.y in the calculations. This is the best prediction for people like the people in our

population conditioned on everything we know about them. Using the jargon in the literature, we say

that it computes a structural function that averaged over your population gives you an average structural

function.

But there is something more happening. You may have noticed that ̂𝑒𝑖.y is a function of the endoge-

nous covariates, in this case x1. But we did not add 1 to x1 in ̂𝑒𝑖.y. We are asking margins to compute

derivatives and effects taking the level of endogeneity as given by the data. Effects that condition on the

level of endogeneity have a causal interpretation. To be precise, they have a structural function interpre-

tation. For an in-depth discussion of structural functions, see Blundell and Powell (2003), Imbens and

Newey (2009), and Wooldridge (2010).

Now, we return to considering x1 to be binary.

margins with predict(fixedasf)
predict(asf) uses (1) and makes its predictions given how the world currently operates. People

choose their values of x1, and the choice they make is correlated with the outcomes they expect.

predict(fixedasf)makes predictions for a world that operates differently. In the alternative world,

x1 is fixed at a value such as 1. This means that the population of people like person 1 is expanded from

being all people like person 1 who made the same treatment choice to being all people like person 1

regardless of the treatment choice they made. In the expanded definition of people like person 1, the

correlation between 𝑒.y and 𝑒.x1 is broken. The correlation is now 0, and the best prediction for people

like person 1 sets ̂𝑒1.y to 0:

̂y1 = ̂𝛽0 + ̂𝛽1x11 + ̂𝛽2x21 (2)

In the jargon of statistics, x1 is no longer endogenous—it is fixed, and the entire equation for x1
becomes irrelevant.

When you specify margins with the predict(fixedasf) option, it makes the calculation for each

person by using the approach used for person 1 in (2). It uses

̂y𝑖 = ̂𝛽0 + ̂𝛽1x1𝑖 + ̂𝛽2x2𝑖

These observation-by-observation predictions are called potential outcomeswhen applied to treatment

models. The averages based on them that margins reports are called potential-outcome means (POMs).

These averages correspond to what would be observed in a world in which x1 is fixed at a particular

value.

https://www.stata.com/manuals/ermintro7.pdf#ermIntro7Remarksandexampleseq1
https://www.stata.com/manuals/ermintro7.pdf#ermIntro7Remarksandexampleseq2
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We refer to them as fixed average structural functions. They too have a structural interpretation when

we average over the whole population andwhen the covariates can be considered to be fixed exogenously,

by fiat.

Note that in the case described in the prior paragraph, the results from fixedasf and asf are asymp-

totically equivalent. So you can continue to use the default predictions for margins if you wish.

fixedasf simply provides an alternative computation.

When to use which
margins can produce counterfactuals in two ways.

With the default predict(asf) method, margins uses

̂y𝑖 = ̂𝛽0 + ̂𝛽1x1𝑖 + ̂𝛽2x2𝑖 + ̂𝑒𝑖.y

for the values of x1 and x2 specified. The predictions are a function of x1 and x2 and the covariates ap-

pearing in the x1 equation. Those covariates along with ̂𝜌 go into the calculation of ̂𝑒.y. These predictions
correspond to how the current world operates.

When you specify predict(fixedasf), margins uses

̂y𝑖 = ̂𝛽0 + ̂𝛽1x1𝑖 + ̂𝛽2x2𝑖

where x1 is fixed at the value specified. These predictions are based on the exogenous covariates in the

main equation (x2 in this case) and the value to which the fixed variable (x1) is set. These predictions
correspond to a different world in which x1 is no longer endogenous but is fixed to a particular value.

Using margins with nonlinear and random-effects models
Above, we showed you results for one-level (cross-sectional) linearmodels that are fit with eregress.

That discussion extends naturally when fitting any of the other ERM models.

The formulas are more complicated when models are nonlinear, but the assumptions and their impli-

cations are the same.

What if we fit a random-effects model for panel data or grouped data? If we type

. xteregress y x1 x2, endogenous(x1 = z1, nomain)

the model is

y𝑖𝑗 = 𝛽0 + 𝛽1x1𝑖𝑗 + 𝛽2x2𝑖𝑗 + 𝑢𝑖.y + 𝑣𝑖𝑗.y

x1𝑖𝑗 = 𝛾0 + 𝛾1z1𝑖𝑗 + 𝑢𝑖.x1 + 𝑣𝑖𝑗.x1

We can rewrite this in terms of the combined errors 𝑒𝑖𝑗.y = 𝑢𝑖.y +𝑣𝑖𝑗.y and 𝑒𝑖𝑗.x1 = 𝑢𝑖.x1 +𝑣𝑖𝑗.x1.
Then, we have

y𝑖𝑗 = 𝛽0 + 𝛽1x1𝑖𝑗 + 𝛽2x2𝑖𝑗 + 𝑒𝑖𝑗.y

x1𝑖𝑗 = 𝛾0 + 𝛾1z1𝑖𝑗 + 𝑒𝑖𝑗.x1

This produces an estimate of 𝑒𝑖𝑗.y that depends on estimates of 𝑒𝑖𝑗.x1 and 𝜌 = corr(𝑒𝑖𝑗.x1, 𝑒𝑖𝑗.y).
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Everything we said above about using default predictions (predict(asf)) with margins is true

when we fit a random-effects model. To see this, we just replace ̂𝑒𝑖.y with ̂𝑒𝑖𝑗.y in each of the formulas

in the previous sections.

Advanced options: Using margins predict(base()) and predict(fix())
We have simplified our lives by creating predictions that margins can consume and that provide a

structural function (causal) interpretation (see Blundell and Powell [2003], Imbens and Newey [2009],

and Wooldridge [2010]), namely, with predict(asf) and predict(fixedasf). Behind the scenes,

to compute these structural predictions, we use two advanced prediction options, predict(base())
and predict(fix()). In most cases, the effects we want are given by margins with the default

predict(asf) option. But perhaps, you may find exceptions to the rule. If this is the case, this section

will be helpful; otherwise, you may skip this section without any harm.

Let’s think of the model given by

. eregress y1 x1 x2, endogenous(x1 = z1, nomain)

and described by

̂𝑦𝑖 = ̂𝛽0 + ̂𝛽1(x1𝑖) + ̂𝛽2x2𝑖 + ̂𝑒𝑖.y

margins with the default prediction will compute inferences for a given level of endogeneity, and it

will assume ̂𝑒𝑖.y is fixed. In other words, margins allows x1 to change in ̂𝛽1(x1𝑖) but not in ̂𝑒𝑖.y. This
is also true for z1. margins does this by creating copies of the variables x1 and z1 (let us call them

x1orig and z1orig) and then computing the following:

. margins ..., ... predict(base(x1=x1orig z1=z1orig))

predict(base()) allows us to tell margins which endogenous equations and elements within them

to fix at any value. The default predict(asf) method fixes the elements of the endogenous equation

at its original values.

predict(fixedasf) proceeds similarly. Because we are fixing the correlation to be zero, we need

to specify only the endogenous equations that we wish to be treated as fixed. In our example, we would

type

. margins ..., ... predict(fix(x1))

You can appreciate how the bookkeeping becomes more involved as we increase the number of en-

dogenous equations and exclude instruments such as z1.

But the utility of predict(base()) and predict(fix()) is not to manually compute what

predict(asf) and predict(fixedasf) provide us. One case where this framework becomes handy

is when we have an endogenous treatment equation and multiple endogenous equations. Say we fit

. eregress y1 x1, entreat(x1 = z1) endogenous(x2 = z1 z2)

We want to compute an average treatment effect for x1. We would type

. margins r.x1, predict(fix(x1))

When we type this, we ignore the correlation for the endogenous equation of x1 because the values of x1
here are exogenously fixed. Yet we are not ignoring the correlation of the endogenous equation for x2.
This cannot be done with predict(fixedasf) because it will fix all endogenous equations. It cannot be
donewith predict(asf) either because it would incorporate the correlation of the endogenous treatment

equation for x1.
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This is a case where understanding predict(fix()) and predict(base()) matters. In fact, it is

such an important case that we again have made it easy to obtain. Whenever you have an endogenous

treatment equation, you can just type

. estat teffects

and get the average treatment effect.

We could have obtained a consistent estimate of the average treatment effect typing margins r.x1
and using the default predict(asf) method. However, using predict(fix()) is more efficient in this

case.
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