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Description

eprobit fits a probit regression model that accommodates any combination of endogenous co-
variates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and
ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous.
A probit or tobit model may be used to account for endogenous sample selection.

xteprobit fits a random-effects probit regression model that accommodates endogenous covariates,
treatment, and sample selection in the same way as eprobit and also accounts for correlation of
observations within panels or within groups.

Quick start
Probit regression of y on x with continuous endogenous covariate y2 modeled by x and z

eprobit y x, endogenous(y2 = x z)

Same as above, but adding continuous endogenous covariate y3 modeled by x and z2

eprobit y x, endogenous(y2 = x z) endogenous(y3 = x z2)

Probit regression of y on x with binary endogenous covariate d modeled by x and z

eprobit y x, endogenous(d = x z, probit)

Probit regression of y on x with endogenous treatment recorded in trtvar and modeled by x and z

eprobit y x, entreat(trtvar = x z)

Probit regression of y on x with exogenous treatment recorded in trtvar

eprobit y x, extreat(trtvar)

Random-effects probit regression of y on x using xtset data
xteprobit y x

Probit regression of y on x with endogenous sample-selection indicator selvar modeled by x and z

eprobit y x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2

eprobit y x, select(selvar = x z) endogenous(y2 = x z2)

Same as above, but adding endogenous treatment recorded in trtvar and modeled by x and z3

eprobit y x, select(selvar = x z) endogenous(y2 = x z2) ///
entreat(trtvar = x z3)

Same as above, but with random effects and without endogenous treatment
xteprobit y x, select(selvar = x z) endogenous(y2 = x z2)
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Menu
eprobit

Statistics > Endogenous covariates > Models adding selection and treatment > Probit regression

xteprobit

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Probit
regression (RE)

Syntax
Basic probit regression with endogenous covariates

eprobit depvar
[

indepvars
]
, endogenous(depvarsen = varlisten)

[
options

]
Basic probit regression with endogenous treatment assignment

eprobit depvar
[

indepvars
]
, entreat(depvartr

[
= varlisttr

]
)
[

options
]

Basic probit regression with exogenous treatment assignment

eprobit depvar
[

indepvars
]
, extreat(tvar)

[
options

]
Basic probit regression with sample selection

eprobit depvar
[

indepvars
]
, select(depvars = varlists)

[
options

]
Basic probit regression with tobit sample selection

eprobit depvar
[

indepvars
]
, tobitselect(depvars = varlists)

[
options

]
Basic probit regression with random effects

xteprobit depvar
[

indepvars
] [

, options
]

Probit regression combining endogenous covariates, treatment, and selection

eprobit depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, extensions options
]

Probit regression combining random effects, endogenous covariates, treatment, and selection

xteprobit depvar
[

indepvars
] [

if
] [

in
] [

, extensions options
]
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extensions Description

Model

endogenous(enspec) model for endogenous covariates; may be repeated
entreat(entrspec) model for endogenous treatment assignment
extreat(extrspec) exogenous treatment
select(selspec) probit model for selection
tobitselect(tselspec) tobit model for selection

options Description

Model

noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points for integration over
four or more dimensions; default is intpoints(128)

triintpoints(#) set the number of integration (quadrature) points for integration over
three dimensions; default is triintpoints(10)

reintpoints(#) set the number of integration (quadrature) points for
random-effects integration; default is reintpoints(7)

reintmethod(intmethod) integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics

enspec is depvarsen = varlisten
[
, enopts

]
where depvarsen is a list of endogenous covariates. Each variable in depvarsen specifies an
endogenous covariate model using the common varlisten and options.

entrspec is depvartr
[
= varlisttr

] [
, entropts

]
where depvartr is a variable indicating treatment assignment. varlisttr is a list of covariates
predicting treatment assignment.
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extrspec is tvar
[
, extropts

]
where tvar is a variable indicating treatment assignment.

selspec is depvars = varlists
[
, selopts

]
where depvars is a variable indicating selection status. depvars must be coded as 0, indicating
that the observation was not selected, or 1, indicating that the observation was selected. varlists
is a list of covariates predicting selection.

tselspec is depvars = varlists
[
, tselopts

]
where depvars is a continuous variable. varlists is a list of covariates predicting depvars. The
censoring status of depvars indicates selection, where a censored depvars indicates that the
observation was not selected and a noncensored depvars indicates that the observation was
selected.

enopts Description

Model

probit treat endogenous covariate as binary
oprobit treat endogenous covariate as ordinal
pocorrelation estimate different correlations for each level of a binary or an ordinal

endogenous covariate
nomain do not add endogenous covariate to main equation
nore do not include random effects in model for endogenous covariate
noconstant suppress constant term

nore is available only with xteprobit.

entropts Description

Model

pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nointeract do not interact treatment with covariates in main equation
nore do not include random effects in model for endogenous treatment
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteprobit.

extropts Description

Model

pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nointeract do not interact treatment with covariates in main equation
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selopts Description

Model

nore do not include random effects in selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteprobit.

tselopts Description

Model
∗ll(varname | #) left-censoring variable or limit
∗ul(varname | #) right-censoring variable or limit
main add censored selection variable to main equation
nore do not include random effects in tobit selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
∗ You must specify either ll() or ul().
nore is available only with xteprobit.

indepvars, varlisten, varlisttr, and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvars, and varlists may contain time-series

operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, collect, jackknife, and statsby are allowed with eprobit and xteprobit. rolling and svy

are allowed with eprobit. See [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with eprobit; see [U] 11.1.6 weight.
reintpoints() and reintmethod() are available only with xteprobit.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec),
tobitselect(tselspec); see [ERM] ERM options.

noconstant, offset(varnameo), constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype); see [ERM] ERM options.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intpoints(#), triintpoints(#), reintpoints(#), reintmethod(intmethod); see [ERM] ERM
options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize.

The default technique for eprobit is technique(nr). The default technique for xteprobit is
technique(bhhh 10 nr 2).

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with eprobit and xteprobit but are not shown in the dialog
box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples stata.com

eprobit and xteprobit fit models that we refer to as “extended probit regression models”, meaning
that they accommodate endogenous covariates, nonrandom treatment assignment, endogenous sample
selection, and panel data or other grouped data.

eprobit fits models for cross-sectional data (one-level models). eprobit can account for en-
dogenous covariates, treatment, and sample selection, whether these complications arise individually
or in combination.

xteprobit fits random-effects models (two-level models) for panel data or grouped data. xtepro-
bit accounts for endogenous covariates, treatment, and sample selection in the same way as eprobit
and also accounts for within-panel or within-group correlation among observations.

In this entry, you will find information on the syntax for the eprobit and xteprobit commands.
You can see Methods and formulas for a full description of the models that can be fit with eprobit
and xteprobit and details about how those models are fit.

More information on extended probit regression models is found in the separate introductions and
example entries. We recommend reading those entries to learn how to use eprobit and xteprobit.
Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eprobit and xteprobit and the other extended regression commands for
continuous, interval, and ordinal outcomes, see [ERM] Intro 1–[ERM] Intro 9.

[ERM] Intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] Intro 2 provides background on the four types of models—linear regression, interval
regression, probit regression, and ordered probit regression—that can be fit using ERM commands.

[ERM] Intro 3 considers the problem of endogenous covariates and how to solve it using ERM
commands.

[ERM] Intro 4 gives an overview of endogenous sample selection and using ERM commands to
account for it.

[ERM] Intro 5 covers nonrandom treatment assignment and how to account for it using eprobit
or any of the other ERM commands.

https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
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[ERM] Intro 6 covers random-effects models for panel data and other grouped data. It discusses
xteprobit and the other ERM commands for panel data.

[ERM] Intro 7 discusses interpretation of results. You can interpret coefficients from eprobit
and xteprobit in the usual way, but this introduction goes beyond the interpretation of
coefficients. We demonstrate how to find answers to interesting questions by using margins. If
your model includes an endogenous covariate or an endogenous treatment, the use of margins
differs from its use after other estimation commands, so we strongly recommend reading this
intro if you are fitting these types of models.

[ERM] Intro 8 will be particularly helpful if you are familiar with ivprobit, heckprobit,
xtprobit, and other commands that address endogenous covariates, sample selection, nonran-
dom treatment assignment, or random effects. This introduction is a Rosetta stone that maps
the syntax of those commands to the syntax of eprobit and xteprobit.

[ERM] Intro 9 walks you through an example that gives insight into the concepts of endogenous
covariates, treatment assignment, and sample selection while fitting models with eregress
that address these complications. Although the example uses eregress, the discussion applies
equally to eprobit. This intro also demonstrates how to interpret results by using margins
and estat teffects.

Additional examples are presented in [ERM] Example 1a–[ERM] Example 9. For examples using
eprobit, see

[ERM] Example 3a Probit regression with continuous endogenous covariate
[ERM] Example 3b Probit regression with endogenous covariate and treatment
[ERM] Example 4a Probit regression with endogenous sample selection
[ERM] Example 4b Probit regression with endogenous treatment and sample selection
[ERM] Example 5 Probit regression with endogenous ordinal treatment
[ERM] Example 9 Probit regression with endogenous treatment and random effects

See Examples in [ERM] Intro for an overview of all the examples. All examples may be interesting
because they handle complications in the same way.

eprobit and xteprobit fit many models discussed in the literature. This includes the probit model
with continuous endogenous covariates (Newey 1987), the probit model with multiple endogenous
binary covariates (Arendt and Holm 2006), the probit model with an endogenous treatment (Angrist 2001
and Pindyck and Rubinfeld 1998), and the random-effects probit model (Conway 1990). eprobit
can also be used for probit models with selection, such as that discussed by Van de Ven and Van
Pragg (1981), and for the model with a tobit selection equation, discussed in Wooldridge (2010,
sec. 19.7).

xteprobit can be used for the random-effects probit model with selection discussed in Semykina
and Wooldridge (2018). The bivariate probit model with random effects discussed in Mulkay (2015) may
also be fit using xteprobit. Roodman (2011) investigated probit models with endogenous covariates
and endogenous sample selection and demonstrated how multiple observational data complications
could be addressed with a triangular model structure. He and Tamás Bartus showed how random effects
could be used in the triangular model structure in Bartus and Roodman (2014). Roodman’s work has
been used to model processes like the impact of finance on the probability of being an entrepreneur
(Karymshakov, Sultakeev, and Sulaimanova 2015) and the impact of foreign direct investment on the
probability of creating an innovative product (Vahter 2011).
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Stored results
eprobit stores the following in e():

Scalars
e(N) number of observations
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) eprobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

xteprobit stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(n requad) number of integration points for random effects
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xteprobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(ivar) variable denoting groups
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(reintmethod) integration method for random effects
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here are for the probit model. The estimators implemented

in eprobit and xteprobit are maximum likelihood estimators covered by the results in chapter 13
of Wooldridge (2010) and White (1996).

The log-likelihood functions maximized by eprobit and xteprobit are implied by the triangular
structure of the model. Specifically, the joint distribution of the endogenous variables is a product
of conditional and marginal distributions because the model is triangular. For a few of the many
relevant applications of this result in literature, see chapter 10 of Amemiya (1985); Heckman (1976,
1979); chapter 5 of Maddala (1983); Maddala and Lee (1976); sections 15.7.2, 15.7.3, 16.3.3,
17.5.2, and 19.7.1 in Wooldridge (2010); and Wooldridge (2014). Roodman (2011) and Bartus and
Roodman (2014) used this result to derive the formulas discussed below.

Methods and formulas are presented under the following headings:

Introduction
Endogenous covariates

Continuous endogenous covariates
Binary and ordinal endogenous covariates

Treatment
Endogenous sample selection

Probit endogenous sample selection
Tobit endogenous sample selection

Random effects
Combined model
Confidence intervals
Likelihood for multiequation models

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasintro
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasEndogenouscovariates
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascontendog
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascatendog
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasTreatment
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasEndogenoussampleselection
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasprobitsel
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulastobitsel
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasRandomeffects
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasCombinedmodel
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasci
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaslikelihood
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Introduction

A probit regression of outcome yi on covariates xi may be written as

yi = 1 (xiβ+ εi > 0)

where the errors εi are distributed as standard normal. The log likelihood is

lnL =

N∑
i=1

wi {yi lnΦ (xiβ) + (1− yi) lnΦ (−xiβ)}

where wi are the weights. The conditional probability of success is

E (yi|xi) = Pr (yi = 1|xi) = Φ (xiβ)

The standard normal cumulative distribution function Φ(·) used in these expressions is a one-sided
probability that the random variable is below a certain point. In the models we describe later, it will
be useful to use two-sided probabilities. For two-sided probabilities, we define Φ∗d with three inputs.
The first two inputs are d-dimensional row vectors l and u that have values in IR ∪ {−∞,∞}, the
extended real line. The final input is a d× d real-valued and positive-definite matrix Σ.

Φ∗d(l,u,Σ) =

∫ u1

l1

. . .

∫ ud

ld

φd(ε,Σ) dε1 . . . dεd

where φd is the density of a mean 0, multivariate normal random variable. For details on the calculation
of Φ∗d, see [M-5] mvnormal( ). The probabilities are approximated using numeric integration. The
number of integration or quadrature points can be varied to attain better approximations. For trivariate
errors, we use the method of Drezner (1994). For four or more errors, we use the method of Miwa,
Hayter, and Kuriki (2003).

The lower and upper limits l1i and u1i on the unobserved εi are based on the observed values of
yi and xi and are defined as

l1i =

{−∞ yi = 0

−xiβ yi = 1
u1i =

{−xiβ yi = 0

∞ yi = 1
(1)

They let us rewrite the log likelihood concisely as

lnL =

N∑
i=1

wi lnΦ∗1(l1i, u1i, 1)

The conditional probability of success can be written using similar notation:

Pr (yi = 1|xi) = Φ∗1(−xiβ,∞, 1) (2)

https://www.stata.com/manuals/m-5mvnormal.pdf#m-5mvnormal()
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Endogenous covariates

Continuous endogenous covariates

A probit regression of yi on exogenous covariates xi and C continuous endogenous covariates
wci has the form

yi = 1 (xiβ+ wciβc + εi > 0)

wci = zciAc + εci

The vector zci contains variables from xi and other covariates that affect wci. The unobserved
errors εi and εci are multivariate normal with mean 0 and covariance[

1 σ′1c
σ1c Σc

]
We can write the joint density of the dependent variables as a product:

f(yi,wci|xi, zci) = f(yi|wci,xi, zci)f(wci|xi, zci)
The conditional density of wci is

f(wci|xi, zci) = φC(wci − zciAc,Σc)

Note that

Pr(yi = 1|wci,xi, zci) = Pr(xiβ+ wciβc + εi > 0|wci,xi, zci)

So the conditional density of yi can be written as a probability for εi. Thus, the conditional distribution
of εi can be used to find the conditional density of yi. Conditional on the endogenous and exogenous
covariates, εi has mean and variance

E (εi|wci,xi, zci) = σ′1cΣ
−1
c (wci − zciAc)

′

Var (εi|wci,xi, zci) = 1− σ′1cΣ
−1
c σ1c

The conditional mean is used in the lower and upper limits for the yi probability, which are

l1i =

{
−∞ yi = 0

−xiβ− σ′1cΣ
−1
c (wci − zciAc)

′
yi = 1

u1i =

{
−xiβ− σ′1cΣ

−1
c (wci − zciAc)

′
yi = 0

∞ yi = 1

Using these limits, the conditional variance, and the conditional density of wci, we obtain the log
likelihood

lnL =

N∑
i=1

wi
{

lnΦ∗1
(
l1i, u1i, 1− σ′1cΣ

−1
c σ1c

)
+ lnφC(wci − zciAc,Σc)

}
Letting

l1i1 = −xiβ− σ′1cΣ
−1
c (wci − zciAc)

′

u1i1 =∞
the conditional probability of success is

Pr (yi = 1|wci,xi, zci) = Φ∗1(l1i1, u1i1, 1− σ′1cΣ
−1
c σ1c)
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Binary and ordinal endogenous covariates

Here we begin by formulating the probit regression of yi on exogenous covariates xi and B
binary and ordinal endogenous covariates wbi = [wb1i, . . . , wbBi]. Indicator (dummy) variables for
the levels of each binary and ordinal covariate are used in the model. You can also interact other
covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

Let j = 1, . . . , B. We use a probit model for binary endogenous covariates

wbji = 1 (zbjiαbj + εbji > 0)

For ordinal endogenous covariate wbji that takes values vbj1, . . . , vbjBj
with covariates zbji, we have

the ordered probit model

wbji = vbjh iff κbj(h−1) < zbjiαbj + εbji ≤ κbjh (3)

The values vbj1, . . . , vbjBj are real numbers such that vbjh < vbjm for h < m. κbj0 is taken as
−∞ and κbjBj

is taken as +∞. The errors εb1i, . . . , εbBi are multivariate normal with mean 0 and
covariance

Σb =


1 ρb12 · · · ρb1B
ρb12 1 · · · ρb2B

...
...

. . .
...

ρb1B ρb2B · · · 1


Because the covariate wbji is binary or ordinal, the effect of each category in the outcome equation

is made with an indicator variable.

windbji =

 1(wbji = vbj1)
...

1(wbji = vbjBj
)


′

(4)

The model for the outcome can be formulated with or without different correlation parameters
for each level of wbi. Level-specific parameters are obtained by specifying pocorrelation in the
endogenous() option.

If the correlation parameters are not level specific, we have

yi = 1(xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εi > 0)

where the outcome error εi and binary and ordinal endogenous errors εb1i, . . . , εbBi are multivariate
normal with mean 0 and covariance

Σ =

[
1 ρ′1b
ρ1b Σb

]
From here, we discuss the model with ordinal endogenous covariates. The results for binary

endogenous covariates are similar.

For j = 1, . . . , B and h = 0, . . . , Bj , let

cbjih =


−∞ h = 0

κbjh − zbjiαbj h = 1, . . . , Bj − 1

∞ h = Bj
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The probability for wbji has lower limit

lbji = cbji(h−1) if wbji = vbjh (5)

and upper limit
ubji = cbjih if wbji = vbjh (6)

Letting
cbi = −xiβ−windb1iβb1 − · · · −windbBiβbB

the lower and upper limits for the yi probability are

l1i =

{−∞ yi = 0

cbi yi = 1
u1i =

{ cbi yi = 0

∞ yi = 1

and
li = [ l1i lb1i . . . lbBi ]

ui = [u1i ub1i . . . ubBi ]

The log likelihood for this model is

lnL =

N∑
i=1

wi lnΦ∗B+1(li,ui,Σ)

Now let
lbi = [ lb1i . . . lbBi ]

ubi = [ub1i . . . ubBi ]

li1 = [−∞ lbi ]

ui1 = [ cbi ubi ]

The conditional probability of success is

Pr(yi = 1|xi, zb1i, . . . , zbBi,wbi) =
Φ∗B+1(li1,ui1,Σ)

Φ∗B(lbi,ubi,Σb)

When the endogenous ordinal variables are different treatments, holding the correlation parameters
constant over the treatment levels is a constrained form of the potential-outcome model. In an
unconstrained potential-outcome model, the correlations between the outcome and the treatments—the
endogenous ordinal regressors wbi—vary over the levels of each treatment.

In this unconstrained model, there is a different potential-outcome error for each level of each
treatment. For example, when the endogenous treatment variable w1 has three levels (0, 1, and 2) and
the endogenous treatment variable w2 has four levels (0, 1, 2, and 3), the unconstrained model has
12 = 3× 4 outcome errors. Because there is a different correlation between each potential outcome
and each endogenous treatment, there are 2×12 correlation parameters between the potential outcomes
and the treatments in this example model.

We denote the number of different combinations of values for the endogenous treatments wbi by
M , and we denote the vector of values in each combination by vj (j ∈ {1, 2, . . . ,M}). Letting
kwp be the number of levels of endogenous ordinal treatment variable p ∈ {1, 2, . . . , B} implies that
M = kw1 × kw2 × · · · × kwB .
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Denoting the outcome errors ε1i, . . . , εMi, we have

y1i = 1(xiβ+ windb1iβb1 + · · ·+ windbBiβbB + ε1i > 0)

...

yMi = 1(xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εMi > 0)

yi =

M∑
j=1

1(wbi = vj)yji

For j = 1, . . . ,M , the outcome error εji and the endogenous errors εb1i, . . . , εbBi are multivariate
normal with 0 mean and covariance

Σj =

[
1 ρ′j1b
ρj1b Σb

]
Now let

Σi,b =

M∑
j=1

1(wbi = vj)Σj

Now the log likelihood for this model is

lnL =

N∑
i=1

wi lnΦ∗B+1(li,ui,Σi,b)

The conditional probability of success is

Pr(yi = 1|xi, zb1i, . . . , zbBi,wbi) =
Φ∗B+1(li1,ui1,Σi,b)

Φ∗B(lbi,ubi,Σb)

Treatment
In the potential-outcomes framework, the treatment ti is a discrete variable taking T values,

indexing the T potential outcomes of the outcome yi: y1i, . . . , yTi.

When we observe treatment ti with levels v1, . . . , vT , we have

yi =

T∑
j=1

1(ti = vj)yji

So for each observation, we observe only the potential outcome associated with that observation’s
treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect
estimation method. See [CAUSAL] teffects intro advanced. We do not model the treatment assignment
process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent
to what we provide here for endogenous treatments. The treatment effect on the treated for xi for an
exogenous treatment is equivalent to what we provide here for the endogenous treatment when the
correlation parameter between the outcome and treatment errors is set to 0. The average treatment
effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous
manner to what we describe here for endogenous treatments.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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From here, we assume an endogenous treatment ti. For ordinal treatment ti with covariates zti,
we have the ordered probit model

ti = vh iff κh−1 < ztiαt + εti ≤ κh (7)

The treatment values v1, . . . , vT are real numbers such that vh < vm for h < m. κ0 is taken as −∞
and κT is taken as +∞. The treatment error εti is standard normal.

We use a probit model for binary treatments that take values in {0, 1},

ti = 1 (ztiαt + εti > 0)

A probit regression of yi on exogenous covariates xi and endogenous treatment ti taking values
v1, . . . , vT has the form

y1i = 1 (xiβ1 + ε1i > 0)

...

yTi = 1 (xiβT + εTi > 0)

yi =

T∑
j=1

1(ti = vj)yji

This model can be formulated with or without different correlation parameters for each potential
outcome. Potential-outcome specific parameters are obtained by specifying pocorrelation in the
entreat() option.

If the correlation parameters are not potential-outcome specific, for j = 1, . . . , T , εji and εti are
bivariate normal with mean 0 and covariance

Σ =

[
1 ρ1t
ρ1t 1

]

The treatment is exogenous if ρ1t = 0. Note that we did not specify the structure of the correlations
between the potential-outcome errors. We do not need information about these correlations to estimate
POMs and treatment effects because all covariates and the outcome are observed in observations from
each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary
treatment models are similar. Because the unobserved errors are bivariate normal, we can express the
log likelihood in terms of the Φ∗2 function.

For j = 1, . . . , T , let
c1ij = −xiβj

The lower and upper limits for the yi probability are

l1i =

{−∞ yi = 0

c1ij yi = 1, ti = vj

u1i =

{ c1ij yi = 0, ti = vj

∞ yi = 1
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For j = 0, . . . , T , define

ctij =


−∞ j = 0

κj − ztiαt j = 1, . . . , T − 1

∞ j = T

So for the ti probability, we have lower limit

lti = cti(j−1) if ti = vj (8)

and upper limit
uti = ctij if ti = vj (9)

The log likelihood for the model is

lnL =

N∑
i=1

wi lnΦ∗2([ l1i lti ], [u1i uti ],Σ)

The conditional probability of obtaining treatment level vh is

Pr(ti = vh|zti) = Φ∗1(cti(h−1), ctih, 1)

The conditional probability of success at treatment level vj is

Pr(yi = 1|xi, zti, ti = vj) =
Φ∗2([ c1ij cti(j−1) ], [∞ ctij ],Σ)

Φ∗1(cti(j−1), ctij , 1)

The conditional POM for treatment group j is

POMj(xi) = E (yji|xi) = Φ∗1(c1ij ,∞, 1)

Conditional on the covariates xi and zti and the treatment ti = vh, the POM for treatment group
j is

POMj(xi, zti, ti = vh) = E (yji|xi, zti, ti = vh)

=
Φ∗2([ c1ij cti(h−1) ], [∞ ctih ],Σ)

Φ∗1(cti(h−1), ctih, 1)

The treatment effect yji − y1i is the difference in the outcome for individual i if the individual
receives the treatment ti = vj instead of the control ti = v1 and what the difference would have
been if the individual received the control treatment instead.

For treatment group j, the treatment effect (TE) conditioned on xi is

TEj(xi) = E (yji − y1i|xi) = POMj(xi)− POM1(xi)
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For treatment group j, the treatment effect on the treated (TET) in treatment group h conditioned
on xi and zti is

TETj(xi, zti, ti = vh) = E (yji − y1i|xi, zti, ti = vh)

= POMj(xi, zti, ti = vh)− POM1(xi, zti, ti = vh)

We can take the expectation of these conditional predictions over the covariates to get population
average parameters. The margins command is used to estimate the expectations as predictive margins
once the model is fit with eprobit. The POM for treatment group j is

POMj = E (yji) = E {POMj(xi)}

The ATE for treatment group j is

ATEj = E (yji − y1i) = E {TEj(xi)}

For treatment group j, the average treatment effect on the treated (ATET) in treatment group h is

ATETjh = E (yji − y1i|ti = vh)

= E {TETj(xi, zti, ti = vh)|ti = vh}

If the correlation parameters are potential-outcome specific, for j = 1, . . . , T , εji and εti are
bivariate normal with mean 0 and covariance

Σj =

[
1 ρj1t
ρj1t 1

]
Now define

Σi =

T∑
j=1

1(ti = vj)Σj

The log likelihood for the potential-outcome specification correlation model is

lnL =

N∑
i=1

wi lnΦ∗2([ l1i lti ], [u1i uti ],Σi)

The conditional probability of success at treatment level vj is

Pr(yi = 1|xi, zti, ti = vj) =
Φ∗2([ c1ij cti(j−1) ], [∞ ctij ],Σj)

Φ∗1(cti(j−1), ctij , 1)

The conditional POM for exogenous covariates xi and treatment group j has the same definition
as in the single correlation case. However, when we also condition on the treatment level ti = vh
and zti, the POM for treatment group j is

POMj(xi, zti, ti = vh) = E (yji|xi, zti, ti = vh)

=
Φ∗2([ c1ij cti(h−1) ], [∞ ctih ],Σj)

Φ∗1(cti(h−1), ctih, 1)

Treatment effects are formulated as in the single correlation case but using these updated POM
definitions. We can take the expectation of these conditional predictions over the covariates to get
population-averaged parameters. The estat teffects or margins command is used to estimate the
expectations as predictive margins once the model is fit with eprobit.

https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/ermestatteffects.pdf#ermestatteffects
https://www.stata.com/manuals/rmargins.pdf#rmargins
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Endogenous sample selection

Probit endogenous sample selection

A probit model for outcome yi with selection on si has the form

yi = 1 (xiβ+ εi > 0)

si = 1 (zsiαs + εsi > 0)

where xi are covariates that affect the outcome and zsi are covariates that affect selection. The
outcome yi is observed if si = 1 and not observed if si = 0. The unobserved errors εi and εsi are
normal with mean 0 and covariance

Σ =

[
1 ρ1s
ρ1s 1

]
The lower and upper limits for the yi probability, l1i and u1i, are as defined in (1). For the

selection indicator, we have lower and upper limits

lsi =

{−∞ si = 0

−zsiαs si = 1
usi =

{−zsiαs si = 0

∞ si = 1
(10)

The log likelihood for the model is

lnL =
∑
i∈S

wi lnΦ∗2([ l1i lsi ], [u1i usi ],Σ) +∑
i/∈S

wi lnΦ∗1(lsi, usi, 1)

where S is the set of observations for which yi is observed.

In this model, the probability of success is usually predicted conditional on the covariates xi and
not on the selection status si. The formulas for the conditional probability are thus the same as in
(2).

The conditional probability of selection is

Pr (si = 1|zsi) = Φ∗1(−zsiαs,∞, 1)

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection
uses a censored continuous sample-selection indicator. We allow the selection variable to be left- or
right-censored.

A probit model for outcome yi with tobit selection on si has the form

yi = 1 (xiβ+ εi > 0)

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq1
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq2
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We observe the selection indicator si, which indicates the censoring status of the latent selection
variable s?i ,

s?i = zsiαs + εsi

si =


li s?i ≤ li

s?i li < s?i < ui

ui s?i ≥ ui
where zsi are covariates that affect selection and li and ui are fixed lower and upper limits.

The outcome yi is observed when s?i is not censored (li < s?i < ui). The outcome yi is not
observed when s?i is left-censored (s?i ≤ li) or s?i is right-censored (s?i ≥ ui). The unobserved errors
εi and εsi are normal with mean 0 and covariance[

1 ρ1sσs
ρ1sσs σ2

s

]

For the selected observations, we can treat si as a continuous endogenous regressor, as in
Continuous endogenous covariates. In fact, si may even be used as a regressor for yi in eprobit
(specify tobitselect(. . . main)). On the nonselected observations, we treat si like the probit
endogenous sample-selection indicator in Probit endogenous sample selection.

For nonselected observations, we have

Pr(s?i ≤ li|zsi,xi) = Pr(zsiαs + εsi ≤ li)

= Φ

(
li − zsiαs

σs

)
and

Pr(s?i ≥ ui|zsi,xi) = Pr(zsiαs + εsi ≥ ui)

= Φ

(
zsiαs − ui

σs

)
The lower and upper limits for the si probability for nonselected observations where s?i is

left-censored are
lli = −∞

uli =
li − zsiαs

σs

The lower and upper limits for the si probability for nonselected observations where s?i is right-censored
are

lui =
ui − zsiαs

σs

uui =∞

Now we consider the selected observations. For si = s?i = Si, we can write the joint density of
the dependent variables as a product,

f(yi, si = Si|xi, zsi) = f(yi|si = Si,xi, zsi)f(si = Si|xi, zsi)

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascontendog
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasprobitsel
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The marginal density of si = Si is

f(si = Si|xi, zs,i) = φ(Si − zsiαs, σ
2
s)

The conditional density of yi can be written as a probability for εi. Thus, the conditional distribution
of εi can be used to find the conditional density of yi. Conditional on si = Si, εi has mean and
variance

E (εi|si = Si,xi, zsi) = ρ1sσ
−1
s (Si − zsiα)

Var (εi|si = Si,xi, zsi) = 1− ρ21,s

The conditional mean is used in the lower and upper limits for the yi probability for selected
observations, which are

l1i =

{−∞ yi = 0

−xiβ− ρ1sσ−1s (si − zsiα) yi = 1

u1i =

−xiβ− ρ1sσ−1s (si − zsiα) yi = 0

∞ yi = 1

It follows that the log likelihood is

lnL =
∑
i∈S

wi
{

ln Φ∗1( l1i , u1i , 1− ρ21s) + lnφ(si − zsiαs, σ
2
s)
}

+
∑
i∈L

wi ln Φ∗1(lli, uli, 1)

+
∑
i∈U

wi ln Φ∗1(lui, uui, 1)

where S is the set of observations for which yi is observed, L is the set of observations where s?i is
left-censored, and U is the set of observations where s?i is right-censored.

The probability of success conditional on si = s?i = Si is

Pr(yi = 1|xi, si = s?i = Si) = Φ∗1{−xiβ− ρ1sσ−1s (Si − zsiα) ,∞, 1− ρ21s}

If we do not include si in the main outcome equation, the probability of success is calculated as
(2) again.

Random effects
For a probit regression with random effects, we observe panel data. For panel i = 1, . . . , N and

observation j = 1, . . . , Ni, a probit regression of outcome yij on covariates xij may be written as

yij = 1 (xijβ+ εij + ui > 0)

The random effect ui is normal with mean 0 and variance σ2
u. It is independent of the observation-level

error εij , which is standard normal.

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq2
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We derive the likelihood by using the conditional density of yij on the random effect ui and the
marginal density of ui. Multiplying them together, we have the joint density, which is integrated over
ui.

Let
lij(u) = yijΦ (xijβ+ u) + (1− yij)Φ (−xijβ− u)

The likelihood for panel i is

Li =

∫ ∞
−∞

φ

(
ui
σu

) Ni∏
j=1

lij(ui)dui

We can approximate this integral using Gauss–Hermite quadrature. For q-point Gauss–Hermite
quadrature, let the abscissa and weight pairs be denoted by (aki, wki), k = 1, . . . , q. Then, the
Gauss–Hermite quadrature approximation is

∫ ∞
−∞

f(x) exp(−x2) dx ≈
q∑

k=1

wkif(aki)

The default approximation used by xteprobit is mean–variance adaptive Gauss–Hermite quadra-
ture. This chooses optimal abscissa and weights for each panel. See Likelihood for multiequation
models in [ERM] eprobit for more information on the use of mean–variance adaptive Gauss–Hermite
quadrature.

Using the quadrature approximation, the log likelihood is

lnL =

N∑
i=1

ln


q∑

k=1

wki

Ni∏
j=1

lij(σuaki)


Now we will derive the conditional probability of success. This is similar to what was given in

Introduction, but the variance input to Φ?1 is the variance of the random effect plus the observation-level
error.

First, let
ξij = εij + ui

where ξij is normal with mean 0 and variance σ2
ξ = 1 + σ2

u.

Then, the conditional probability of success is

Pr (yij = 1|xij) = Φ∗1(−xijβ,∞, σ2
ξ )

Combined model
Here we present the likelihood for the probit model with continuous endogenous covariates,

ordinal endogenous covariates, an ordinal endogenous treatment, and endogenous sample selection.
This combines all the extensions to the standard probit model that are supported by eprobit. In
Likelihood for multiequation models, we describe the general framework for ERMs with multiple
features and show how random effects may be combined with other features, how xteprobit can
support the other ERM features.

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasintro
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaslikelihood
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Deriving the combined model with tobit rather than probit endogenous sample selection is straightfor-
ward. On selected observations, the selection indicator would be treated like a continuous endogenous
covariate. On nonselected observations, the model would be identical to the combined model with
probit selection. The correlations between the outcome errors and other errors are also the same
between treatment groups and levels of ordinal endogenous covariates. Deriving the model with
different correlations for the treatment groups and endogenous covariate groups is straightforward.
Take the likelihood given here in this section, and use a different covariance matrix depending on the
levels of treatment and the ordinal endogenous covariates.

In this model, the treatment ti takes T values, indexing the potential outcomes of the main outcome
yi: y1i, . . . , yTi. The relationship between the ordinal treatment ti, treatment covariates zt,i, and error
εti is described in (7). For j = 1, . . . , B, the relationship between the ordinal endogenous covariates
wbji, exogenous covariates zbji, and error εbji is given in (3). The model also uses the windbji
terms that are defined in (4).

The probit regression of yi on exogenous covariates xi, C continuous endogenous covariates wci,
and B ordinal endogenous covariates wbi = [wb1i, . . . , wbBi] with endogenous treatment ti and
endogenous sample selection on si has the form

y1i = 1 (xiβ1 + wciβc1 + windb1iβb11 + · · ·+ windbBiβbB1 + ε1i > 0)

...

yTi = 1 (xiβT + wciβcT + windb1iβb1T + · · ·+ windbBiβbBT + εTi > 0)

yi =

T∑
j=1

1(ti = vj)yji

wci = zciAc + εci

si = 1 (zsiαs + εsi > 0)

where zsi are covariates that affect selection and zci are covariates that affect the continuous endogenous
covariates. The outcome yi is observed if si = 1 and is not observed if si = 0.

For j = 1, . . . , T , the unobserved errors εji, εsi, εti, εb1i, . . . , εbBi, εci are multivariate normal
with mean 0 and covariance

Σ =


1 ρ1s ρ1t ρ′1b σ′1c
ρ1s 1 ρst ρ′sb σ′sc
ρ1t ρst 1 ρ′tb σ′tc
ρ1b ρsb ρtb Σb Σ′bc
σ1c σsc σtc Σbc Σc


As in Continuous endogenous covariates, we can write the joint density of the dependent variables

as a product. We have

f(yi, si, ti,wbi,wci|xi, zsi, zti, zb1i, . . . , zbBi, zci) =

f(yi, si, ti,wbi|wci,xi, zsi, zti, zb1i, . . . , zbBi, zci)f(wci|zci)

We can then use the conditional distribution of εji, εsi, εti, εb1i, . . . , εbBi to obtain the conditional
density of yi, si, ti, and wbi.

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq7
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq3
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq4
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascontendog
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For j = 1, . . . , T , conditional on wci and the exogenous covariates, εji has mean

e1i = E (εji|wci,xi, zsi, zti, zb1i, . . . , zbBi, zci)

= σ′1,cΣ
−1
c (wci − zc,iAc)

′

Now, for j = 1, . . . , T , let

c1ij =



−xiβ1 −wciβc,1 −windb1iβb11 − · · · −windbBiβbB1 − e1i j = 1

...

−xiβT −wciβcT −windb1iβb1T − · · · −windbBiβbBT − e1i j = T

The lower and upper limits for the yi probability are

l1i =

{−∞ yi = 0

c1ij yi = 1, ti = vj

u1i =

{ c1ij yi = 0, ti = vj

∞ yi = 1

The conditional means of the unobserved errors εsi, εti, εb1i, . . . , εbBi have similar forms to e1i.
Denote these means by esi, eti, eb1i, . . . , ebBi. The lower and upper probability limits for si, ti, and
the ordinal endogenous covariates are obtained by subtracting the means from the limits defined in
(10), (8), (9), (5), and (6).

l∗si = lsi − esi
u∗si = usi − esi
l∗ti = lti − eti
u∗ti = uti − eti
l∗b1i = lb1i − eb1i
u∗b1i = ub1i − eb1i

...

l∗bBi = lbBi − ebBi
u∗bBi = ubBi − ebBi

We have lower and upper limits; we need a conditional covariance and the conditional density of
wci to formulate the likelihood. For j = 1, . . . , T , conditional on wci and the exogenous covariates,
εji, εsi, εti, εb1i, . . . , εbBi have covariance

Σo|c =


1 ρ1s ρ1t ρ′1b
ρ1s 1 ρst ρ′sb
ρ1t ρst 1 ρ′tb
ρ1b ρsb ρtb Σb

−

σ′1c
σ′sc
σ′tc
Σ′bc

Σ−1c


σ′1c
σ′sc
σ′tc
Σ′bc


′

The conditional density of wci is

f(wci|zci) = φC(wci − zciAc,Σc)

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq10
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq8
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq9
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq5
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq6
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Let
l1i = [ l1i l∗si l∗ti l∗b1i . . . l∗bBi ]

u1i = [u1i u∗si u∗ti u∗b1i . . . u∗bBi ]

li = [ l∗si l∗ti l∗b1i . . . l∗bBi ]

ui = [u∗si u∗ti u∗b1i . . . u∗bBi ]

The log likelihood of the model is

lnL =
∑
i∈S

wi lnΦ∗3+B
(
l1i,u1i,Σo|c

)
+∑

i/∈S

wi lnΦ∗2+B
(
li,ui,Σo|c,−1

)
+

N∑
i=1

wi lnφC(wci − zciAc,Σc)

where S is the set of observations where yi is observed and Σo|c,−1 is Σo|c with the first row and
column removed.

As in previous sections, we use the joint and marginal probabilities to determine conditional
probabilities.

For j = 1, . . . , T and i such that ti = vj , let

li11 = [ c1ij l∗ti l∗b1i . . . l∗bBi ]

ui11 = [∞ u∗ti u∗b1i . . . u∗bBi ]

li12 = [ l∗ti l∗b1i . . . l∗bBi ]

ui12 = [u∗ti u∗b1i . . . u∗bBi ]

Let Σo|c,−s be Σo|c with the second row and column removed. This is the conditional covariance
matrix without the endogenous sample-selection equation components. Let Σo|c,−s−1 be Σo|c,−s
with the first row and column removed.

The conditional probability of success at treatment level ti = vj is

Pr(yi = 1|ti = vj ,wbi,wci,xi, zsi, zti, zb1i, . . . , zbBi, zci) =
Φ∗2+B

(
li11,ui11,Σo|c,−s

)
Φ∗1+B

(
li12,ui12,Σo|c,−s−1

)
The conditional probabilities of treatment, selection, and the ordinal endogenous covariates are

derived in similar ways. We condition on the treatment and the other endogenous covariates together
with the exogenous covariates that affect the outcome. POMs and treatment effects are conditioned
on the endogenous and exogenous covariates. See Predictions using the full model in [ERM] eprobit
postestimation for more details.

https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimationMethodsandformulaspredtotal
https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimation
https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimation
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Confidence intervals

The estimated variances will always be nonnegative, and the estimated correlations will always
fall in (−1, 1). We use transformations to obtain confidence intervals that accommodate these ranges.

We use the log transformation to obtain the confidence intervals for variance parameters. Let
σ̂2 be a point estimate for the variance parameter σ2, and let ŜE(σ̂2) be its standard error. The
(1− α)× 100% confidence interval for ln(σ2) is

ln(σ̂2)± zα/2
ŜE(σ̂2)

σ̂2

where zα/2 is the 1−α/2 quantile of the standard normal distribution. Let ku be the upper endpoint
of this interval, and let kl be the lower. The (1−α)× 100% confidence interval for σ2 is then given
by (

ekl , eku
)

We use the inverse hyperbolic tangent transformation to obtain confidence intervals for correlation
parameters; for details on the hyperbolic functions, see [FN] Trigonometric functions. Let ρ̂ be a
point estimate for the correlation parameter ρ, and let ŜE(ρ̂) be its standard error. The (1−α)×100%
confidence interval for atanh(ρ) is

atanh(ρ̂)± zα/2ŜE(ρ̂)
1

1− ρ̂2

where zα/2 is the 1−α/2 quantile of the standard normal distribution. Let ku be the upper endpoint
of this interval, and let kl be the lower. The (1− α)× 100% confidence interval for ρ is then given
by

{tanh(kl), tanh(ku)}

Likelihood for multiequation models

The general framework for ERMs is formulated such that it accommodates multiple features. Binary
and ordinal endogenous covariates may occur together with continuous endogenous covariates in ERMs.
Endogenous covariates may also occur together with endogenous sample selection or treatments in
ERMs. Random effects may occur in any combination with the other features as well.

Here we show how the log likelihood is formulated when we have multiple auxiliary equations.
We begin with the cross-sectional case, where there are no random effects.

Suppose that we have H auxiliary equations with endogenous outcomes y1i, . . . , yHi. We will
treat the main outcome yi as stage J = H + 1, so yJi = yi. The ERMs that we fit with eintreg,
eoprobit, eprobit, and eregress are triangular, so we can order the equations such that the first
depends only on exogenous covariates—say, w1i = zi—and for j = 2, . . . , J , equation j depends
only on the exogenous covariates zi and the endogenous covariates from equation h = j − 1 and
y1i, . . . , yhi below. These are stored together in wji.

https://www.stata.com/manuals/fntrigonometricfunctions.pdf#fnTrigonometricfunctions
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So we have
y1i = g1i(w1iβ1 + v1i)

...

yHi = gHi(wHiβH + vHi)

yi = yJi = gJi(wJiβJ + vJi)

where the form of the functions gji(·) is determined by whether the outcome yji has a linear, probit,
or interval model. The errors v1i, . . . , vJi are multivariate normal with mean 0 and covariance Σ.

The covariates wji and the outcome yji determine a range for the error vji. For example, if yji has
a linear model, then vji = yji−wjiβj , the residual. If yji = 1 and yji has a probit model, then vji
is in the range (−wjiβj ,∞). If yij is left-censored at li, then vji is in the range (−∞, li−wjiβj).

The density of the endogenous variables can be represented using a multivariate normal density
function that is evaluated at the residuals for the continuous outcomes and integrated over the error
ranges of the noncontinuous outcomes.

The conditional density of the error vji on wji has the form

f(vji|wji) =

∫
V?

hi
φj(v1i, . . . , vji,Σj)dv

?
hi∫

V?
hi
φh(v1i, . . . , vhi,Σh)dv?hi

where Σj is the covariance of v1i, . . . , vji and Σh is the covariance of v1i, . . . , vhi, where h = j−1.
The vector v?hi contains the errors that correspond to binary, ordinal, or censored outcomes in y1i,
. . . , yhi. These outcomes induce the error ranges V?

hi, which we integrate over. The other errors are
determined by the outcomes and covariates as residuals.

If yji is continuous, then
f(yji|wji) = f(vji|wji) (11)

When yji is a binary, ordinal, or censored outcome, we have

f(yji|wji) =

∫
V?

ji
φj(v1i, . . . , vji,Σj)dv

?
ji∫

V?
hi
φh(v1i, . . . , vhi,Σh)dv?hi

(12)

So we also integrate over the range of the error vji when yji is not continuous.

We can express the joint density of the main outcome and the endogenous covariates in terms
of the marginal and conditional densities. The denominator in (11) or (12) in the higher stage will
cancel out the numerator of (11) or (12) in the lower stage, so we have

f(y1i, . . . , yji|zi) =

∫
V?

ji

φj(v1i, . . . , vji,Σj)dv
?
ji (13)

If we have only continuous endogenous variables, we have

f(y1i, . . . , yji|zi) = φj(v1i, . . . , vji,Σj)

If V?
ji has dimension j, we can calculate the integral given in (13) by using the Φ∗j . Let li contain

the lower endpoints and ui contain the upper endpoints for V?
ji. When we do not have continuous

endogenous covariates, we have

f(y1i, . . . , yji|zi) = Φ∗j (li,ui,Σj)

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq11
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Now suppose that we have C < j continuous outcomes in y1i, . . . , yji, so the dimension of
V?
ji is j − C. Without loss of generality, these C correspond to the last C endogenous covariates

y(j−C+1)i, . . . , yji. The covariates can be reordered as needed.

We partition the covariance

Σj =

[
Σ11 Σ′12
Σ12 Σ22

]
where Σ22 is the covariance of the last C errors.

Conditional on v(j−C+1)i, . . . , vji, the errors v1i, . . . , v(j−C)i have mean and variance

µ1|2,i = Σ12Σ
−1
22

 v(j−C+1)i

...
vji


Σ1|2 = Σ11 −Σ12Σ

−1
22 Σ′12

By conditioning on v(j−C+1)i, . . . , vji, we can express the density in terms of φC and Φ∗j−C .
We can write the joint density in terms of the marginal and conditional densities to obtain

f(y1i, . . . , yji|zi) = φC(v(j−C+1)i, . . . , vji,Σ22)Φ∗j−C(li − µ1|2,i,ui − µ1|2,i,Σ1|2)

The natural logarithm of the density f(y1i, . . . , yJi|zi) is the log likelihood of the model. We
maximize the log likelihood to estimate the model parameters.

We can relax the assumption that the errors v1i, . . . , vJi are multivariate normal with mean 0 and
covariance Σ. We will allow the covariance matrix to vary based on the M different levels of the
binary or ordinal endogenous covariates wpoi: ω1, . . . ,ωM . These are the different combinations of
values for the covariates wpoi.

We use a potential-outcome framework for the outcome errors vJi. For the potential-outcome
errors v1Ji, . . ., vMJi, we have

vJi =

M∑
m=1

1(wpoi = ωm)vmJi

For m = 1, . . . , M , vmJi and v1i, . . ., vHi are multivariate normal mean 0 and covariance

Σm =

[
σ2
m σ′mo

σmo Σo

]

For observations where wpoi = ωm, the log likelihood can be derived with Σm in place of Σ.
The log likelihoods from the different potential-outcome group observations can then be summed
together to get the log likelihood of the model.

Now we assume that we have random effects in each equation and a panel-data structure. This
discussion applies to the models fit by xteintreg, xteoprobit, xteprobit, and xteregress.
For simplicity, we assume that the errors do not follow a potential-outcome framework. We have N
panels. For panel i = 1, . . . , N , there are Ni observations, and for t = 1, . . . , Ni, we have
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y1it = g1it(w1itβ1 + v1it + u1i)

...

yHit = gHit(wHitβH + vHit + uHi)

yit = yJit = gJit(wJitβJ + vJit + uJi)

The observation-level errors v1it, . . . , vJit are multivariate normal with mean 0 and covariance Σ.
They are independent of the panel-level errors, or random effects u1i, . . . , uJi, which are multivariate
normal with mean 0 and covariance Σu. We further assume that the observation-level errors are
independent within panels.

Now the covariates wjit, random effect uji, and the outcome yjit determine a range for the
error vjit. For example, if yjit has a linear model, then vjit = yjit −wjitβj − uji, the residual.
If yjit = 1 and yjit has a probit model, then vjit is in the range (−wjitβj − uji,∞). If yijt is
left-censored at lit, then vjit is in the range (−∞, li −wjitβj − uji).

Conditional on the random effects u1i, . . . , uJi, the density of the endogenous variables can be
represented using a multivariate normal density function that is evaluated at the residuals for the
continuous outcomes and integrated over the error ranges of the noncontinuous outcomes. So the
conditional density is formulated as in the cross-sectional case. The random effects are essentially
added to the covariates w1it, . . . , wJit.

Note that each panel has the same random effects for every observation. So if panel i has random
effects ui = (u1i, . . . , uJi), its likelihood is

Li =

∫
<J

{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui)

}
φJ(ui,Σu)dui (14)

This multivariate integral is generally not tractable. We can use a change-of-variables technique
to transform the multivariate integral in (14) into a set of nested univariate integrals. Let L be the
Cholesky decomposition of Σu; that is, Σu = LL′. It follows that ui = Lψi, where ψi is a vector
of independent standard normal random variables.

So we can rewrite (14) as

Li =

∫ ∞
−∞

. . .

∫ ∞
−∞

{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lψi)

}
φ(ψ1i) . . . φ(ψJi)dψ1i . . . dψJi (15)

Now the univariate integral can be approximated using Gauss–Hermite quadrature (GHQ). For
q-point GHQ, let the abscissa and weight pairs be denoted by (a∗k, w

∗
k), k = 1, . . . , q. Then, the GHQ

approximation is

∫ ∞
−∞

f(x) exp(−x2) dx ≈
q∑

k=1

w∗kf(a∗k)

Consider a J -dimensional quadrature grid containing q quadrature points in each dimension. Let
the vector of abscissas ak = (ak1 , . . . , akJ )′ be a point in this grid, and let wk = (wk1 , . . . , wkJ )′

be the vector of corresponding weights. The GHQ approximation to the likelihood for a given panel is

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq14
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Li =

q∑
k1=1

. . .

q∑
kJ=1

[{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lak)

}{
J∏
s=1

wks

}]
(16)

Rather than using regular GHQ, we can use mean–variance adaptive Gauss–Hermite quadrature.
Fixing the observed variables and model parameters in the integrand of (14), we see the posterior
density for ψi is proportional to{

Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lψi)

}
φ(ψi)

It is reasonable to assume that this posterior density can be approximated by a multivariate normal
density with mean vector µvi and variance matrix τvi. Instead of using the prior density of ψi as
the weighting distribution in the integral, we can use our approximation for the posterior density,

Li =

∫
<J

{∏Ni

t=1 f(y1it, . . . , yJit|zit,ui = Lψi)
}
φ(ψi)

φ(ψi,µvi, τvi)
φ(ψi,µvi, τvi) dψi

The likelihood is then approximated by

Li =

q∑
k1=1

. . .

q∑
kJ=1

[{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lαk)

}{
J∏
s=1

ωks

}]
(17)

where αk and ωks are the adaptive versions of the abscissas and weights after an orthogonalizing
transformation, which eliminates posterior covariances between elements of ψi. The posterior means
µvi and posterior variances τvi are computed iteratively by updating the posterior moments by using
the mean–variance adaptive Gauss–Hermite approximation, starting with a 0 mean vector and identity
variance matrix.

Then, the log likelihood for all panels is

lnL =

N∑
i=1

(
ln

q∑
k1=1

. . .

q∑
kJ=1

[{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lαk)

}{
J∏
s=1

ωks

}])
(18)

As in the cross-sectional case, we can relax the assumption that the errors v1it, . . . , vJit are
multivariate normal with mean 0 and covariance Σ. We will allow the covariance matrix to vary
based on the M different levels of the binary or ordinal endogenous covariates wpoit: ω1, . . . ,ωM .
These are the different combinations of values for the covariates wpoit.

We use a potential-outcome framework for the outcome errors vJit. For the potential-outcome
errors v1Jit, . . ., vMJit, we have

vJit =

M∑
m=1

1(wpoit = ωm)vmJit

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq14
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For m = 1, . . . , M , vmJit and v1it, . . ., vHit are multivariate normal mean 0 and covariance

Σm =

[
σ2
m σ′mo

σmo Σo

]
For observations where wpoit = ωm, the likelihood can be derived with Σm in place of Σ.
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