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Title

Intro — Introduction to extended regression models manual

Description Remarks and examples

Description
ERM stands for extended regression model. The ERMs are linear regression, interval regression,

probit, and ordered probit. This manual introduces, explains, and documents ERM features.

Remarks and examples
The entries in this manual are organized as follows:

Introductions
Examples
ERM commands
Postestimation
Technical details
Glossary

Introductions

Read the introductions first.

We recommend reading [ERM] Intro 1–[ERM] Intro 7 in order. In them, you will find introductions
to the models that can be fit with the ERM commands, the syntax, the complications—endogenous
covariates, sample selection, treatment assignment, and observations that are correlated within panels
or groups—that ERM commands address, and the interpretation of results.

[ERM] Intro 1 An introduction to the ERM commands
[ERM] Intro 2 The models that ERMs fit
[ERM] Intro 3 Endogenous covariates features
[ERM] Intro 4 Endogenous sample-selection features
[ERM] Intro 5 Treatment assignment features
[ERM] Intro 6 Panel data and grouped data model features
[ERM] Intro 7 Model interpretation

The next introduction is a Rosetta stone for anyone who has used other Stata commands to
account for endogenous covariates, sample selection, nonrandom treatment assignment, or panel data.
It provides a simple mapping of syntax from commands such as ivregress, heckman, xtreg,
ivprobit, heckoprobit, xttobit and etregress to the corresponding ERM command. If you are
already familiar with these other commands, this entry may be all you need to get started using the
ERM commands.

[ERM] Intro 8 A Rosetta stone for extended regression commands

1



2 Intro — Introduction to extended regression models manual

Finally, we include an introduction to some of the important concepts in ERMs in the context
of a worked example. Here, we discuss endogeneity, sample selection, and nonrandom treatment
assignment. We fit models that account for each of these complications, and we show you how to
use postestimation commands to interpret the results.

[ERM] Intro 9 Conceptual introduction via worked example

[ERM] Intro 9 can be read either before or after [ERM] Intro 1–[ERM] Intro 7.

Examples

The example entries demonstrate how to fit models using eregress, eintreg, eprobit, eoprobit,
xteregress, xteintreg, xteprobit, and xteoprobit.

We do not recommend selecting the examples you read based only on the type of outcome
discussed in the example. The syntax of the ERM commands is interchangeable. Therefore, you can
substitute eintreg, eoprobit, eprobit, or eregress for each other to fit a model that addresses
the same complications. The xteintreg, xteoprobit, xteprobit, and xteregress commands
address one additional complication—observations that are correlated within panels or groups. Again,
the syntax is interchangeable. You can add xt to the beginning of any other ERM commands and fit
random-effects models that address this additional complication. Remove the xt from the beginning
of the command to fit the same model without random effects. The table below lists the command,
the type of outcome variable, and the complications that are addressed in each example to help you
locate examples that are of most interest to you.
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Example Command Outcome Complications

[ERM] Example 1a eregress continuous continuous endogenous covariate
[ERM] Example 1b eintreg interval continuous endogenous covariate
[ERM] Example 1c eintreg interval continuous endogenous covariate,

endogenous sample selection
[ERM] Example 2a eregress continuous binary endogenous covariate
[ERM] Example 2b eregress continuous exogenous treatment
[ERM] Example 2c eregress continuous endogenous treatment
[ERM] Example 3a eprobit binary continuous endogenous covariate
[ERM] Example 3b eprobit binary continuous endogenous covariate,

endogenous treatment
[ERM] Example 4a eprobit binary endogenous sample selection
[ERM] Example 4b eprobit binary endogenous sample selection,

endogenous treatment
[ERM] Example 5 eprobit binary endogenous ordinal treatment
[ERM] Example 6a eoprobit ordinal endogenous treatment
[ERM] Example 6b eoprobit ordinal endogenous treatment,

endogenous sample selection
[ERM] Example 7 xteregress continuous continuous endogenous covariate,

random effects in all equations
[ERM] Example 8a xteregress continuous continuous endogenous covariate,

random effects in one equation
[ERM] Example 8b xteregress continuous continuous endogenous covariate,

endogenous sample selection,
random effects in two equations

[ERM] Example 9 xteoprobit ordinal endogenous treatment,
random effects in all equations

The type of outcome does play a role in the way results are interpreted, so examples with the same
outcome type will be of interest for interpretation. If your main interest is in interpretation, also see
[ERM] Intro 7 and [ERM] Intro 9.

ERM commands
The entries for the individual commands provide details on syntax and implementation. The Methods

and formulas sections include full details on the models that can be fit using these commands. The
xteintreg, xteoprobit, xteprobit, and xteregress commands are documented in these entries
as well.

[ERM] eintreg Extended interval regression
[ERM] eoprobit Extended ordered probit regression
[ERM] eprobit Extended probit regression
[ERM] eregress Extended linear regression
[ERM] ERM options Extended regression model options
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Postestimation
The postestimation commands allow you to estimate treatment effects, obtain predictions, perform

tests, and more. They are documented in the entries listed below.

[ERM] eintreg postestimation Postestimation tools for eintreg and xteintreg
[ERM] eintreg predict predict after eintreg and xteintreg
[ERM] eoprobit postestimation Postestimation tools for eoprobit and xteoprobit
[ERM] eoprobit predict predict after eoprobit and xteoprobit
[ERM] eprobit postestimation Postestimation tools for eprobit and xteprobit
[ERM] eprobit predict predict after eprobit and xteprobit
[ERM] eregress postestimation Postestimation tools for eregress and xteregress
[ERM] eregress predict predict after eregress and xteregress
[ERM] estat teffects Average treatment effects for extended regression models
[ERM] predict advanced predict’s advanced features
[ERM] predict treatment predict for treatment statistics

Examples using postestimation commands are found in [ERM] Intro 9 and in the example entries.

Technical details
ERM commands require that endogenous covariates form a triangular or recursive system. Here,

we discuss triangular systems and possible solutions if your model does not have this required form.

[ERM] Triangularize How to triangularize a system of equations

Glossary

Finally, we provide a glossary that can be referred to as needed.

[ERM] Glossary Glossary of technical terms



Title

Intro 1 — An introduction to the ERM commands

Description Remarks and examples Reference Also see

Description
ERM stands for extended regression model. It is our term to designate commands for fitting linear

regression, interval regression, probit, and ordered probit models that allow

• continuous, binary, and ordinal endogenous covariates,

• polynomials of endogenous covariates,

• interactions of endogenous covariates,

• interactions of endogenous with exogenous covariates,

• endogenous sample selection,

• nonrandom exogenous or endogenous treatment assignment, and

• observations that are correlated within panels or within groups.

The features may be used separately or in any combination.

The estimation commands eregress, eintreg, eprobit, and eoprobit fit ERMs that allow all the
features above except correlation within panels or groups. The commands xteregress, xteintreg,
xteprobit, and xteoprobit fit random-effects models that allow for within-panel or within-group
correlation in addition to all the other features.

Remarks and examples

Remarks are presented under the following headings:
The problems ERMs solve
The simple syntax of ERMs
Normality assumption underlying ERMs
Learning more about ERMs

The problems ERMs solve

The ERM commands fit the following models:

Command Purpose

eregress linear regression
eintreg interval regression
eprobit binary-outcome probit regression
eoprobit ordinal-outcome probit regression
xteregress random-effects linear regression
xteintreg random-effects interval regression
xteprobit random-effects binary-outcome probit regression
xteoprobit random-effects ordinal-outcome probit regression
These models are described in [ERM] Intro 2.

5



6 Intro 1 — An introduction to the ERM commands

The ERM commands provide the following features:

• Endogenous covariates
Explanatory variables in the model—covariates—can be exogenous or endogenous.

Endogenous covariates can themselves be continuous (linear), binary (probit), or ordinal (ordered
probit).

Endogenous covariates can be interacted with other covariates, whether endogenous or exogenous.
They can even be interacted with themselves to form polynomials.

Endogenous covariates can themselves be predicted by other endogenous covariates.

• Endogenous selection
Models can be adjusted for situations in which outcomes are unobserved for endogenous reasons.

In a medical trial, patients may skip the final visit, causing the final outcome to be unobserved.
They may skip it for reasons correlated with the outcome.

In economic data, wages are observed only for those who have a job. Those who do not have
a job may not for reasons correlated with the wage they would have received.

• Exogenous or endogenous treatment assignment
The purpose of models is often to measure the effect of a treatment, such as a drug that is
administered or a training program that is attended. Ethics often prevent assignment from being
random.

In a medical trial, doctors might assign patients most likely to benefit to a trial based on
observed characteristics. That is called exogenous treatment assignment.

In another situation, subjects may volunteer, and subjects who perceive larger benefits will be
more likely to benefit. If all the determinants of the perceptions are observed, then assignment
is exogenous. It can be explained by the observed variables, just as in the previous case.

If the determinants are unobserved, then treatment is endogenous. Errors in the assignment
equation will be correlated with errors in the outcome equation.

• Panel data or grouped data
Models can include random effects to account for within-panel or within-group correlation.

In economic data, we might have the yearly profits for the same companies for 10 years. The
repeated observations for one company are not independent.

In a medical trial, the same individuals may be observed at multiple time points. The repeated
observations on the same individual are not independent.

Observations might be students. If the students are nested in classes, observations on the students
in the same class are likely to be correlated.

Models can account for the correlation by including random effects in the outcome equation
and in equations for endogenous covariates, endogenous selection, and endogenous treatment.

Stata has other commands that address each of these issues in the case of linear regression, and
it has still other commands that can address some of these issues for interval regression, probit,
and ordered probit. But Stata has no other commands that can adjust for all the above when they
occur together. Even if your problem has only one of the issues, you may still prefer to use the ERM
commands because they all have the same simple syntax.



Intro 1 — An introduction to the ERM commands 7

The simple syntax of ERMs

The basic syntax of the ERM commands is Stata’s standard estimation syntax: the command
followed by the dependent variable followed by the covariates. Typing

. eregress y1 x1 x2

fits a linear regression of y1 on x1 and x2. You can fit a linear regression of y1 on x1 and x2 with
random effects for id by typing

. xtset id

. xteregress y1 x1 x2

If you need to use one or more other ERM features, you add options to the command.

Option Purpose

endogenous() add endogenous covariates

select() add endogenous sample selection
tobitselect() add endogenous selection using tobit

extreat() add exogenous treatment assignment
entreat() add endogenous treatment assignment

For instance, you can type

. eregress y x1 x2, endogenous(w = x1 z1 z2)

to add endogenous covariate w to the right-hand side of the model. The option specifies that w’s
instruments are variables x1, z1, and z2.

If you did not observe y but observed y0 and y1, where y0 ≤ y ≤ y1, you could fit the equivalent
interval regression by typing

. eintreg y0 y1 x1 x2, endogenous(w = x1 z1 z2)

If you observed y but it contained a 0/1 binary outcome, you could fit the equivalent probit model
by typing

. eprobit y x1 x2, endogenous(w = x1 z1 z2)

If y contained 1, 2, or 3 for ordered categories, such as not ambulatory, partially ambulatory, and
fully ambulatory, you could fit the equivalent ordered probit model by typing

. eoprobit y x1 x2, endogenous(w = x1 z1 z2)

Syntax is the same regardless of model fit.

Now, let’s imagine that the outcome y is observed only when variable selected is true (that is,
not equal to 0). Consider a case where the outcome is observed when

γ0 + γ1x2 + γ2w + e.selected > 0

and, just to make the problem more complicated, assume that w is endogenous. To fit the model with
this added complication, type

. eregress y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w)



8 Intro 1 — An introduction to the ERM commands

You would use the same syntax with the other ERM commands:

. eintreg y0 y1 x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w)

. eprobit y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w)

. eoprobit y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w)

Now, let’s complicate the model even more. We also have the variable treatment, which records
whether the observation was treated. treatment also affects y. In fact, measuring the effect of
treatment is the primary reason we are fitting this model. Type

. eregress y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w) ///
extreat(treatment)

Option extreat() handles exogenous treatment. Exogenous treatment is more flexible than you
might expect. It handles assignment based on all the covariates used in the model, which in this case
are x1, x2, and w.

But let us assume in our data that subjects volunteered. Or perhaps health care professionals
assigned subjects to being treated based on information not in the model. That would be reasonable:
doctors meet their patients and so know more about them than what is recorded in our data. In any
case, we will assume that treatment is a function of observed variables w, z2, and z3, and we will
assume that the error in the treatment equation is correlated with the error in the outcome equation. It
is that last assumption that handles doctors knowing more about their patients than what is recorded
in our data. To fit the model, we type

. eregress y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w) ///
entreat(treatment = w z2 z3)

We changed from exogenous to endogenous treatment by swapping option extreat() for entreat().

Let’s add yet another complication. The outcome y is observed at multiple time points for each
subject. Observations within subject (id) are likely correlated. We can model the correlation using
random effects. We just xtset our data and add xt to the beginning of our eregress command.

. xtset id

. xteregress y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w) ///
entreat(treatment = w z2 z3)

Shall we continue? We are just trying to convince you how flexible ERMs are and how simple the
syntax is to fit them. We will go one more step. Let’s assume that y is not continuous but is ordinal.
y contains 1, 2, and 3, meaning not ambulatory, partially ambulatory, and fully ambulatory. In that
case, change xteregress to xteoprobit.

. xteoprobit y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w) ///
entreat(treatment = w z2 z3)

Normality assumption underlying ERMs

If you are accustomed to fitting models with regress and ivregress, you expect that results
do not require that the errors be normally distributed. They merely require that they be independent
and identically distributed.

The results produced by ERMs share that feature when all the equations are linear. Linear excludes
eintreg, eprobit, eoprobit, xteintreg, xteprobit, and xteoprobit, as well as endogenous
selection and endogenous treatment, both of which depend on a secondary probit model.

The nonlinear models that ERMs fit depend on normality.
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Learning more about ERMs

What follows is a useful footnote. Other Stata commands provide a subset of the features that
ERMs provide. We list them below. We will discuss ERMs more in this manual, but ERMs provide so
many statistical features that we do not tell you as much about them as you would like. If you would
like to know more, read the documentation for the other commands and then use the ERM commands.

eregress provides the features of

Feature Command

linear regression regress

instrumental variables ivregress

exogenous treatment assignment teffects ra

endogenous treatment assignment eteffects and etregress

endogenous sample selection heckman

xteregress provides the features of

Feature Command

random effects xtreg

instrumental variables with panel data xtivreg

eintreg provides the features of

Feature Command

interval regression intreg

tobit regression tobit

instrumental-variables interval regression —
instrumental-variables tobit regression ivtobit

exogenous treatment assignment —
endogenous treatment assignment —

endogenous sample selection —

xteintreg provides the features of

Feature Command

random-effects interval regression xtintreg

random-effects tobit regression xttobit
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eprobit provides the features of

Feature Command

probit regression probit

instrumental variables ivprobit

exogenous treatment assignment teffects ra

endogenous treatment assignment —

endogenous sample selection heckprobit

xteprobit provides the features of

Feature Command

random-effects probit regression xtprobit

eoprobit provides the features of

Feature Command

ordered probit regression oprobit

instrumental variables —

exogenous treatment assignment —
endogenous treatment assignment —

endogenous sample selection heckoprobit

xteoprobit provides the features of

Feature Command

random-effects ordered probit regression xtoprobit

Reference
Gould, W. W. 2018. Ermistatas and Stata’s new ERMs commands. The Stata Blog: Not Elsewhere Classified.

https://blog.stata.com/2018/03/27/ermistatas-and-statas-new-erms-commands/.

Also see
[ERM] Intro 2 — The models that ERMs fit

[ERM] Intro 8 — A Rosetta stone for extended regression commands

[ERM] Intro 9 — Conceptual introduction via worked example

https://blog.stata.com/2018/03/27/ermistatas-and-statas-new-erms-commands/
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Title

Intro 2 — The models that ERMs fit

Description Remarks and examples Also see

Description
The ERM commands fit linear regressions, interval regressions, probit regressions, and ordered

probit regressions. These models are described below.

Remarks and examples
Remarks are presented under the following headings:

Linear regression models
Interval regression models
Probit regression models
Ordered probit regression models

In what follows, the expression

β1x1i + β2x2i + · · ·+ βkxki

arises so often that we will write it as
xiβ

x1, x2, . . . are variables in your data. They are the explanatory variables—the covariates—of the
models that you fit. x1i, x2i, . . . are the values of the variables in observation i.

Linear regression models

Linear regression is for use with continuous dependent variables. To fit a linear regression, type

. eregress y x1 x2 ... xk

The model fit is
yi = β0 + xiβ+ ei.y

where e.y is the error and is assumed to be normally distributed with mean 0 and variance σ2.

The fitted parameters are β0, β, and σ2.

When you make predictions based on linear regressions, what is predicted is the expected value
of y given x.

Interval regression models

Interval regression is for use with continuous dependent variables. To fit an interval regression,
type

. eintreg y1 y2 x1 x2 ... xk

11



12 Intro 2 — The models that ERMs fit

The model fit is the same as that for linear regression except that y is not a variable in the dataset:

yi = β0 + xiβ+ ei.y

The assumptions are the same as for linear regression too. e.y is assumed to be normally distributed
with mean 0 and variance σ2.

The fitted parameters are β0, β, and σ2.

When you use eintreg, rather than specify y, the value of the dependent variable, you specify
y1 and y2, where

y1i ≤ yi ≤ y2i

Variables y1 and y2 specify the interval in which y is known to lie. For instance, if subject 1’s
blood pressure were not precisely recorded but instead a box was checked reporting that the blood
pressure was in the range 110 to 139, then y11 would equal 110 and y21 would equal 139.

If y1i = y2i in all observations, eintreg is the same as linear regression. All values are precisely
observed.

If y1i = y2i in some observations, those observations are precisely observed.

y1i may contain a missing value and that means y1i = −∞. In such observations, all that is
known is that yi ≤ y2i. The observation is left-censored. If the box was checked for subject 2’s
blood pressure being below 120, then y12 would equal . (missing value) and y22 would equal 119.

y2i may contain a missing value and that means y2i = +∞. In such observations, all that is
known is that yi ≥ y1i. The observations are right-censored. If the box was checked that subject 3’s
blood pressure was above 160, then y13 would equal 161 and y23 would equal . (missing value).

If both y1i and y2i contain missing values, then all that is known is that −∞ ≤ yi ≤ ∞, and
the observation is ignored when fitting the model.

eintreg can be used to fit tobit models. Assume that you have data in which y is left-censored
at 0. To fit a tobit model, type

. generate y1 = cond(y==0, ., y)

. generate y2 = y

. eintreg y1 y2 x1 x2 ... xk

When you make predictions based on interval regressions, predicted is the expected value of the
dependent variable, the unobserved y, conditioned on the covariates.

Probit regression models

Probit regression is for use with binary dependent variables. To fit a probit regression, type

. eprobit y x1 x2 ... xk

Variable y in theory should contain the values 0 and 1, but eprobit does not require that. It
treats all nonzero (and nonmissing) values as if they were 1, which means a positive outcome, such
as “subject was hired” or “subject tested positive”. The positive result can be a negative event, such
as “subject died”.

The model is

pi = Pr(positive outcome in obs. i) = Pr(β0 + xiβ+ ei.y > 0)



Intro 2 — The models that ERMs fit 13

where e.y is assumed to be normally distributed with mean 0 and variance 1. With that assumption,
the probability of a positive outcome is

pi = normal(β0 + xiβ)

The fitted parameters are β0 and β.

When you make predictions based on probit regressions, predicted is the probability of a positive
outcome conditional on the covariates.

Ordered probit regression models

Ordered probit regression is for use with ordinal dependent variables. To fit an ordered probit
regression, type

. eoprobit y x1 x2 ... xk

Variable y is expected to contain 1, 2, . . . , M indicating category number although, just like
oprobit, eoprobit is less demanding. y could contain values 2, 3, 5, and 8 to indicate four ordered
categories. What is important is that the categories have a natural ordering and that the numbers used
to represent them order the categories in the same way. eoprobit could be used with the ordered
categories 1) not ambulatory, 2) partially ambulatory, and 3) fully ambulatory. Or the order of the
categories could be reversed: 1) fully ambulatory, 2) partially ambulatory, and 3) not ambulatory.
Reversing the order reverses the signs of the fitted coefficients but does not substantively change the
model.

The model fit is
pm,i = Pr(outcome m in obs. i)

= Pr(cm−1 ≤ xiβ+ ei.y ≤ cm)

where e.y is assumed to be normally distributed with mean 0 and variance 1. Thus, the probability
that the outcome is m is

pm,i = normal(cm − xiβ)− normal(cm−1 − xiβ)

where c0 and cM are −∞ and +∞, and c1, . . . , cM−1 are fit from the data. The c values play the
role of intercepts and are called cutpoints.

The fitted parameters are β and c1, . . . , cM−1.

When M = 2, the ordered probit model reduces to the probit model with c0 = −β0.

When you make predictions based on ordered probit regressions, predicted are the probabilities of
the dependent variable equaling each category conditional on the covariates.

Also see
[ERM] eintreg — Extended interval regression

[ERM] eoprobit — Extended ordered probit regression

[ERM] eprobit — Extended probit regression

[ERM] eregress — Extended linear regression
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Intro 3 — Endogenous covariates features

Description Remarks and examples Also see

Description
Whether you fit linear regressions, interval regressions, probits, or ordered probits, the ERM

commands provide the same features. One of those features is endogenous covariates, which are
explained below.

Remarks and examples
Remarks are presented under the following headings:

What are endogenous and exogenous covariates?
Solving the problem of endogenous covariates
Solving the problem of reverse causation
You can interact endogenous covariates
You can have continuous, binary, and ordered endogenous covariates
You can have instruments that are themselves endogenous
Video example

What are endogenous and exogenous covariates?

Consider the model
y = β0 + β1x1 + β2x2 + e.y

In models like this one, y is called the dependent variable or the outcome variable. x1 and x2
are called explanatory variables, exogenous variables, or (exogenous) covariates; we will simply call
them covariates. e.y is called the error.

For ERMs or any regression estimator to meaningfully fit models like the one above, it is required

1. that there be no omitted (confounding) variables that are correlated with x1 or x2.

2. that x1 and x2 be measured without error.

3. that there be no reverse causation. x1 and x2 affect y, but y must not affect x1 or x2.

4. that x1 and x2 not be correlated with e.y.

Any covariate that meets these requirements is called exogenous. Covariates that are not exogenous
are endogenous.

Solving the problem of endogenous covariates

What if x1 violated some of or all the requirements? What if x1 was endogenous? Solving the
problem of endogenous covariates is straightforward. You find a variable or set of variables that affect
x1 but do not affect y except through their effect on x1. As those variables change, they induce a
change in x1. That change in turn induces a change in y, and because that change is known to be
caused only by the change in x1, the change can be used to disentangle the problem.

14
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The variables that you use to solve the endogenous covariate problem are called instrumental
variables.

In this manual, we tend to use the following notation:

Name starts with Signifies

y dependent variable
x exogenous covariate
w endogenous covariate
z instrumental variable
Note: The above is notation, not a naming requirement. The
software does not require that variables be named this way.

Because we are now assuming that x1 is an endogenous covariate, let us rename it w1 and rewrite
our model:

y = β0 + β1w1 + β2x2 + e.y

To fit this model, we need one or more variables to serve as instruments for w1. Those variables
need to be correlated with w1 and uncorrelated with y. Let z1 and z2 be two such variables. Finding
z1 and z2 is more easily said than done, and how you find them is beyond the scope of this manual.
Nonetheless, two examples would not be out of order.

1. An economist needed an instrument for income and used spouse’s income. Incomes of
spouses are correlated, and in the research problem, there was no reason to suspect that
spouse’s income would affect the outcome other than through the correlation.

2. A health researcher needed an instrument for whether patients were prescribed a new drug. In
the research problem, that variable might be endogenous because doctors are more likely to
prescribe drugs they expect will be beneficial to patients based on characteristics unobserved
in the data. The researcher used whether the drug was on formulary for the patients’ insurance
as an instrument because it is expected to be correlated with whether the drug was prescribed
but not with the outcome.

Anyway, find one or more variables that are correlated with w1 but not with the dependent variable
except through the effect on w1. We will assume variables z1 and z2 meet the criteria. We can then
fit a model with w1 as a covariate by typing

. eregress y x2, endogenous(w1 = z1 z2)

The model has two covariates: exogenous covariate x2 and endogenous covariate w1. w1 was added
to the model by the endogenous() option. If we wished, we could type w1 among the covariates,
but then we have to specify endogenous()’s option nomain so that it does not add w1 for us. We
could type

. eregress y x2 w1, endogenous(w1 = z1 z2, nomain)

Whichever syntax we use, we are using z1 and z2 as instruments for w1. There is a third instrument
we could add to z1 and z2. If we wanted, we could add x2 by typing

. eregress y x2 w1, endogenous(w1 = z1 z2 x2, nomain)

We can add x2 because it is probably correlated with w1, and it most certainly affects y, and it is
exogenous. We at StataCorp would add x2 almost by reflex. We explain why below.
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Solving the problem of reverse causation

Instrumental variables can solve the four problems we mentioned at the beginning of this section.

1. They can solve the problem of omitted variables that are correlated with w1.

2. They can solve the problem of w1 being measured with error.

3. They can solve the problem of reverse causation, meaning that y affects w1.

4. They can solve the problem of x1 and x2 being correlated with e.y.

We are not saying that we have all those problems, but instrumental variables can solve them if we do.

If we do not include x2 among the instruments, however, problem 3 is not handled. We must
include all the exogenous variables predicting y to handle reverse causation. In the model above, we
have only one exogenous variable. If our model had been

y = β0 + β1w1 + β2x2 + β3x3 + β4x4 + e.y

we would have included all of them:

. eregress y w1 x2 x3 x4, endogenous(w1 = z1 z2 x2 x3 x4, nomain)

This solution to reverse causation works with linear models, meaning eregress and eintreg. It
does not work with eprobit and eoprobit. There is no solving the reverse-causation problem for
those models.

You can interact endogenous covariates

What we have said so far about endogenous covariates applies not only to ERM commands but
also to all of Stata’s estimation commands for endogenous regressors.

A feature unique to ERMs is that you can use endogenous covariates in interactions. For instance,
eregress can fit a model including

. eregress y w1 i.x2 i.x2#c.w1, endogenous(w1 = z1 i.x2, nomain)

In this model, we are assuming that x2 is a dummy variable, such as attends school. x2 is 1 when
subjects attend school and is 0 otherwise. Therefore, we use i. factor-variable notation when we
include x2 in the model. The right-hand-side variables in this model are

w1 a continuous, endogenous variable
i.x2 attends school
i.x2#c.w1 attends school multiplied by w1

The coefficients on these variables are

β1 effect of the endogenous continuous covariate
β2 effect of attending school
β3 extra effect of w1 when attending school

eregress can fit this model. Stata’s other instrumental-variable regression command ivregress
could not. It would complain about the interaction i.x2#c.w1 because of a limitation on how the
usual statistical formulas work. Interactions with endogenous covariates are not allowed.

eregress has no difficulty with such models.
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Now, we will tell a different backstory about y, w1, and x2:

y income, job satisfaction, etc.
w1 years of schooling after high school
i.x2 dummy for schooling, whatever the level, being in a STEM subject

STEM stands for science, technology, engineering, and math. In a model such as
. eregress y i.x2 w1 i.x2#c.w1, endogenous(w1 = z1 i.x2, nomain)

extra years of schooling increase y by β2 for non-STEM and by β2 + β3 for STEM.

ERMs not only allow interactions of endogenous with exogenous covariates but also allow interactions
of endogenous with endogenous covariates and even allow interactions of endogenous covariates with
themselves! Here is an example:

. eregress y w1 c.w1#c.w1 i.x2, endogenous(w1 = z1 i.x2, nomain)

In this model, the term c.w1#c.w1 means w12. Years of schooling after high school would increase
y by β2w1 + β3w1

2.

You can also interact endogenous covariates with other endogenous covariates, such as
. eregress y w1 w2 c.w1#c.w2 i.x2, endogenous(w1 = z1 i.x2, nomain) ///

endogenous(w2 = z2 i.x2, nomain)

You can tell your own story about this model.

You can have continuous, binary, and ordered endogenous covariates

We have discussed continuous endogenous covariates. ERMs also allow binary and ordinal covariates.
Consider the model

. eregress y w1 i.x2, endogenous(w1 = z1 i.x2, nomain)

Obviously, w1 is an endogenous covariate. In the previous section, we speculated that w1 was
years of schooling beyond high school, but what if w1 was instead a dummy variable for having a
college degree?

If you used the above model as typed, you would be using the linear probability model to handle
w1. Saying that makes the situation sound better than it is. Probabilities are bounded by 0 and 1,
and you would be using a linear model to fit them, meaning that some of the predicted probabilities
could be below 0 or above 1. You ordinarily would have to live with that. With ERMs, you have a
better alternative. You can tell eregress to use the probit model to handle w1! You type

. eregress y i.w1 i.x2, endogenous(w1 = z1 i.x2, probit nomain)

In the equation for y, we now include w1 as a factor variable, i.w1.

Interactions are allowed with binary endogenous covariates just as they are allowed with continuous
endogenous covariates. You could type

. eregress y i.x2 i.w1 i.x2#i.w1, endogenous(w1 = z1 i.x2, probit nomain)

w1 could even be an ordered categorical variable. We have imagined that w1 contains values 0
and 1, with 1 meaning schooling in a STEM subject. Let’s imagine that w1 contains the values 1, 2,
and 3, with 1 meaning a non-STEM program, 2 meaning a mixed program with some courses from
a STEM program, and 3 meaning a STEM program. To fit this model, all we have to do is change
probit to oprobit:

. eregress y i.x2 i.w1 i.x2#i.w1, endogenous(w1 = z1 i.x2, oprobit nomain)
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Including i.x2#i.w1 allowed the effect of x2 to differ across the levels of the binary or ordinal
endogenous variable w1. However, in the models above, the variance of e.y and its correlation with
the other errors are assumed to be the same for each level of w1. If we wanted to allow e.y to be
heteroskedastic with different variances for different levels of w1, we could add the povariance
suboption.

. eregress y i.x2 i.w1 i.x2#i.w1, ///
endogenous(w1 = z1 i.x2, oprobit nomain povariance)

In our story with the ordered endogenous variable, this model estimates different error variances
for non-STEM programs, mixed programs, and STEM programs.

We could also allow the correlations of e.y with the other errors to vary across the levels of w1
by including the pocorrelation suboption. You may think that povariance and pocorrelation
are unusual names. To understand these names, consider that once parameters such as coefficients,
variances, and correlations differ across levels of w1, we have entered a treatment-effects setting with
treatment w1. Thus, we can think of this model using the potential-outcomes framework. povariance
and pocorrelation request potential-outcome specific variances and correlations. See Treatment-
effect models and potential outcomes in [ERM] Intro 5 for more information on treatment effects and
potential outcomes.

You can have instruments that are themselves endogenous

When we type

. eregress y w1 x2, endogenous(w1 = z1 z2, nomain)

we are specifying a model with an endogenous covariate and handling the problem of its endogeneity
with the instruments z1 and z2. The instruments we specified are exogenous in this example, but the
ERM commands do not require that. If z1 had one more of the problems we outlined at the beginning
of this manual entry, then it would be endogenous and we might solve the problem that it raises by
typing

. eregress y w1 x2, endogenous(w1 = z1 z2, nomain) endogenous(z1 = z3, nomain)

That could be the end of the story. ERMs can fit the above model.

We would have yet another problem, however, if z1 also depended on w1. ERMs cannot fit models
in which one dependent variable depends on another that depends on the first. The following model
has that problem:

. eregress y w1 x2, endogenous(w1 = z1 z2, nomain) ///
endogenous(z1 = w1 z3, nomain)

If we tried to fit the model, the command would complain:

. eregress y w1 x2, endogenous(w1 = z1 z2, nomain)
> endogenous(z1 = w1 z3, nomain)
endogenous variables do not form a triangular system

The problem may be fixable. See triangularizing the system.
r(459);

The message says that the system needs to be triangular, which is another way of saying the system
cannot have simultaneous causation. Do not confuse simultaneous causation with reverse causation,
which we previously discussed. Reverse causation concerns one equation, its dependent variable,
and a covariate. The covariate affects the dependent variable, and the dependent variable affects the
covariate. Simultaneous causation concerns two or more equations. Their dependent variables are
mutually dependent.
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Nonetheless, the workaround for simultaneous causation is a variation on the workaround for
reverse causation. If the equations involved are both linear, take one of them, remove the offending
endogenous variable, and substitute the removed variable’s exogenous variables.

The two equations involved in this example are

endogenous(w1 = z1 z2, nomain)
endogenous(z1 = w1 z3, nomain)

We could remove z1 from the first equation and substitute z3. Or we could remove w1 from the
second equation and substitute z2. Doing the former results in

. eregress y w1 x2, endogenous(w1 = z3 z2, nomain) /// (1)
endogenous(z1 = w1 z3, nomain)

Doing the latter results in

. eregress y w1 x2, endogenous(w1 = z1 z2, nomain) /// (2)
endogenous(z1 = z2 z3 nomain)

ERMs can fit either model, and results for the main equation will be the same.

The first solution’s equation for z1 has an odd feature. The equation for variable z1 is irrelevant
because z1 appears nowhere else in the model. We could omit the unnecessary equation and fit the
model by typing

. eregress y w1 x2, endogenous(w1 = z3 z2, nomain) (3)

That will produce the same result too.

Statistically, all the solutions are equally good. Numerically, (3) is sometimes better because it is
easier for ERMs to fit models with fewer equations.

In any case, these solutions were available to us because the models involved were linear. Had
they been nonlinear, there would have been no solution.

If you want to read more about this problem and its solution, see [ERM] Triangularize.

Video example

Extended regression models: Endogenous covariates

Also see
[ERM] Intro 9 — Conceptual introduction via worked example

[ERM] Triangularize — How to triangularize a system of equations

https://www.youtube.com/watch?v=bPhNq6RYd-I
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Intro 4 — Endogenous sample-selection features

Description Remarks and examples Also see

Description
Endogenous sample-selection problems are handled by the select() option. ERMs provide probit

and tobit selection. Probit selection is discussed below. Tobit selection is a variation on probit selection
that uses censoring of a normal variable as an indicator of selection.

Remarks and examples
Remarks are presented under the following headings:

Is sample selection a concern in your research problem?
The problem and solution of endogenous sample selection
Endogenous sample selection handles missing not at random
Endogenous sample selection can be used with other features of ERMs
Mechanical notes
Video example

Is sample selection a concern in your research problem?

Say that you wish to fit the model

. eregress y x1 x2

We will tell you two stories about it. In the first, y is wage-and-salary income. In the second, y is a
health outcome for people with a certain malady.

Both of these stories have issues of sample selection. Wages are observed only for people who
work. Health outcomes are observed only for people with the malady who seek treatment. Do you
care? You might not.

If you are an economist studying the effects of education, you might be perfectly satisfied measuring
the return to schooling in terms of increased income of those who work. This would certainly be the
situation if you were performing research to determine how schools could be improved.

If you are a medical researcher studying the effect of a treatment, you might be perfectly satisfied
measuring the effect of the treatment on those who currently seek it. This would certainly be the
situation if you were performing research to determine how the treatment could be improved.

Sample selection is of concern only when changing the selected population—those who work or
those who are treated—is under consideration.

20
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The problem and solution of endogenous sample selection

We wish to fit the model

. eregress y x1 x2

We observe y for some of but not all the sample. We observe x1 and x2 for the entire sample.

For instance, we might be doing a study of a walking program run by hospitals for patients
after heart attacks. Doctors prescribe the program to patients who they believe will benefit. After six
months in the program, recorded for each patient is

y Meaning

1 I feel worse (tired)
2 I feel about like I did when I started the program
3 I feel better

The variable y will be missing for some of the observations in the data. Those observations
correspond to the patients who were not prescribed the program. y could also be missing if patients
were prescribed but dropped out of the program—were lost to follow-up—but we will ignore that
right now. We will discuss lost to follow-up in [ERM] Intro 5.

Variable y is an ordinal variable, so rather than fitting the model by using eregress, we will fit
it by using eoprobit:

. eoprobit y x1 x2

Do not type that command yet. If you did, the model would be fit using only the observations on
patients who were prescribed the program, because y is missing otherwise. We are about to discuss
those other patients. In fact, let’s create a variable indicating whether patients were selected for
inclusion in the program—we will need it later.

. generate selected = !missing(y)

There are two types of sample selection: exogenous and endogenous. Hardly any issues are created
by exogenous sample selection. The real problems are raised by endogenous selection, and to discuss
those issues, we need to tell you more about the walking program.

Doctors prescribed the program to their patients based on each patient’s x1 and x2 values. Those
variables are believed to predict how much a patient would benefit from the program. Indeed, patients
in especially poor health might actually be harmed by the program. Say that we are conducting
research to evaluate how well x1 and x2 predict a benefit and to consider whether the criteria for
being prescribed the program should be loosened or tightened. Would extending the program to more
patients be beneficial? Or is the program already being used by too many?

That the sample was selected on x1 and x2 causes no statistical issues, although it can cause
complications. Assume that doctors also based their decisions on x3 but that was for administrative
reasons. That sounds horrible, but it is not necessarily bad; for example, if a patient lives far from
the hospital, the doctor might not prescribe the hospital’s walking program as readily. In any case,
x3, the distance a patient lives from the hospital, affected the decision but is not believed to affect
how beneficial the program is for the patient. If we are certain about that, we can ignore x3. If we
are uncertain, we should add x3 to the model to verify that the effect really is 0.
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The above situation is called exogenous sample selection. It is not a reasonable story, but perhaps
you do not yet see why. Anyway, if the only problem is exogenous sample selection, we can ignore
it, and the only issue we have is to decide whether to include x3 in our model. We can fit the model
by typing

. eoprobit y x1 x2

or

. eoprobit y x1 x2 x3

Typing those commands is equivalent to typing

. eoprobit y x1 x2 if selected

or

. eoprobit y x1 x2 x3 if selected

We mention this merely to emphasize that because y is missing in the group for which selected
is 0, all observations for which selected is 0 are omitted from the estimation subsample.

The problem with the above story is that doctors know more about their patients than we do. They
know more than what is recorded in our database. Doctors meet with their patients and get to know
them, and doctors factor everything they know into their decisions. Doctors prescribed the walking
program to patients who they believed would benefit. They predicted the benefit on the basis of x1,
x2, and x3, as well as on information they know about the patients that is not recorded in the data.

Think of the decision that doctors make as a probit model:

p = Pr(prescribed)

= Pr(β0 + β1x1i + β2x2i + β3x3i + ei.selected > 0)

The important part of this model is e.selected. The error includes everything doctors know about
their patients that is not recorded in the data. Because doctors presumably are making decisions in
the patients’ best interest, e.selected will be correlated positively with e.y, which is the error in
the model’s main equation fit by

. eoprobit y x1 x2

If we fit the model ignoring this correlation, we would obtain results suitable for predicting outcomes
among those who participated in the program but not among those who did not participate.

It is the nonzero correlation of e.y and e.selected that makes the sample-selection endogenous.
eoprobit will produce estimates accounting for the correlation if we specify the select() option:

. eoprobit y x1 x2, select(selected = x1 x2 x3)

eoprobit will report ρ̂—the estimate of the correlation between the two errors—and it will
report the coefficients in the outcome and selection models. Because we have now accounted for the
endogenous sample selection, we can interpret the results in terms of the full population, not just
those who were prescribed the treatment.
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Endogenous sample selection handles missing not at random

select() can handle cases in which data are missing not at random (MNAR), also known as
nonignorable missing data. It can handle them as long as that missingness is modeled in the select()
equation. It can solve the problem of missing on unobservables.

Endogenous sample selection can be used with other features of ERMs

You can use select() with other features of ERMs, that is, with endogenous covariates, with
treatment effects, and with observations that are correlated within panels or within groups. We have
not discussed treatment effects or within-panel correlation yet. We will get to those in [ERM] Intro 5
and [ERM] Intro 6.

In the meantime, we will show you one way that endogenous() can be used with select().
Above, we fit the model

. eoprobit y x1 x2, select(selected = x1 x2 x3)

In the story we told, x3 measured an administrative reason we think affected doctors’ decisions to
prescribe the walking program. Let’s imagine that x3 was endogenous for one reason or another. In
the original story, x3 was the distance a patient lived from the hospital. Perhaps its value is measured
with error. Or perhaps x3 represents some other administrative reason we think is correlated with y.
Because it is endogenous, we will now refer to this variable as w3 instead of x3. We can address the
problem by using the endogenous() option:

. eoprobit y x1 x2, select(selected = x1 x2 w3) endogenous(w3 = z1 z2, nomain)

We included suboption nomain because we do not want w3 to be added to the main equation. w3
appears only in the selection equation in this model.

Be careful not to omit nomain when it is necessary. Endogenous covariates can appear in the main
equation, the selection equation, or both. Consider another example in which x3 is not endogenous
but x2 is. Let’s call it w2 instead of x2. We could fit that model by typing

. eoprobit y x1, select(selected = x1 w2 x3) endogenous(w2 = z3 z4)

w2 will appear in the main equation because we did not also specify nomain. Some users always
type nomain and explicitly specify all the covariates that appear in the main equation. You could fit
the same model by typing

. eoprobit y x1 w2, select(selected = x1 w2 x3) endogenous(w2 = z3 z4, nomain)

Mechanical notes

When you specify

. eoprobit y ..., select(selected = ...)

you can specify variables in just the y equation, just the selected equation, or both. When the
same variables are specified in both equations, it is called functional-form identification. Statistically
speaking, the situation would be better if there were some covariates that appeared in the selected
equation that did not appear in the main equation, but no one is suggesting that you add irrelevant
covariates to your model. Still, you should think about whether you have any such variables. We
found such a variable (x3) in the story above.
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Video example

Extended regression models: Endogenous sample selection

Also see
[ERM] Intro 9 — Conceptual introduction via worked example

https://www.youtube.com/watch?v=xeDIh-jugIc


Title

Intro 5 — Treatment assignment features

Description Remarks and examples Also see

Description
ERMs can fit treatment-effect models. Treatment can be binary (not treated or treated) or ordinal

(not treated or treated or treated extremely).

Option extreat() specifies exogenous treatment effects.

Option entreat() specifies endogenous treatment effects.

ERM’s treatment-effect features are explained below.

Remarks and examples
Remarks are presented under the following headings:

What are treatment-effect models?
Treatment-effect models and potential outcomes
Endogenous and exogenous treatment effects
Binary and ordinal treatment effects
Sample versus population standard errors
Using treatment effects with other ERMs
Using treatment effects with other features of ERMs
Using treat() and select() to handle lost to follow-up
Treatment statistics reported by estat teffects
Video example

What are treatment-effect models?

Let’s consider a simple binary treatment-effect problem. A treatment is applied to some patients,
and we want to measure its effect. We start by imagining that patients are assigned randomly to
the treated group. We observe a continuous outcome y, such as blood pressure, and we think the
treatment affects y. We think the treatment’s effect varies with patients’ age, x1.

Here is one way we could fit the model:

. eregress y x1 i.treated i.treated#c.x1

Variable treated specifies which patients were treated. It contains 1 or 0. The model we just fit is

yi = β0 + β1x1i + β2treatedi + β3treatedix1i + ei.y

This model says that the outcome for patients who are not treated is

yi = β0 + β1x1i + ei.y (1)

For those treated, the outcome is

yi = (β0 + β2) + (β1 + β3)x1i + ei.y (2)

25
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β2 and β3x1 measure the effect of being treated. That effect varies observation by observation with
the patient’s age. Many researchers would stop here, satisfied to have the fitted coefficients.

Researchers who fit treatment-effect models, however, usually want to know the average treatment
effect (ATE). We could obtain it.

We would calculate the average outcome when being treated over the entire dataset, the average
outcome when not being treated over the entire dataset, and subtract the two results to obtain an ATE
for this group of patients.

In an equivalent method of obtaining the ATE, we would calculate new variable if not treated
equal to

if not treatedi = β̂0 + β̂1x1i

We would calculate new variable if treated equal to

if treatedi = if not treatedi + β̂2 + β̂3x1i

Then, we would subtract them:

diffi = if treatedi − if not treatedi

We would finally calculate the mean of diff:
. summarize diff

Stata’s margins command is wonderful at doing things like this, and it even reports the standard
error! And we do not even have to calculate if not treated, if treated, and diff. Instead,
we just type

. margins r.treated

Treatment-effect models and potential outcomes

We can write the equations for the untreated and the treated, (1) and (2), in another way. For the
untreated, the first potential outcome, we write

y0i = γ00 + γ01x1 + ei.y0 (3)

For the treated, the second potential outcome, we write

y1i = γ10 + γ11x1 + ei.y1 (4)

We can also write the ATE in terms of these potential outcomes as

ATE = E (y1i − y0i)

Instead of using the eregress and margins commands above, we can type
. eregress y x1, extreat(treated)

The coefficients reported are now the γ coefficients from (3) and (4). Because we fit the model
using the extreat() option, we can now type the following to estimate the ATE:

. estat teffects
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Endogenous and exogenous treatment effects

ERMs can fit models far more complicated than the model we just fit. That is good because the
story we told above is too simple. For instance, we said that patients were assigned randomly. Ethical
considerations sometimes prevent that.

There are two types of treatment effects: exogenous and endogenous. What distinguishes them
is the same thing that distinguished them in [ERM] Intro 4, where we discussed exogenous and
endogenous selection effects. It matters whether the error in the selection (treatment assignment)
equation is correlated with the error in the main equation.

Here are four examples of treatment assignment.

1. Assignment is random (as above). In this case, the assignment equation contains only an
error, e.treated, and it is uncorrelated with e.y. Treatment is exogenous.

2. Assignment is determined by hard-and-fast rules. There is no e.treated, or if you prefer,
it is 0. Either way, it is uncorrelated with e.y. Treatment is exogenous.

3. Assignment is determined in part by hard-and-fast rules, but if the patient meets them, a
coin is flipped to determine whether the patient is treated or untreated. e.treated is the
coin flip, and it is uncorrelated with e.y. Treatment is exogenous.

4. Assignment is by whatever rules, if any, plus unobserved judgment. Thus, judgment appears
in e.treated, and we must consider the possibility that it is correlated with e.y. Treatment
is endogenous.

ERMs can fit models with exogenous or endogenous treatment assignment. You specify the ex-
treat() or entreat() option. In the four examples above, you would specify

1. extreat(treated)

2. extreat(treated)

3. extreat(treated)

4. entreat(treated = . . . )

You could fit
. eregress y x1 x2 x3, extreat(treated)

or
. eregress y x1 x2 x3, entreat(treated = x1 z1 z2)

These models estimate distinct intercepts and distinct coefficients on x1, x2, and x3 in the equation
for y. They also estimate the variance of e.y, but it is assumed to be equal across treatment groups.
In the potential-outcomes framework, this means that the variance of ei.y0 and that of ei.y1 are
assumed to be equal. This may not be reasonable. Perhaps the variance of the error for the treated
group is larger than the variance of the error for the untreated group. The povariance suboption
relaxes this constraint so that distinct error variances are estimated for each potential outcome. We
can type

. eregress y x1 x2 x3, extreat(treated, povariance)

and
. eregress y x1 x2 x3, entreat(treated = x1 z1 z2, povariance)

We might want to allow the correlation between error terms to differ across potential outcomes.
The pocorrelation suboption specifies that distinct correlations are estimated. For this, we type

. eregress y x1 x2 x3, entreat(treated = x1 z1 z2, pocorrelation)
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More likely, we would want to let both error variances and correlations vary across potential
outcomes by typing

. eregress y x1 x2 x3, entreat(treated = x1 z1 z2, povariance pocorrelation)

Whichever you type, you can obtain the ATE by typing

. estat teffects

Binary and ordinal treatment effects

We have been assuming that treatment is binary. ERMs can also fit ordinal treatment models. Think
of these models as all being the same treatment but of different intensities. For instance,

1. A rehabilitative exercise program might be attended not at all, once a week, or twice a week.

2. A drug might be administered in different dosages.

3. A jobs program might be attended not at all, once a week, or twice a week.

4. The amount of post-secondary education could be none, some college, graduated, or graduated
plus postgraduate.

When treatment is ordinal, variable treated contains more than two values. The variable might
contain 0, 1, or 2; or 1, 2, or 3; or even 2, 3, or 5. If there are four ordered treatments, the variable
contains four different values. The particular values do not matter as long as the numeric values order
the treatments in the way they should be ordered.

When the treated variable takes on more than two values, entreat() fits the endogenous treatment
equation by using ordered probit instead of binary probit.

Sample versus population standard errors

Researchers who fit treatment models usually want population standard errors.

When we fit the treatment model by hand, not using the extreat() or entreat() option, we
typed

. eregress y x1 i.treated i.treated#c.x1

. margins r.treated

When we used the extreat() option to fit the same model, we used estat teffects to obtain
the ATE. We typed

. eregress y x1, extreat(treated)

. estat teffects

In both cases, the standard errors reported for the ATE were the same. The data were treated as fixed
and not as a draw from the underlying population.

The standard error would also be treated that way if we fit a model with endogenous instead of
exogenous treatment assignment.

. eregress y x1 x2 x3, entreat(treated = x1 z1 z2)

. estat teffects
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Researchers fitting treatment-effect models often want standard errors for ATEs suitable for predicting
to the entire population and not just this particular sample. If you want population-based standard
errors, you must fit the model by using the vce(robust) option:

. eregress y x1, extreat(treated) vce(robust)

. estat teffects

Do that and estat teffects will report population-based standard errors.

Returning to the eregress command, when you do not specify vce(robust), it reports OIM
standard errors. OIM stands for observed information matrix. The alternative robust standard errors
assume less and are therefore less efficient. While less efficient, robust standard errors still have
correct coverage. The standard errors themselves just have more sampling variability. Robust standard
errors are absolutely required if estat teffects is to report standard errors for the effect in the
population.

Requesting the ATE with population standard errors makes sense only if the sample you are using
is an unbiased random draw from the population for which you wish to make predictions. If the
sample is not, you need to specify your data’s probability sampling weights as well. Type

. eregress y x1 [pw = weight], extreat(treated) vce(robust)

. estat teffects

In this case, you can omit the vce(robust) option because it is assumed when probability sampling
weights are specified.

Variable weight contains inverse probabilities that the observations were sampled from the
population. For instance, if some observations were sampled with probability 0.001 and others with
0.0001, then weight contains 1,000 and 10,000. For our purposes here, the scale of weights does not
matter, so weight could just as well contain 1 and 10. Scale of weights matters when you request
totals, which estat teffects does not produce.

Using treatment effects with other ERMs

The outcome variable y need not be continuous. It can be interval, binary, or ordinal, meaning
that you can use the eintreg, eprobit, or eoprobit command to fit the model.

If we had a binary outcome variable, we would type

. eprobit y x1 x2 x3, entreat(treated = x1 z1 z2)

If we planned on obtaining the ATE with population standard error, we would type

. eprobit y x1 x2 x3, entreat(treated = x1 z1 z2) vce(robust)

. estat teffects

Using treatment effects with other features of ERMs

extreat() and entreat() can be used with endogenous() and select(). Said differently,
treatment models can contain endogenous covariates and be adjusted to handle endogenous sample
selection. Treatment models can also include random effects to account for within-panel or within-
group correlation; we will discuss this in [ERM] Intro 6. Here we will focus on combining treatment
with endogenous covariates and sample selection.

By now, you are familiar with the endogenous() option. Some examples of eregress used with
extreat() and entreat() are
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. eregress y x1 x2 w1, extreat(treated) endogenous(w1 = x1 z1 z2, nomain)

. eregress y x1 x2 w1, entreat(treated = z3 w1) ///
endogenous(w1 = x1 z1 z2, nomain)

. eregress y x1 x2, entreat(treated = z3 w1) endogenous(w1 = x1 z1 z2, nomain)

We used the nomain suboption and explicitly included w1 in the main equation if we wanted it there.
In those cases, we could have omitted the explicit mention and deleted option nomain. Equivalent to
the first example is

. eregress y x1 x2, extreat(treated) endogenous(w1 = x1 z1 z2)

So far, we have not included the povariance and pocorrelation suboptions. We can add these
to estimate potential-outcome specific variances of e.y and potential-outcome specific correlations
between e.y and e.w1 and between e.y and e.treated. For instance, we could extend the second
example to include variances and correlations that vary across treatment groups by typing

. eregress y x1 x2 w1, ///
entreat(treated = z3 w1, povariance pocorrelation) ///
endogenous(w1 = x1 z1 z2, nomain)

Next, we consider use of entreat() and extreat() with select() to account for endogenous
and exogenous sample selection.

We wish to fit a treatment-effect model but there is a problem. The treatment-effect model we
want to fit is

. eregress y x1 x2, entreat(treated = x1 z3)

The problem is that the information on y was collected at the end of the study, and some patients
never showed up—they dropped out along the way. To fit the desired model with the complication,
we type

. generate selected = !missing(y)

. eregress y x1 x2, entreat(treated = x1 z3) select(selected = x1 z4 z5)

To obtain the ATE, we type

. estat teffects

The model reported by eregress and the ATE reported by estat teffects will be adjusted for
both the endogenous treatment assignment and the endogenous selection effects. The latter adjusts
for the censored observations in which the final outcome y was not observed.

Reported were sample statistics. If we had wanted population statistics, we would have typed

. eregress y x1 x2, entreat(treated = x1 z3) select(selected = x1 z4 z5) ///
vce(robust)

. estat teffects

If treatment assignment had been exogenous, we would have specified extreat(treated) instead
of entreat(treated = x1 z3).

If we wanted to allow the variance of e.y to vary across potential outcomes, we could add
the povariance suboption to the entreat() or extreat() option. If we wanted to allow the
correlations between e.y and other error terms in the model to vary across potential outcomes, we
could add the pocorrelation suboption to entreat() or extreat().

Note in the above example that treatment can have one arm as in the story we told or it can have
multiple arms. In other words, the treatment can be binary or ordinal. Nothing we typed would need
to change.
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Using treat() and select() to handle lost to follow-up

The important feature of the above example is that the censored observations were lost to follow-up.
By that, we mean that the patients did not report for the final meeting, and thus y was unobserved.
Specifying the select() equation allowed the error in selection (that is, the unobserved reasons that
subjects showed up or did not show up) to be correlated with the error in the main outcome equation
(the error in the benefit of the treatment). It also allowed the error in selection to be correlated with
the error in the treatment assignment. Said statistically, all endogeneity issues were handled.

This was all possible because the treatment arm was assigned even for the censored observations.
Variable treated was not missing. It contained a treatment-arm value just as it does in all the other
observations.

What if that is not true? What if censoring occurred before the treatment arm was assigned? Then
we have an issue we need to discuss. First, here is how you determine whether your data have this
issue. Type

. assert !missing(treat) if selected==0

If assert reports that the assertion is false, your data have this issue. You have censored observations
for which the treatment arm is unassigned.

ERMs handle this issue differently for exogenous and endogenous treatment assignment. If you are
fitting an exogenous treatment model,

. eregress y x1 x2, extreat(treated) select(selected = x1 z4 z5)

ERMs do not care that the treatment arm is missing. Endogenous selection will be fully handled just
as if the treatment arm had been observed. That is, ERMs handle the issue as long as the treatment
arm does not appear as an explanatory variable in your selection equation.

It would not be unreasonable to fit a model such as
. eregress y x1 x2, extreat(treated) select(selected = treated x1 z4 z5)

If you are fitting this model, it should be obvious that the treatment arm must be assigned to the
censored observations. Your selection equation says that the treatment arm itself will affect whether
observations are censored.

Let’s put that case aside and return to the usual case of missing treatment with exogenous treatment
assignment. The ERM commands fit the model without problem. estat teffects will report the ATE.
estat teffects has options for reporting other statistics, all of which will be fine except ATET—
the average treatment effect among the treated. ATET is defined to include all treated observations.
Because treated is sometimes missing because of selection, the computed ATET will exclude those
observations for which treatment assignment is missing.

Now, let’s consider endogenous treatment assignment. We want to fit the model
. eregress y x1 x2, entreat(treated = x1 z3) select(selected = x1 z4 z5)

What makes us hesitate is that some of or all the censored observations have treated equal to
missing, meaning that treatment was evidently not assigned for them. If we typed the command and
fit the model, ERM would fit it omitting those observations. This is equivalent to assuming that the
observations were censored completely at random. That could be reasonable. Perhaps most of the
censored observations were lost to follow-up—for them, the treatment arm is observed—and only a
few were lost before treatment was assigned because of misplaced paperwork.

On the other hand, if all the censored observations were censored before the treatment arm
was assigned, the model cannot be fit. Omitting those with missing treatment omits the censored
observations, and there is simply no selection equation left to fit. After dropping the observations
containing missing values, everyone left in the estimation sample is not censored.
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The bottom line is that ERMs cannot fit this model. ERMs place selection after treatment assignment
because lost to follow-up is the common case.

You might be able to salvage the situation. Is it just that the treatment-arm values are not in your
dataset because the data were not entered? If so, retrieve the data. If that is not the case but the
experiment is still ongoing, run the censored observations through the treatment-assignment process.

Treatment statistics reported by estat teffects

estat teffects reports ATEs, which are the average effects of the treatment if it had been applied
to the entire sample or to the entire underlying population. estat teffects reports its value and
standard error. The standard error is for the sample if vce(robust) was not specified when the
model was fit and for the population if vce(robust) was specified when the model was fit.

Sometimes ERMs assume vce(robust) even when you do not type it. This happens when you
specify features that themselves require vce(robust). Option vce(cluster) requires vce(robust).
Actually, it is a variation on vce(robust), but that is not important for this problem. If you specify
pweights, then vce(robust) is used too.

The types of standard errors reported will be clearly labeled on the output eregress, eintreg,
eprobit, or eoprobit produces. estat teffects indicates clearly in its output, too, whether output
is for the sample or the population.

estat teffects reports

ATE, the average treatment effect for each treatment for the entire sample/population.

estat teffects, atet reports

ATET, the average treatment effect for each treatment for the treated sample or population.

estat teffects, pomeans reports

POMEANS, the potential-outcome means for each treatment arm, meaning means for the
untreated and means for each of the treated.

Outcomes here are the values of the dependent variable in the main equation, or y.

Potential outcomes are the values, observation by observation, of yi that would be observed
if each was treated and untreated.

Potential-outcome means are the means of treated and, separately, of untreated. The difference
between them is the ATE.

All of these statistics can also be reported for subsamples or subpopulations.

Video example

Extended regression models: Nonrandom treatment assignment

Also see
[ERM] Intro 9 — Conceptual introduction via worked example

https://www.youtube.com/watch?v=5doinKwx2HI
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Intro 6 — Panel data and grouped data model features

Description Remarks and examples Also see

Description
In panel data and in other grouped data, observations within the same panel or group are not

independent. The xt versions of the ERM commands fit models with random effects to account for the
within-panel or within-group correlation. xteregress, xteintreg, xteprobit, and xteoprobit
are explained below.

Remarks and examples
Remarks are presented under the following headings:

Random-effects models that ERMs handle
Random effects can be used with other features of ERMs

Random-effects models that ERMs handle

In [ERM] Intro 2 through [ERM] Intro 5, we discussed models with observation-level errors that
are assumed independent and identically distributed.

When we typed
. eregress y x1 x2

the model fit was

yj = β0 + β1x1j + β2x2j + ej .y

For this model, we could tell a story about how yj is the college grade point average (GPA) of
student j and the error ej .y represents the unobserved factors that influence yj . Each observation in
these data could be a randomly drawn student.

What if we record the semester GPA for each student for eight semesters? In addition to the
observation-level error that is represented in ej .y, the unobserved characteristics of the student (such
as student ability) may have an effect on yj .

We can adjust our model to include effect of student,

yij = β0 + β1x1ij + β2x2ij + ui.y + eij .y

Now the unobserved effect of semester j for student i is eij .y. The unobserved effect of the
student is ui.y. We treat the effect of student as random.

Some disciplines would refer to this model as a panel-data random-effects model where students
are the panels. Others would refer to it as a multilevel model with two levels—the student level
and the semester-within-student level—with random intercepts at the student level. Regardless of
terminology, the model is the same. We estimate variance parameters for the student-level random
effects and for the observation-level errors.

33
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The ERM commands for random-effects models follow the style of Stata’s panel-data (xt) commands.

If the variable studentid identifies the students in our sample and the variable semester identifies
the semester, we can fit the model above by typing

. xtset studentid semester

. xteregress y x1 x2

The xtset command left information so that xteregress recognized studentid as the panel
identifier.

Although we use the panel-data syntax, these ERM commands do not require a traditional panel
dataset where you have repeated time periods within panels.

Let’s change our story so that each observation is a different student. We observe GPA only once
for each student. However, we still have grouped data because the students are randomly chosen from
multiple colleges. Students from the same college may have more in common than students from
different colleges. Now our two levels are colleges and students nested within college. College can
be specified in xtset as the panel identifier. To fit the model, we type

. xtset college

. xteregress y x1 x2

If we have a different type of outcome, we can use one of the other panel-data ERM commands—
xteintreg, xteprobit, or xteoprobit. For instance, if y is a binary indicator of whether the
student graduated, we would type

. xtset college

. xteprobit y x1 x2

Ignoring the panel or group structure of your data can lead to inefficient estimates in the linear
model and inconsistent estimates for nonlinear models. The xteregress, xteintreg, xteprobit,
and xteoprobit commands model random effects and provide efficient and consistent estimates.

Random effects can be used with other features of ERMs
We can combine random effects with other features of ERMs, that is, with endogenous covariates,

sample selection, and treatment effects.

By typing

. xtset college

. xteregress y x1 x2, endogenous(w1 = x1 z1 z2)

we would fit a linear regression model for y with random effects and an endogenous covariate w1.
We would have a college-level random effect for y. This would be correlated with the college-level
random effect for w1. The observation-level errors for y and w1 would be correlated as well.

We can similarly include the select(), extreat(), and entreat() options described in
[ERM] Intro 4 and [ERM] Intro 5 to account for sample selection and nonrandom treatment when
fitting random-effects models with any of the panel-data ERM commands.

Random effects are included in the main outcome equation as well as in equations for endoge-
nous covariates, sample selection, and endogenous treatment. If we do not believe that the other
features should have random effects, we specify the nore suboption with select(), extreat(), or
entreat().
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Suppose w1 was high school GPA. The college-level random effect for high school GPA may be
negligible. To fit the model with a random effect in the equation for y but not in the equation for the
endogenous covariate w1, we would type

. xtset schoolid

. xteregress y x1 x2, endogenous(w1 = x1 z1 z2, nore)

Also see
[ERM] Intro 9 — Conceptual introduction via worked example
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Intro 7 — Model interpretation

Description Remarks and examples References Also see

Description
After you fit a model using one of the ERM commands, you can generally interpret the coefficients in

the usual way. You can also use margins to produce counterfactuals, derivatives, contrasts, potential
outcomes, treatment effects, and effects for any type of change in the covariates.

In this entry, we discuss how to interpret coefficients, how to use margins, and how to use
predict. We demonstrate how this works for a simple linear model, and we discuss how the same
margins and predict commands work for nonlinear and random-effects models.

Remarks and examples
Remarks are presented under the following headings:

Use margins
Endogenous covariates
How to interpret coefficients
How to use and interpret margins
How to use margins in models without endogenous covariates
How to use margins with endogenous covariates
margins with predict(asf)
margins with predict(fixedasf)
When to use which
Using margins with nonlinear and random-effects models
Advanced options: Using margins predict(base()) and predict(fix())

Use margins

In many models, including many that can be fit by the ERM commands, the coefficients have
a structural interpretation. An example of a structural interpretation is, “What would we expect to
happen to our dependent variable if we increased the value of a covariate by one unit for everyone
in the population?” So long as there are no endogenous covariates in the main equation and your
model is correctly specified, the coefficients from all models fit by ERM commands have a structural
interpretation. For linear models you fit with eregress, eintreg, xteregress, and xteintreg,
the coefficients almost always still have a structural interpretation, even if the model has endogenous
covariates.

What can we do if our main equation does have endogenous covariates and we are not using a
linear estimator? Use margins, which automatically produces estimates of margins, derivatives, and
effects that fully account for any endogenous covariates. Even if you have a linear model where the
coefficients have a structural interpretation, we recommend you still use margins. The default results
from margins will always have a structural interpretation, and you do not need to worry whether
your model meets the criteria that allow the coefficients to be interpreted.

Here is a simple example. If you fit a model,

. eregress y x1 x2

36
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and then type

. margins, dydx(x1)

margins will return an estimate of the expected change in y given an instantaneous unit change in
x1. And, because the model is linear, this estimate, its standard error, and confidence intervals will
all match those from the coefficient on x1 in the results of eregress.

With linear models, this result holds even if we believe x1 is endogenous. If we type

. eregress y x1 x2, endogenous(x1 = z1, nomain)

followed by

. margins, dydx(x1)

the results from margins will again match those for the coefficient x1 from eregress.

Things change if we are interested in a result that is not linear in the coefficient estimates. Consider
the following:

. eprobit y x1 x2, endogenous(x1 = z1, nomain)

If we are interested in the average change in the probability of observing y = 1 in the population for
an instantaneous unit change in x1, and we use only the coefficients on x1 and x2, we would not
account for the contribution ei.y. Prior to the instantaneous change, the probability is

Pr(yi = 1) = Pr(β0 + β1x1i + β2x2i + ei.y > 0)

Say we computed the probability as Φ(β0 +β1x1i+β2x2i). This will not be at the proper starting
point on the nonlinear normal cumulative density curve, because we do not account for the correlation
of the unobservables and the covariates. You do not need to worry about this when you use ERM
postestimation commands. If you type

. margins, dydx(x1)

probability computations account for ei.y and its correlation with the covariates. The effects produced
have a structural interpretation. That is to say, they have an interpretation as though we could change
values in the population and observe their effect. So the bottom line is use margins. Assuming
your model is correctly specified, the default results from margins will always have a structural
interpretation. See Blundell and Powell (2003), Imbens and Newey (2009), and Wooldridge (2010)
for a detailed description of structural functions with linear and nonlinear endogenous models.

If you want to understand more about why and how, keep reading.

Endogenous covariates

Sometimes, care must be taken interpreting the coefficients from models when your main equation
contains endogenous covariates. Endogenous covariates in the main equation cause problems, which
means that if your model has no endogenous covariates in the main equation, you have no problems.
The following models have no endogenous covariates in the main equation:

. eregress y x1 x2

. eregress y x1 x2 c.x1#c.x2

. eregress y x1 x2, select(selected = x1 z1 z2) ///
endogenous(z2 = z3 z4, nomain)

. xteprobit y x1 x2
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. xteprobit y x1 x2 c.x1#c.x2

. xteprobit y x1 x2, select(selected = x1 z1 z2) ///
endogenous(z2 = z3 z4, nomain)

We showed examples with eregress and xteprobit. We could just as well have shown examples
with any of the other ERM commands. Note that the last model for each command we showed has
an endogenous covariate, but it is not in the main equation.

In any case, if you have no endogenous covariates in the main equation, you interpret coefficients
and use margins and predict just as you usually would. If you have endogenous covariates in
eprobit or eoprobit, do not attempt to interpret your coefficients. Rather, use margins, and
interpret the results as you normally would.

In the rest of the manual entry, when we write about models with or without endogenous covariates,
we mean models with or without endogenous covariates in the main equation.

Models with endogenous covariates in the main equation require care in interpretation, even if you
fit a model as simple as

. eregress y x1, endogenous(x1 = z1, nomain)

There are four ways endogenous covariates can end up in the main equation:

1. You specify endogenous(x1 = ...) to add variable x1 to the main equation.

2. You specify endogenous(x1 = ..., nomain), and you include x1 in the main equation.

3. You specify entreat(treated = ...) to handle endogenous treatment effects. entreat()
itself adds endogenous covariate treated to the main equation.

4. You specify select(selected = ...) to handle endogenous selection, and you include se-
lected in the main equation. select() makes variable selected endogenous, but it does not
automatically add it to the main equation.

In what follows, we will show examples of endogenous covariates added to the main equation by
option endogenous(), but we could have added them in any of the above ways.

In this manual entry, we depart from our usual practice of naming exogenous covariates x1, x2,
. . . and naming endogenous covariates w1, w2, . . . . We depart from this practice because we will
introduce a situation and then say, “if x1 is exogenous, do this; if it is endogenous, do something
else”.

How to interpret coefficients

For eregress, eintreg, xteregress, and xteintreg, you can almost always interpret your
coefficients in the usual way. This is true even if your model has endogenous covariates in the main
equation. What do we mean by “the usual way”?

Say you are interested in the effect of covariate x1. Whether you have typed

. eregress y1 x1 x2

or

. eregress y1 x1 x2, endogenous(x1 = z1, nomain)

or even

. eintreg y1 y2 x1 x2, endogenous(x1 = x2 z1, nomain) ///
endogenous(z1 = x2 z2, nomain) ///
select(selected = x2 z3 z4)
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you will have fit a model where

y1i = · · ·+ β1x1i + · · ·

You interpret the fitted coefficient β1 as the change in y1 for a one-unit change in x1. That is true
whether x1 is an exogenous or an endogenous covariate. That interpretation sounds obvious, but we
will see cases later where we must be more specific about the questions we ask regarding changes
to x1.

Even if x1 is interacted with another covariate, you still interpret the coefficients in the usual way.
Say you have the model

. eregress y1 x1 c.x1#c.x2 x2

you will have fit a model where

y1i = · · ·+ β1x1i + β2x1i × x2i + · · ·

So a one-unit change in x1 leads to a β1 + β2x2 change in y1. Again, this is true whether x1 is
exogenous or endogenous.

We said you can “almost always interpret your coefficients in the usual way”. When can you not?
You cannot interpret them in the usual way when all the following are true:

1. The covariate you are trying to interpret is endogenous or is an endogenous treatment.

2. If the covariate is endogenous, it is either binary or ordinal and is so declared in the
endogenous() option using suboption probit or oprobit.

3. That covariate is in the main equation.

4. There is a second endogenous covariate in the main equation.

5. You have designated that each level (category) of the covariate you are interpreting has a
different outcome error variance. Or you have designated that the correlation of the outcome
error with the other endogenous errors varies by the levels of the covariate you are interpreting.
You specify these cases by adding suboption povariance or suboption pocorrelation to
the equation for the endogenous covariate of interest.

Whew! We did say that you could “almost always interpret your coefficients in the usual way”.

Here is one way to specify such a model,

. eregress y1 y2 x1 x2, endogenous(x1 = x2 z1, probit povariance nomain) ///
endogenous(x2 = z2, nomain)

The coefficient on x2 can be interpreted in the usual way. The coefficient on x1 cannot. Why not?
The conditional-on-x2 expectation for y1 depends on the conditional-on-x2 expectation of the error
for y1. Because there is a different error variance when x1 = 0 and when x1 = 1, their expectation
no longer cancels out when we take the expected value of the effect. That’s the “intuitive” answer.
Were we conditioning on the observed value of x1 in the effect (evaluating the treatment effect on
the treated), we would have the same situation. The expectation of the errors would not cancel out.
See Treatment in eregress for the full mathematical explanation.

For all other models, the best approach is to use margins. That should give you comfort, not
concern—margins is a clear and safe way to form inferences and to measure and test effects. In
fact, feel free to use margins rather than the coefficients even in regressions where you can “interpret
your coefficients in the usual way”. margins will give you exactly the same answers that you will
get by looking at the coefficients. margins also makes it easy to ask what happens if you increase
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x1 by 100, rather than by 1. Or to ask what happens if you give each person an additional 100 units
of x1 beyond his or her current endowment. In models with interactions or models with treatments,
such questions can be tedious to answer from the coefficients.

To be completely honest, the coefficients from eprobit and eoprobit models without endogenous
covariates can be interpreted in the same way as the coefficients from probit and oprobit models.
The coefficients are in standard-deviation-of-the-latent-dependent-variable units. If you understood
that, great, go ahead. If you did not, use margins for all post hoc inferences after probit, oprobit,
eprobit, xteprobit, eoprobit, and xteoprobit models. With margins, you can easily make
and test statements about how your covariates determine the levels of the probability of a positive
outcome and how changes in your covariate change that probability.

How to use and interpret margins

You can always interpret the results from margins as being structural results. That means we can
interpret them as though we were able to manipulate values in the population and compute the effect
of those manipulations on the dependent variable. Obviously, this assumes the model is correctly
specified.

When you have endogenous covariates, margins fully accounts for the correlation that gave rise
to the endogeneity. For an in-depth discussion of interpretation of results of models with endogenous
covariates, see Blundell and Powell (2003), Imbens and Newey (2009), and Wooldridge (2010).

How to use margins in models without endogenous covariates

If your models include no endogenous covariates in the main equation, you can use margins
in the ordinary way. Here is how you would ordinarily use margins. The following model has no
endogenous covariates:

. use https://www.stata-press.com/data/r18/ermexample
(Artificial ERM example data)

. eregress y x1 x2 c.x1#c.x2
(output omitted )

The model fit is
yi = β0 + β1x1i + β2x2i + β3x1ix2i + ei.y

Assume that our interest is in the effect of x1. One way to interpret the effect is to interpret the
coefficients: a one-unit increase in x1 increases y by β1 + β3x2. Another way to interpret the effect
is by using counterfactuals. In these data, what would be the average change in y if x1 were increased
by 1? margins will tell us if we type
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. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)

Contrasts of predictive margins Number of obs = 200
Model VCE: OIM

Expression: Average structural function mean, predict()
1._at: x1 = x1
2._at: x1 = x1+1

Delta-method
Contrast std. err. [95% conf. interval]

_at
(2 vs 1) 1.109641 .1750625 .7665246 1.452757

You can learn about margins, its features, and its syntax in [R] margins. We will tell you enough,
however, so that everything we say will make sense.

Assume that the data comprise three subgroups in which we have a special interest. For instance,
we want to know how an increase in x1 would affect each subgroup. margins can tell us that too.

. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)
> over(group)

Contrasts of predictive margins Number of obs = 200
Model VCE: OIM

Expression: Average structural function mean, predict()
Over: group
1._at: 0.group

x1 = x1
1.group

x1 = x1
2.group

x1 = x1
2._at: 0.group

x1 = x1+1
1.group

x1 = x1+1
2.group

x1 = x1+1

Delta-method
Contrast std. err. [95% conf. interval]

_at@group
(2 vs 1) 0 .5561469 .1960937 .1718102 .9404835
(2 vs 1) 1 1.123401 .1754062 .7796108 1.46719
(2 vs 1) 2 1.641114 .2153742 1.218988 2.063239

margins helps us to understand changes that are different in each observation. If we had the
simple model eregress y x1 x2, we know the effect of incrementing x1 is to increase y by β̂1,
which might be 3. The change would be 3 in every observation. In the model we have, however,
the effect of incrementing x1 is to increase y by β1 + β3x2. The average effect depends on the
distribution of x2.

margins helps us to understand how a change affects the average in our data and subgroups of
our data. We are using our sample as a proxy for the population and subpopulations, but that is what
we usually do in statistics. We assume that our sample is representative. The issues are the same as
we discussed in [ERM] Intro 5.
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If our sample is representative but we want margins to report population-based standard errors,
we need to specify vce(robust) when we fit the model:

. eregress y x1 x2 c.x1#c.x2, vce(robust)

If our sample is not representative, we can weight it with the inverse probability that its observations
were sampled from the underlying population. If we want margins to report population-based standard
errors, we can type

. eregress y x1 x2 c.x1#c.x2 [pw = weight], vce(robust)

or type

. eregress y x1 x2 c.x1#c.x2 [pw = weight]

We can type either because specifying [pw=weight] implies vce(robust).

Even when we do specify or imply vce(robust), margins will report sample standard errors by
default. To obtain population-based standard errors, we must specify or imply vce(robust) when
we fit the model, and when we use margins, we must specify its vce(unconditional) option:

. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r)) ///
vce(unconditional)

In the linear regression example we have been discussing, we included an interaction in the model
and used margins to report averages. We used margins because the interaction caused changes
to vary observation by observation. Probit and ordered probit models produce predictions that vary
observation by observation even in models with no interactions. Consider the following probit model,
which is almost the simplest one possible:

. eprobit y_p x1

The model is

Pr(positive outcome) = Pr(β0 + β1x1i + ei.y p > 0) = normal(β0 + β1x1)

Assume that our interest is in x1 just as it was previously. The effect of a one-unit increase in
x1 is to increase the normal index by β̂1. Simple, right? No, it is not. The effect in probabilities of
that change varies observation by observation. Here is how the results vary if β̂1 were 0.5 and we
incremented x1 by 1. The effect depends on each subject’s initial probability of a positive outcome:

Subject’s original Subject’s new
Pr(pos. outcome) Increment by Pr(pos. outcome) Difference

0.01 0.5 s.d. 0.03 0.02
0.10 0.5 s.d. 0.22 0.12
0.20 0.5 s.d. 0.37 0.17
0.40 0.5 s.d. 0.60 0.20
0.50 0.5 s.d. 0.69 0.19
0.60 0.5 s.d. 0.77 0.17
0.90 0.5 s.d. 0.96 0.06
0.99 0.5 s.d. 1.00 0.01

A subject whose original probability was 0.40 experiences an increase of 0.20 when x1 is
incremented by 1. Meanwhile, a subject whose probability was 0.90 experiences a mere 0.06 increase.

Using margins, we can obtain the average changes in probabilities in the data due to incrementing
x1 by 1. We type
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. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)

Contrasts of adjusted predictions Number of obs = 200
Model VCE: OIM

Expression: Average structural function probability, predict()
1._at: x1 = x1
2._at: x1 = x1+1

Delta-method
Contrast std. err. [95% conf. interval]

_at
(2 vs 1) .2961685 .0287644 .2397912 .3525458

We can obtain the changes for each of the three subgroups too:

. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)
> over(group)

Contrasts of adjusted predictions Number of obs = 200
Model VCE: OIM

Expression: Average structural function probability, predict()
Over: group
1._at: 0.group

x1 = x1
1.group

x1 = x1
2.group

x1 = x1
2._at: 0.group

x1 = x1+1
1.group

x1 = x1+1
2.group

x1 = x1+1

Delta-method
Contrast std. err. [95% conf. interval]

_at@group
(2 vs 1) 0 .3857775 .051078 .2856664 .4858885
(2 vs 1) 1 .2944176 .0294406 .2367152 .3521201
(2 vs 1) 2 .2096478 .0202614 .1699363 .2493594

Counterfactuals are useful in complicated linear models—we had an interaction in ours—and in
nonlinear models whether simple or complicated.

How to use margins with endogenous covariates

Let’s start with a reasonably simple model, namely,

. eregress y x1 x2, endogenous(x1 = z1, nomain)

The model is

yi = β0 + β1x1i + β2x2i + ei.y

x1i = γ0 + γ1z1i + ei.x1

where ρ = corr(e.x1, e.y) and is nonzero.
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Let’s imagine that y is a health outcome and x1 is a 0/1 variable indicating whether a treatment was
administered that is expected to improve the outcome. Observations are people, and people choose
for themselves whether to have the treatment. Given the story, we should fit the model by typing

. eregress y i.x1 x2, endogenous(x1 = z1, probit nomain)

Nonetheless, we are going to fit the model without the probit specification and factor-variable
notation for endogenous covariate x1:

. eregress y x1 x2, endogenous(x1 = z1, nomain)

We omit probit only because it will be easier for us to explain. We need to show you some
math, and the math will be simpler in the linear model case.

What is important is that ρ is likely to be nonzero, no matter how the model is fit. ρ is the
correlation between e.y and e.x1. e.y includes all the unobserved things that affect how well the
treatment works. e.x1 includes all the unobserved things that affect whether individuals choose the
treatment. ρ is likely to be nonzero and positive because people who believe that they are more likely
to benefit from the treatment (e.y > 0) should be more likely to choose the treatment (e.x1 > 0).

Thus, the best prediction of y that we can make for people like person 1 in our data—people
who have the same value of x1, x2, and z1—includes the effect of ρ̂, albeit indirectly. The best
prediction of y we can make for people like person 1 is that their expected value of y will be

ŷ1 = β̂0 + β̂1x11 + β̂2x21 + ê1.y

ê1.y is our estimate of the expected value of e.y in the first observation. Expected values of errors
are often 0, but not in this case. This one depends on ρ. Given that we know the values x11 and
z11, we have an estimate of e1.x1, namely,

ê1.x1 = x11 − γ̂0 − γ̂1z11

Because e.x1 and e.y are correlated, we can produce an estimate of e1.y given ê1.x1 and ρ̂. It is
a detail, but the formula is

ê1.y =
ρ× s.d.(e.y)

s.d.(e.x1)
× ê1.x1

The value of ê1.y can be calculated, and the best prediction we can make for people like person 1
includes it and is

ŷ1 = β̂0 + β̂1x11 + β̂2x21 + ê1.y

margins with predict(asf)

Let us temporarily consider x1 to be continuous. We do this to consider what happens if we add 1
to x1.

What is the best prediction we can make for people like person 1 if x1 was incremented by 1? It
is

ŷ1 = β̂0 + β̂1(x11 + 1) + β̂2x21 + ê1.y

The above is how margins with the default method, predict(asf), makes the calculation for each
observation in the data. Observation by observation, it calculates
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ŷi = β̂0 + β̂1(x1i + 1) + β̂2x2i + êi.y (1)

margins includes êi.y in the calculations. This is the best prediction for people like the people
in our population conditioned on everything we know about them. Using the jargon in the literature,
we say that it computes a structural function that averaged over your population gives you an average
structural function.

But there is something more happening. You may have noticed that êi.y is a function of the
endogenous covariates, in this case x1. But we did not add 1 to x1 in êi.y. We are asking margins
to compute derivatives and effects taking the level of endogeneity as given by the data. Effects
that condition on the level of endogeneity have a causal interpretation. To be precise, they have a
structural function interpretation. For an in-depth discussion of structural functions, see Blundell and
Powell (2003), Imbens and Newey (2009), and Wooldridge (2010).

Now, we return to considering x1 to be binary.

margins with predict(fixedasf)

predict(asf) uses (1) and makes its predictions given how the world currently operates. People
choose their values of x1, and the choice they make is correlated with the outcomes they expect.

predict(fixedasf) makes predictions for a world that operates differently. In the alternative
world, x1 is fixed at a value such as 1. This means that the population of people like person 1 is
expanded from being all people like person 1 who made the same treatment choice to being all people
like person 1 regardless of the treatment choice they made. In the expanded definition of people like
person 1, the correlation between e.y and e.x1 is broken. The correlation is now 0, and the best
prediction for people like person 1 sets ê1.y to 0:

ŷ1 = β̂0 + β̂1x11 + β̂2x21 (2)

In the jargon of statistics, x1 is no longer endogenous—it is fixed, and the entire equation for x1
becomes irrelevant.

When you specify margins with the predict(fixedasf) option, it makes the calculation for
each person by using the approach used for person 1 in (2). It uses

ŷi = β̂0 + β̂1x1i + β̂2x2i

These observation-by-observation predictions are called potential outcomes when applied to treat-
ment models. The averages based on them that margins reports are called potential-outcome means
(POMs). These averages correspond to what would be observed in a world in which x1 is fixed at a
particular value.

We refer to them as fixed average structural functions. They too have a structural interpretation
when we average over the whole population and when the covariates can be considered to be fixed
exogenously, by fiat.

Note that in the case described in the prior paragraph, the results from fixedasf and asf are
asymptotically equivalent. So you can continue to use the default predictions for margins if you
wish. fixedasf simply provides an alternative computation.
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When to use which
margins can produce counterfactuals in two ways.

With the default predict(asf) method, margins uses

ŷi = β̂0 + β̂1x1i + β̂2x2i + êi.y

for the values of x1 and x2 specified. The predictions are a function of x1 and x2 and the covariates
appearing in the x1 equation. Those covariates along with ρ̂ go into the calculation of ê.y. These
predictions correspond to how the current world operates.

When you specify predict(fixedasf), margins uses

ŷi = β̂0 + β̂1x1i + β̂2x2i

where x1 is fixed at the value specified. These predictions are based on the exogenous covariates
in the main equation (x2 in this case) and the value to which the fixed variable (x1) is set. These
predictions correspond to a different world in which x1 is no longer endogenous but is fixed to a
particular value.

Using margins with nonlinear and random-effects models

Above, we showed you results for one-level (cross-sectional) linear models that are fit with
eregress. That discussion extends naturally when fitting any of the other ERM models.

The formulas are more complicated when models are nonlinear, but the assumptions and their
implications are the same.

What if we fit a random-effects model for panel data or grouped data? If we type

. xteregress y x1 x2, endogenous(x1 = z1, nomain)

the model is

yij = β0 + β1x1ij + β2x2ij + ui.y + vij .y

x1ij = γ0 + γ1z1ij + ui.x1 + vij .x1

We can rewrite this in terms of the combined errors eij .y = ui.y+vij .y and eij .x1 = ui.x1+vij .x1.
Then, we have

yij = β0 + β1x1ij + β2x2ij + eij .y

x1ij = γ0 + γ1z1ij + eij .x1

This produces an estimate of eij .y that depends on estimates of eij .x1 and ρ = corr(eij .x1, eij .y).

Everything we said above about using default predictions (predict(asf)) with margins is true
when we fit a random-effects model. To see this, we just replace êi.y with êij .y in each of the
formulas in the previous sections.
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Advanced options: Using margins predict(base()) and predict(fix())

We have simplified our lives by creating predictions that margins can consume and that provide a
structural function (causal) interpretation (see Blundell and Powell [2003], Imbens and Newey [2009],
and Wooldridge [2010]), namely, with predict(asf) and predict(fixedasf). Behind the scenes,
to compute these structural predictions, we use two advanced prediction options, predict(base())
and predict(fix()). In most cases, the effects we want are given by margins with the default
predict(asf) option. But perhaps, you may find exceptions to the rule. If this is the case, this
section will be helpful; otherwise, you may skip this section without any harm.

Let’s think of the model given by

. eregress y1 x1 x2, endogenous(x1 = z1, nomain)

and described by
ŷi = β̂0 + β̂1(x1i) + β̂2x2i + êi.y

margins with the default prediction will compute inferences for a given level of endogeneity, and
it will assume êi.y is fixed. In other words, margins allows x1 to change in β̂1(x1i) but not in êi.y.
This is also true for z1. margins does this by creating copies of the variables x1 and z1 (let us call
them x1orig and z1orig) and then computing the following:

. margins ..., ... predict(base(x1=x1orig z1=z1orig))

predict(base()) allows us to tell margins which endogenous equations and elements within
them to fix at any value. The default predict(asf) method fixes the elements of the endogenous
equation at its original values.

predict(fixedasf) proceeds similarly. Because we are fixing the correlation to be zero, we
need to specify only the endogenous equations that we wish to be treated as fixed. In our example,
we would type

. margins ..., ... predict(fix(x1))

You can appreciate how the bookkeeping becomes more involved as we increase the number of
endogenous equations and exclude instruments such as z1.

But the utility of predict(base()) and predict(fix()) is not to manually compute what
predict(asf) and predict(fixedasf) provide us. One case where this framework becomes handy
is when we have an endogenous treatment equation and multiple endogenous equations. Say we fit

. eregress y1 x1, entreat(x1 = z1) endogenous(x2 = z1 z2)

We want to compute an average treatment effect for x1. We would type

. margins r.x1, predict(fix(x1))

When we type this, we ignore the correlation for the endogenous equation of x1 because the values
of x1 here are exogenously fixed. Yet we are not ignoring the correlation of the endogenous equation
for x2. This cannot be done with predict(fixedasf) because it will fix all endogenous equations.
It cannot be done with predict(asf) either because it would incorporate the correlation of the
endogenous treatment equation for x1.
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This is a case where understanding predict(fix()) and predict(base()) matters. In fact, it is
such an important case that we again have made it easy to obtain. Whenever you have an endogenous
treatment equation, you can just type

. estat teffects

and get the average treatment effect.

We could have obtained a consistent estimate of the average treatment effect typing margins r.x1
and using the default predict(asf) method. However, using predict(fix()) is more efficient in
this case.
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Intro 8 — A Rosetta stone for extended regression commands

Description Remarks and examples Also see

Description
If you already are familiar with some or all of Stata’s other commands that fit models with

endogenous covariates, sample selection, random effects, and treatment effects, this entry shows you
how to use that knowledge to fit equivalent models using ERMs.

Remarks and examples
Aside from providing a single coherent framework that allows complications to be combined, ERMs

use similar syntax and the resulting models have the same interpretation.

In most cases, the estimation method used by the ERM commands and that used by other estimators to
fit the same model produce results that are the same. Typically, there are small numerical differences
because the optimization is different. Also, ancillary parameters, such as variances of errors, are
sometimes parameterized differently. In some cases, a different estimation method is used. In this
case, results will be asymptotically equivalent, but in finite samples, results will differ.

The table below provides a basic guide for the correspondence between Stata commands you may
already be familiar with and the ERM commands.

Command you know Equivalent extended regression command

Linear regression with endogenous covariate
ivregress liml y1 x (y2 = z) eregress y1 x, endogenous(y2 = z x)

Probit model with endogenous covariate
ivprobit y1 x (y2 = z) eprobit y1 x, endogenous(y2 = z x)

Tobit model with endogenous covariate
ivtobit y1 x (y2 = z), ll(0) ul(20) generate y1 ll = y1

replace y1 ll = . if y1<=0

generate y1 ul = y1

replace y1 ul = . if y1>=20 & y1<.

eintreg y1 ll y1 ul x, endogenous(y2 = z x)

Linear regression with exogenous treatment
teffects ra (y x1 x2) (t1) eregress y x1 x2, extreat(t1) vce(robust)

estat teffects

Probit model with exogenous treatment
teffects ra (y x1 x2, probit) (t1) eprobit y x1 x2, extreat(t1) vce(robust)

estat teffects
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Linear regression with endogenous treatment
etregress y x, treat(t1 = x z) eregress y x, entreat(t1 = x z, nointeract)

Linear regression with sample selection
heckman y x, select(s1 = x z) eregress y x, select(s1 = x z)

Probit model with sample selection
heckprobit y x, select(s1 = x z) eprobit y x, select(s1 = x z)

Ordered probit model with sample selection
heckoprobit y x, select(s1 = x z) eoprobit y x, select(s1 = x z)

Linear regression with random effects
xtreg y x xteregress y x

Linear regression with random effects and endogenous covariate
xtivreg y x (y2 = z) xteregress y x, endogenous(y2 = x z)

Tobit model with random effects
xttobit y1 x, ll(0) ul(20) generate y1 ll = y1

replace y1 ll = . if y1<=0

generate y1 ul = y1

replace y1 ul = . if y1>=20 & y1<.

xteintreg y1 ll y1 ul x

Probit model with random effects
xtprobit y x xteprobit y x

Ordered probit model with random effects
xtoprobit y x xteoprobit y x

You can build on the basic syntax of the ERM commands by combining options and suboptions,
giving you the flexibility to fit a myriad of models. Here is a short list of what you might try.

Linear regression with a continuous endogenous covariate but where the exogenous variable is not
included as an instrument
. eregress y1 x, endogenous(y2 = z1)

Linear regression with two continuous endogenous covariates
. eregress y1 x, endogenous(y2 y3 = z1 x)

Same as above, but with different instruments for different endogenous covariates
. eregress y1 x, endogenous(y2 = z1 x) endogenous(y3 = z2 x)

Same as above, but with one endogenous covariate being binary
. eregress y1 x, endogenous(y2 = z1 x) endogenous(y4 = z3 x, probit)

Linear regression with a continuous endogenous covariate and an endogenous treatment
. eregress y1 x, endogenous(y2 = z1 x) entreat(t1 = z3 x)
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Same as above, but instead include a multivalued treatment
. eregress y1 x, endogenous(y2 = z1 x) entreat(t2 = z3 x, oprobit)

Same as above, and also allow for endogenous selection
. eregress y1 x, endogenous(y2 = z1 x) entreat(t2 = z3 x, oprobit) ///

select(s1 = w x)

Same as above, but where censoring of variable s2 indicates selection status
. eregress y1 x, endogenous(y2 = z1 x) entreat(t2 = z3 x, oprobit) ///

tobitselect(s2 = w x)

eprobit or eoprobit may be directly substituted for any eregress command above to fit a
probit or an ordered probit regression when y1 is binary or ordinal. xteregress, xteprobit, or
xteoprobit may be substituted for eregress to fit a random-effects linear, probit, or ordered probit
regression. To fit a tobit or interval regression, you can use eintreg and specify two dependent
variables containing the upper and lower bounds of the interval in place of y1. You can use xteintreg
with two dependent variables to fit a random-effects tobit or interval regression.

Also see
[ERM] Intro 1 — An introduction to the ERM commands

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Intro 9 — Conceptual introduction via worked example

Description Remarks and examples References Also see

Description
This entry introduces the concepts of endogenous covariates, nonrandom treatment assignment,

and endogenous sample selection through a series of examples. It also provides an overview of how
to interpret the results of ERMs.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Complications

Endogenous covariates
Nonrandom treatment assignment
Endogenous sample selection

Interpreting effects
Video examples

Introduction
In a perfect research world, several assumptions we conventionally make about our data and the

data-collection process would be true. For example, we could gather data about all the variables that
influence the outcome we want to study. These data would be collected on a random sample of the
population of interest. Any inferences we made about a relationship between the dependent variable
and an independent variable when studying one group would be just as valid if we studied this group
again at a different time or even if we conducted the study for a different group.

Often, applied research is complicated when one or more of the classical assumptions are not true.
For example, data on key variables of interest may be unavailable. Our interest may lie in a treatment
that cannot be randomly assigned or may be endogenous. Or the subjects we have available to study
are not representative of the population we want to study.

When any of these things is true, we cannot make accurate inferences using standard regression
methods. Stata provides many commands that can be used when one of these complications occurs.
The ERM commands allow you to address these problems in isolation and, more importantly, in
combination—as they often occur.

Imagine that a large company is considering offering a workplace wellness program to its employees
to help them lose weight. They have conducted a pilot study at one location, and all other locations
are expected to be similar. In our dataset, the wellpgm variable records whether a given employee
participated. After one year, the company wants to know whether the program was effective. Our
outcome of interest is weight lost in kilograms. We have called this weightloss0 to distinguish it
from the observed weightloss later.

In our fictional data, the number of kilograms lost is also determined by the employee’s age in
years (age), the employee’s sex (sex), and the employee’s starting weight in kilograms (weight).
Because this is an entirely fictitious example, we have a true measure of willingness to engage in
healthy behaviors (health).
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More formally, in our simulated data, the process that determines weight lost is

weightloss0i = −4− 0.1× agei − 1.5× sexi + 0.14× weighti + 1.2× wellpgmi

+ 0.5× healthi + ui

Suppose that we are in the situation described above. We observed complete information for all
variables for all employees, and participation in the wellness program was unrelated to any employee
attributes that we could not observe. In this case, we could fit our model by typing

. use https://www.stata-press.com/data/r18/wellness
(Fictional workplace wellness data)

. regress weightloss0 age i.sex weight i.wellpgm health

Source SS df MS Number of obs = 545
F(5, 539) = 589.61

Model 2417.76071 5 483.552141 Prob > F = 0.0000
Residual 442.044242 539 .820119187 R-squared = 0.8454

Adj R-squared = 0.8440
Total 2859.80495 544 5.25699439 Root MSE = .9056

weightloss0 Coefficient Std. err. t P>|t| [95% conf. interval]

age -.0991644 .0038045 -26.06 0.000 -.1066378 -.0916909

sex
Male -1.481883 .0937504 -15.81 0.000 -1.666044 -1.297722

weight .1359547 .0054405 24.99 0.000 .1252676 .1466419

wellpgm
Yes 1.254928 .1076792 11.65 0.000 1.043406 1.46645

health .4814308 .0255931 18.81 0.000 .4311564 .5317053
_cons -3.754726 .4432054 -8.47 0.000 -4.625348 -2.884105

. estimates store true

From this model, we can estimate the average treatment effect (ATE) of the wellness program by
using the coefficient on wellpgm. We estimate that the ATE is 1.25 kg. In other words, the average
weight lost over the course of the year would be 1.25 kg greater if all the company’s employees
participated in the program versus if no employees participated.

Because we simulated these data, we can confirm that all the confidence intervals contain the true
values. If we continued to add more observations, our point estimates would become closer and closer
to the real values. This is true because the coefficient estimates shown above are consistent. Because
they are consistent, we can make inferences about the effects of each variable on the outcome. We
estimates store these values as true for comparison with later models.

Complications

As discussed in [ERM] Intro 3, a covariate is endogenous if it is correlated with the error term.
Practically, this correlation arises for many reasons. For example, we may have omitted an important
variable from our model that is correlated with a variable that we included, as we did here. Or
we may not have accurately measured one of the covariates in our model. We could also have the
case where a variable in the model and the outcome of interest are partially determined by the
same unobserved factors. For concreteness, we focus on the role of a single omitted variable in this
conceptual introduction.
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Often in observational research, the treatment (participation in the wellness program) was not
randomly assigned. As discussed in [ERM] Intro 5, we might be able to ignore this issue if we do
not suspect that unobserved factors that affect participation also affect the amount of weight loss.
However, in this case, we believe participation in the wellness program is also likely to be determined
by factors we cannot observe, such as the now-omitted health variable.

Further, suppose that the pilot study was structured such that baseline information about all
employees was collected at a mandatory benefits meeting at the start of the year. At the end of the
year, all employees were asked to go to the company gym during business hours to have their year-end
weight recorded, regardless of program participation. Because employees were not required to have
their final weight recorded, we observe only the weight of employees who voluntarily went to the
gym. We have a selected sample in this case.

Whether an employee is observed in the study could be correlated with unobserved factors that
also determine how much weight he or she lost. For example, employees with high values of the
now-omitted health variable may have generally better diet and exercise habits (independent of the
wellness program), leading to higher weight loss. Let’s say that for bragging rights, they want to
have their superior weight loss recorded, so they are more likely to show up at the end of the year.
As discussed in [ERM] Intro 4, if selection is related to unobserved factors that are correlated with
the outcome, it cannot be ignored.

If we ignore all of these potential complications, we might erroneously fit the model below. In
this model, we omit health, and weightloss records the observed weight loss only for employees
who went to the gym at the end of the year.

weightlossi = β1 × agei + β2 × sexi + β3 × weighti + β4 × wellpgmi + ui

As before, we could fit the model using regress.

. regress weightloss age i.sex weight i.wellpgm

Source SS df MS Number of obs = 337
F(4, 332) = 219.74

Model 1239.17345 4 309.793362 Prob > F = 0.0000
Residual 468.060374 332 1.4098204 R-squared = 0.7258

Adj R-squared = 0.7225
Total 1707.23382 336 5.08105304 Root MSE = 1.1874

weightloss Coefficient Std. err. t P>|t| [95% conf. interval]

age -.0800928 .0063184 -12.68 0.000 -.0925219 -.0676637

sex
Male -1.023886 .146934 -6.97 0.000 -1.312925 -.734847

weight .0803689 .0074025 10.86 0.000 .0658072 .0949305

wellpgm
Yes 1.913531 .1596906 11.98 0.000 1.599398 2.227664

_cons -.3699558 .6741312 -0.55 0.584 -1.696063 .9561513

None of the confidence intervals for our coefficient estimates contain the true values. We store the
estimates so that we can compare them with estimates from other models later.

. estimates store base
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Endogenous covariates

Continuing with our example, we suspect that weight is endogenous now that we cannot observe
health. Employees who are predisposed to healthy behaviors will likely have a lower starting weight,
and this could influence how much weight they lose over the course of the year-long study. If we
have a suitable model for how weight relates to the unobserved health, we can still estimate the
parameters consistently.

Let’s suppose we believe that the employee’s starting weight is a function of the employee’s
sex and the number of times the employee visits the company gym. We measure gym use as the
employee’s average number of visits per month to the company gym before the program (gym). This
will be an instrumental variable for weight. Instrumental variables are exogenous covariates that are
correlated with the endogenous covariate, not directly related to the outcome, and not correlated with
the unobserved error. Because we are using preprogram gym use, we do not expect it to be related
to weight loss during the year of the program.

We fit the model using eregress, storing the estimates for later comparison.

. eregress weightloss age i.sex i.wellpgm, endogenous(weight = i.sex gym)
(output omitted )

. estimates store endog

Now, we view and compare the results from each of the commands. We focus on the coefficients
here because our interest lies in illustrating how the point estimates change as we address different
complications. At the end of the introduction, we show the full output of eregress and discuss its
interpretation.

. estimates table true base endog, stats(N) equations(1) keep(#1:)

Variable true base endog

age -.09916437 -.08009282 -.07964086

sex
Male -1.481883 -1.023886 -1.6411717

weight .13595472 .08036889 .14701973

wellpgm
Yes 1.2549281 1.9135311 1.9008534

health .48143082
_cons -3.7547263 -.36995584 -5.5172377

N 545 337 337

Once we account for the endogeneity of weight, the coefficients for sex and weight are close to
those of the true model and have the correct signs. The estimates for age and wellpgm, however,
are close to each other in the base and endog models but not close to the true values. Our estimates
remain inconsistent because we have not yet addressed the endogeneity of the wellpgm program
indicator.

Endogenous covariates in ERMs need not be continuous. We could instead have an endogenous
binary or ordinal covariate. To address the endogeneity of wellpgm, we could include an additional
model by adding another endogenous() option; see [ERM] Intro 3 for more on specifying models
with different types of endogenous covariates. Another way to approach the analysis of binary and
ordinal endogenous covariates is in the potential-outcomes framework.
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Nonrandom treatment assignment

Treatment-effect regressions model the effect of a discrete treatment or intervention on the outcome.
In observational data, we cannot randomly assign a treatment of interest to individuals. Treatment
status may be related to other covariates that we measure. It may even be related to the unobserved
factors that affect the outcome and be endogenous. We cannot just take the sample means of the
treated and untreated to estimate the ATE. Instead, we can use the potential-outcomes framework to
estimate a treatment effect.

In the potential-outcomes framework, the treatment effect is the difference between the outcome
that would occur when a given subject receives the treatment and the outcome that would occur when
the subject receives the control instead. We only observe the potential outcome associated with that
subject’s observed treatment value (either treated or control). However, we can estimate both potential
outcomes, conditional on covariates, by using information from the model. For more information
about the potential-outcomes framework, see [CAUSAL] teffects intro advanced.

The ERM commands may be used with an exogenous or endogenous treatment where the treatment
variable is binary or ordinal.

To address the endogenous selection of participation in the wellness program, we need a model for
wellpgm. Whether the employee was a smoker at the beginning of the year (smoke) is an additional
covariate in our treatment model. Because smoking signals a lower willingness to engage in healthy
behaviors, it should be correlated with participation in the program, but smoking status measured
before the program was offered should not be independently associated with weight loss during the
program.

. eregress weightloss age i.sex, endogenous(weight = i.sex gym)
> entreat(wellpgm = age i.smoke, nointeract)

(output omitted )
. estimates store entrt

By specifying nointeract, we keep the same coefficients for both treatment groups in the main
equation. This is not the most common approach. However, we simulated the data this way to keep
the estimates table results compact and easy to compare across models. We will show you a more
interesting model later.

Now, we view and compare the results for the main equation for each of the models.
. estimates table true base endog entrt, stats(N) equations(1) keep(#1:)

Variable true base endog entrt

age -.09916437 -.08009282 -.07964086 -.10430319

sex
Male -1.481883 -1.023886 -1.6411717 -1.5995888

weight .13595472 .08036889 .14701973 .14151952

wellpgm
Yes 1.2549281 1.9135311 1.9008534 .83556752

health .48143082
_cons -3.7547263 -.36995584 -5.5172377 -3.488841

N 545 337 337 337

In the entrt model, where we have accounted for the endogeneity of starting weight and the
endogenous treatment assignment to the wellness program, we estimate that the effect of participating
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in the program is 0.84 kg lost. This is closer to the 1.25 kg we estimated in the true model than
the 1.90 kg we estimated in the endog model that did not account for treatment assignment.

Endogenous sample selection

Sample selection is an ambiguous term because different authors have used it to mean different
things. To add more ambiguity, sample selection has been equated with nonresponse bias and selection
bias in some disciplines. Much of the ambiguity arises from authors not being precise about when
sample selection is ignorable.

Sample selection is like treatment assignment: a process maps each individual into or out of the
sample. This process depends on observable covariates and unobservable factors. When unobservable
factors that affect who is in the sample are independent of unobservable factors that affect the outcome,
then the sample selection is not endogenous. In this case, the sample selection is ignorable—our
estimator that ignores sample selection is still consistent.

In contrast, when the unobservable factors that affect who is included in the sample are correlated
with the unobservable factors that affect the outcome, the sample selection is endogenous and it is
not ignorable, because estimators that ignore endogenous sample selection are not consistent.

The ERM commands may be used with endogenous sample selection with a probit or tobit selection
model. A probit selection model is used when we have a binary indicator of selection. A tobit selection
model is used when we have a continuous indicator for selection.

We suspect that unobserved factors that influence whether employees came to the gym for the
year-end weigh-in also influence the amount of weight lost. In other words, we believe we may have
endogenous sample selection. Our true model included all information on all 545 employees. In
reality, only 337 completed the final weigh-in for our study. However, we still want to know what the
potential effect of the program was for all employees. The 0.84 kg that we estimated in Nonrandom
treatment assignment is not a consistent estimate of the program’s ATE in the company if the 337
employees in our study are not representative of the population.

By modeling the sample-selection process, we can include all 545 employees in our estimation
sample. The variable completed indicates whether the employee completed the final weigh-in.
Employees with completed = 0 have missing values for weightloss. However, because all other
data were gathered at a mandatory meeting at the start of the year (such as starting weight) or
collected from administrative records (such as prior-year visits to the company gym), we have
complete information for all other variables.

We include the employee’s job classification (salaried) and years employed at the company
(experience) as additional covariates in our selection model that are excluded from the main equation.
salaried is 1 if the employee is salaried and is 0 if the employee is paid hourly. We anticipate that
salaried employees will have more opportunity to visit the gym during the day and that employees
who have been with the company longer will be more motivated to help complete the study. Aside
from their effect on completing the weigh-in, we do not believe that salaried or experience have
any direct effect on weightloss.

We fit our model, accounting for the potentially endogenous selection.

. eregress weightloss age i.sex, endogenous(weight = i.sex gym)
> entreat(wellpgm = age i.smoke, nointeract)
> select(completed = i.wellpgm experience i.salaried)

(output omitted )
. estimates store endsel
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Then, we compare these estimates with those from our previous models.

. estimates table true base endog entrt endsel, stats(N) equations(1) keep(#1:)

Variable true base endog entrt endsel

age -.09916437 -.08009282 -.07964086 -.10430319 -.11149981

sex
Male -1.481883 -1.023886 -1.6411717 -1.5995888 -1.5607651

weight .13595472 .08036889 .14701973 .14151952 .14353999

wellpgm
Yes 1.2549281 1.9135311 1.9008534 .83556752 .92462755

health .48143082
_cons -3.7547263 -.36995584 -5.5172377 -3.488841 -3.6798876

N 545 337 337 337 545

After accounting for the potentially endogenous selection that occurs because some employees
chose not to complete the final weigh-in, we see that our estimated ATE is 0.925, which is closer to
its true value than in the models that did not address selection.

Interpreting effects

In the previous sections, we showed only the coefficient estimates from the main outcome equation.
The full output for eregress and the other ERM commands includes estimates of coefficients of
covariates in the auxiliary models, error variances, and error correlation terms.

For many models, the coefficient estimates themselves are not directly useful. You will need to
use margins or estat teffects to obtain interpretable effects. However, the correlation estimates
always provide relevant information.

The full results for the last eregress command that we estimated are as follows:
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. eregress weightloss age i.sex, endogenous(weight = i.sex gym)
> entreat(wellpgm = age i.smoke, nointeract)
> select(completed = i.wellpgm experience i.salaried)

(iteration log omitted )
Extended linear regression Number of obs = 545

Selected = 337
Nonselected = 208

Wald chi2(4) = 749.04
Log likelihood = -2800.8318 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

weightloss
age -.1114998 .0083531 -13.35 0.000 -.1278715 -.0951281

sex
Male -1.560765 .2062746 -7.57 0.000 -1.965056 -1.156474

weight .14354 .0175073 8.20 0.000 .1092263 .1778537

wellpgm
Yes .9246275 .2750269 3.36 0.001 .3855848 1.46367

_cons -3.679888 1.464123 -2.51 0.012 -6.549515 -.81026

completed
wellpgm

Yes .6553902 .2263862 2.90 0.004 .2116814 1.099099
experience -.8153984 .0617977 -13.19 0.000 -.9365196 -.6942772

salaried
Yes .4709859 .1419878 3.32 0.001 .192695 .7492768

_cons 4.902936 .3973849 12.34 0.000 4.124076 5.681796

wellpgm
age -.0938617 .0072734 -12.90 0.000 -.1081173 -.079606

smoke
Yes -1.477078 .1772103 -8.34 0.000 -1.824404 -1.129752

_cons 4.228481 .337379 12.53 0.000 3.56723 4.889732

weight
sex

Male 9.506396 .6960864 13.66 0.000 8.142091 10.8707
gym -.8184902 .0779351 -10.50 0.000 -.9712401 -.6657402

_cons 80.10245 .5407952 148.12 0.000 79.04251 81.16239

var(e.weig~s) 2.015328 .263477 1.559777 2.603927
var(e.weight) 65.98395 3.997213 58.59678 74.30241

corr(e.com~d,
e.weightloss) .5434105 .0824836 6.59 0.000 .362338 .6849556
corr(e.wel~m,
e.weightloss) .5878321 .1054098 5.58 0.000 .3440372 .7573749
corr(e.wei~t,
e.weightloss) -.4801763 .089175 -5.38 0.000 -.6353685 -.2877017
corr(e.wel~m,
e.completed) .3753168 .1523364 2.46 0.014 .0470351 .6304273

corr(e.wei~t,
e.completed) -.0643813 .0718768 -0.90 0.370 -.2030702 .0768401

corr(e.wei~t,
e.wellpgm) -.096324 .0691411 -1.39 0.164 -.2292586 .0401382
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The completed, wellpgm, and weight equations provide the coefficient estimates for the auxiliary
endogenous selection, treatment assignment, and endogenous covariate models.

The correlation estimates tell us about the endogeneity in our model. For example, we speculated
that we might have endogenous selection. The error correlation corr(e.completed,e.weightloss)
is an estimate of the correlation between the error from the selection equation and the error from the
outcome equation. The estimate is significant, so we reject the hypothesis that there is no endogenous
selection. It is positive, so we conclude that unobserved factors that increase the likelihood of being in
the sample tend to occur with unobserved factors that increase the amount of weight lost. Looking at
the other correlations, we find that our suspicions of endogenous treatment choice and the endogeneity
of initial weight are likewise confirmed.

We estimated an ATE in our running example. In our simple illustration, we were able to use
the coefficient on wellpgm. If wellpgm had been interacted with other covariates in the model, we
would have needed to use estat teffects. We also could have estimated the effect of the wellness
program on just those employees who participated, the average treatment effect on the treated (ATET).

Using this regression, if we ask questions about how participating in wellpgm affects the expected
change in weightloss, we will almost always get the same answer: 0.92 kg greater weight loss with
the program than without. That is the coefficient on wellpgm in the main outcome equation. This
model is linear and contains no interactions between the treatment and other covariates. So, whether
we ask about the ATE or the ATET, the answer is 0.92. Whether we ask about the expected additional
weightloss for a person who chose to participate or about all the women who chose to participate,
the answer is the same. No matter what, the expected change is always 0.92.

To make this interesting, we will need a more complex model. We could take the nointeract
suboption off the entreat() option. If we did that and refit the model, all the questions above would
produce different answers. But, as we said, our data are simulated with no interaction. So let’s use
another artifice.

Let’s assume that the clerk in charge of the final weigh-in overheard management discussing
the new program. The managers seemed particularly interested in participants losing at least 4 kg
(8.8 pounds). Thinking he was being helpful, our clerk decided to save everyone some effort and did
not record actual weights. Instead, he recorded only whether employees were at least 4 kg lighter
than they had been at the initial weigh-in.

We can no longer analyze weight loss, but we can analyze the probability of losing at least 4 kg.
We fit the same full model but this time use eprobit, and our dependent variable becomes lost4,
which is 0 if the employee lost less than 4 kg and is 1 if the employee lost 4 kg or more.
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. eprobit lost4 age i.sex, endogenous(weight = i.sex gym)
> entreat(wellpgm = age i.smoke, nointeract)
> select(completed = i.wellpgm experience i.salaried) vce(robust)

(iteration log omitted )

Extended probit regression Number of obs = 545
Selected = 337

Nonselected = 208

Wald chi2(4) = 184.27
Log pseudolikelihood = -2392.5364 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

lost4
age -.0461113 .0129744 -3.55 0.000 -.0715406 -.020682

sex
Male -1.192968 .1806428 -6.60 0.000 -1.547022 -.8389148

weight .1131467 .0108868 10.39 0.000 .0918089 .1344844

wellpgm
Yes 1.370215 .4048158 3.38 0.001 .5767905 2.163639

_cons -8.034426 1.199574 -6.70 0.000 -10.38555 -5.683305

completed
wellpgm

Yes .6534203 .2310957 2.83 0.005 .200481 1.10636
experience -.801973 .0676059 -11.86 0.000 -.9344781 -.6694679

salaried
Yes .3955088 .1549943 2.55 0.011 .0917255 .6992921

_cons 4.862419 .4186367 11.61 0.000 4.041906 5.682932

wellpgm
age -.0958611 .0071251 -13.45 0.000 -.109826 -.0818963

smoke
Yes -1.515911 .1754356 -8.64 0.000 -1.859758 -1.172063

_cons 4.310847 .338842 12.72 0.000 3.646728 4.974965

weight
sex

Male 9.501602 .6983151 13.61 0.000 8.13293 10.87028
gym -.8162669 .0765488 -10.66 0.000 -.9662998 -.666234

_cons 80.09771 .5302486 151.06 0.000 79.05844 81.13697

var(e.weight) 65.98399 3.805168 58.93203 73.8798

corr(e.com~d,
e.lost4) .5236573 .1297834 4.03 0.000 .2268709 .7314522

corr(e.wel~m,
e.lost4) .249717 .2438804 1.02 0.306 -.2493086 .6439525

corr(e.wei~t,
e.lost4) -.6846067 .096236 -7.11 0.000 -.8314263 -.448426

corr(e.wel~m,
e.completed) .3678357 .1636913 2.25 0.025 .014886 .6392761

corr(e.wei~t,
e.completed) -.0821217 .074566 -1.10 0.271 -.2255026 .0647412

corr(e.wei~t,
e.wellpgm) -.0888819 .0671873 -1.32 0.186 -.218281 .0435887



62 Intro 9 — Conceptual introduction via worked example

These parameter estimates are pretty close to those from running eregress on weightloss. But
unless you like thinking in terms of shifts along a standardized normal distribution, the coefficient of
1.37 on wellpgm is difficult to interpret. We still know that the effect of the program is statistically
significant, but little more.

Note that we added vce(robust). This will allow us to treat our sample as a draw from a population
when using estat teffects and margins and thus make inferences about the population. Otherwise,
we would be taking the sample as fixed and not as a draw from a population.

If management is thinking about expanding the program, they will want to evaluate its effectiveness.
What proportion of employees across all facilities would lose 4 kg or more naturally, either through all
employees not participating or through the program simply not being offered? What proportion would
lose 4 kg or more if all employees participated? estat teffects will estimate these proportions
when we request potential-outcome means.

. estat teffects, pomean

Predictive margins Number of obs = 545

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

POmean
wellpgm

No .0844851 .0431001 1.96 0.050 .0000106 .1689597
Yes .4702298 .086969 5.41 0.000 .2997736 .640686

About 47% are expected to lose 4 kg if everyone participates compared with only 8% when no
one participates. More to the point, what is the difference in those averages? We type

. estat teffects

Predictive margins Number of obs = 545

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATE
wellpgm

(Yes vs No) .3857447 .1226037 3.15 0.002 .1454458 .6260436

The proportion of employees who would be expected to lose 4 kg increases by 0.39 if everyone
participates in the program versus if no one participates; that is the ATE.

What if we consider only program participants? What is the expected average increase in the
proportion losing 4 kg? Let’s estimate the expected effect of the wellness program on just those
employees who choose to participate, the ATET.

. estat teffects, atet

Predictive margins Number of obs = 545
Subpop. no. obs = 208

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATET
wellpgm

(Yes vs No) .5335926 .1098873 4.86 0.000 .3182174 .7489678
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The ATET of 0.53 implies that the program is expected to increase the proportion of employees who
lose 4 kg by 0.53 among those who choose to participate across all facilities. Recall that we believed
success in the program would be positively correlated with employees’ decision to participate. That is
what made the decision endogenous. It is not surprising that we expect better results for participants
than we do for all the employees as a whole.

We are going to need margins to answer some other questions, so let’s introduce it by reestimating
the ATET.

. margins r(0 1).wellpgm if wellpgm, contrast(effects nowald)

Contrasts of predictive margins Number of obs = 208
Model VCE: Robust

Expression: Average structural function probability, predict()

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

wellpgm
(Yes vs No) .5335926 .109483 4.87 0.000 .3190099 .7481752

We have reproduced the estimate.

There is a lot happening in that margins command.

r(0 1).wellpgm tells margins to form two counterfactuals—one at wellpgm=0 and an-
other at wellpgm=1—and to then take the reference (r) contrast (difference) of those two
counterfactuals.

if wellpgm restricts the sample to those who participated in the wellness program.

contrast(effects nowald) tells margins to report the z statistic and probability > z,
which are not shown by default. It also tells margins to suppress the overall Wald statistic.

The standard errors are slightly smaller than those from estat teffects. If we wanted them to
match exactly, we would use the vce(unconditional) option with margins. That option creates
standard errors appropriate to make inferences about the population. The standard errors are so close
that we will dispense with vce(unconditional) in this section.

Now, let’s ask a series of different questions from a different perspective.

The physical trainer for our fictional company is having lunch with a new employee, Betty. The
trainer mentions the wellness program, and Betty asks if it is likely to do her much good. Betty looks
to be mid thirties and average weight. She says she goes to the gym a couple of times a month. The
trainer recalls people with those characteristics doing well with the program. Betty’s data are already
in the company’s database, so the trainer opens Stata on her laptop and types
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. margins r(0 1).wellpgm if name=="Betty", contrast(effects nowald) noesample
warning: prediction constant over observations.

Contrasts of predictive margins Number of obs = 1
Model VCE: Robust

Expression: Average structural function probability, predict()

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

wellpgm
(Yes vs No) .5894013 .222732 2.65 0.008 .1528545 1.025948

The trainer tells Betty that employees with her characteristics increase their chances of losing 4 kg
by about 59 percentage points when they are in the program.

Later, another new employee, Fred, asks whether the program is likely to help him lose that last
few kilograms. He is thin, in his upper fifties, and he already goes to the gym about twice a week.
Our trainer types

. margins r(0 1).wellpgm if name=="Fred", contrast(effects nowald) noesample
warning: prediction constant over observations.

Contrasts of predictive margins Number of obs = 1
Model VCE: Robust

Expression: Average structural function probability, predict()

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

wellpgm
(Yes vs No) .0147468 .0226186 0.65 0.514 -.0295849 .0590785

She tells Fred that the program might be good for him but not to expect it to create much weight
loss. Fred says he would like to sign up, just so he can meet some other employees.

When Fred leaves, our trainer calls her office mate and makes a wager that Fred will not lose 4 kg
on the program. The trainer then realizes that she placed a bet on overall weight loss, not just the
loss attributable to the wellness program. To be certain, she checks the potential outcomes of weight
loss for Fred being in the program and for Fred being out of the program.

. margins i(0 1).wellpgm if name=="Fred", noesample
warning: prediction constant over observations.

Predictive margins Number of obs = 1
Model VCE: Robust

Expression: Average structural function probability, predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

wellpgm
No .0000218 .0000382 0.57 0.569 -.0000532 .0000967

Yes .0147686 .022641 0.65 0.514 -.029607 .0591441

With a negligible chance of losing 4 kg if Fred chooses not to participate and a slim 1.5% chance
if Fred does participate, our trainer feels pretty good about her wager. Even the upper bound of
the confidence intervals makes the trainer confident. Of course, these are the expected results for all
employees with Fred’s characteristics; Fred might be an overachiever.
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The counterfactuals and contrasts that we computed for Betty and Fred are the expected values
from our model conditioned on the exogenous covariates in the main equation, age and sex, on
the level of endogeneity for the endogenous equations for weight and wellpgm, and on fixing the
values of wellpgm first to 0 and then to 1. The estimates for Betty are what we would expect if we
averaged over hundreds of employees who match Betty’s age, sex, and level of endogeneity. The
same applies to Fred.

Also note that we typed r(0 1)., rather than just r.. That is because we are operating on a
single observation, and margins cannot determine the appropriate levels of wellpgm for which to
form counterfactuals. We had to tell margins to use 0 and 1.

It is unlikely that our trainer has Stata on her laptop or has the inclination to type margins
commands. As analysts, however, we might create a table for her that she can use to assess candidates
and help employees form realistic expectations.

Our dataset already has grouping variables for age, gym, weight, and sex. We can estimate the
expected additional probability of losing more than 4 kg for each combination of these groups by
using an over() option.

. margins r.wellpgm, contrast(effects nowald) over(agegrp gymgrp wtgrp sex)

Contrasts of predictive margins Number of obs = 545
Model VCE: Robust

Expression: Average structural function probability, predict()
Over: agegrp gymgrp wtgrp sex

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

wellpgm@
agegrp#
gymgrp#

wtgrp#sex
(Yes vs No)

20--29 0
< 60 Female 0 (omitted)
(Yes vs No)

20--29 0
< 60 Male 0 (omitted)

(Yes vs No)
20--29 0

60--69
Female .6437056 .1621665 3.97 0.000 .325865 .9615462

(Yes vs No)
20--29 0

60--69
Male 0 (omitted)

(output omitted )

Those rows marked (omitted) represent combinations of characteristics for which we do not
have any employees in our sample. We could use our model to extrapolate to those groups, but we
are not going to do that. What we do have for each combination of groups is an estimate of the
expected increase in the probability of losing 4 kg, a test that the probability is greater than 0, and a
95% confidence interval.

Those results will take a lot of transcription to create something compact for the trainer. And while
our hearts are warmed by the tests and confidence intervals, the trainer might not feel the same way.
If we wanted to be exceptionally helpful, we could build a table manually showing ATEs for each
group.
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. predict te, te

. table (agegrp gymgrp) (sex wtgrp), statistic(mean te) nformat(%4.2f) nototals

Employee sex
Female Male

Weight groups Weight groups
< 60 60--69 70--79 80--89 90 up 60--69 70--79 80--89 90 up

Age groups
20--29

Gym visit
groups

0 0.64 0.58 0.53 0.41 0.63 0.62 0.52
0--5 0.65 0.63 0.57 0.64 0.65 0.59
6--10 0.51 0.64 0.65 0.55 0.58 0.64
11 up 0.40 0.35

30--39
Gym visit
groups

0 0.48 0.65 0.62 0.61 0.61 0.65 0.62
0--5 0.48 0.64 0.64 0.56 0.62
6--10 0.21 0.39 0.54 0.60 0.27 0.31 0.51 0.48
11 up 0.34 0.43 0.24 0.53

40--49
Gym visit
groups

0 0.45 0.57 0.62 0.65 0.33 0.50 0.62
0--5 0.39 0.48 0.59 0.61 0.27 0.38 0.55
6--10 0.22 0.33 0.38 0.09 0.14 0.25 0.42
11 up 0.07 0.10 0.28 0.09 0.08 0.19

50--59
Gym visit
groups

0 0.26 0.35 0.46 0.62 0.25 0.29 0.47
0--5 0.06 0.22 0.40 0.62 0.12 0.20 0.32
6--10 0.05 0.04 0.22 0.16 0.39 0.05 0.10 0.13
11 up 0.01 0.01 0.05 0.01 0.01

60 up
Gym visit
groups

0 0.17 0.25 0.37 0.07 0.12 0.26
0--5 0.07 0.33 0.28 0.02 0.03 0.11
6--10 0.02 0.04 0.10 0.01 0.02 0.03 0.08
11 up 0.00 0.02 0.00 0.02 0.03

We first predicted the expected treatment effects for each observation in our sample. Then, we let
table average those values for each combination of groups. For any combination of groups, these
estimates match those from estat teffects for each group.

Here we have demonstrated how you can use estat teffects and margins to answer a variety
of interesting questions after fitting a model with an endogenous covariate, endogenous treatment, and
endogenous sample selection. ERMs can address one additional complication—within-panel or within-
group correlation—if we fit a random-effects model with xteregress, xteintreg, xteprobit,
or xteoprobit. You can use estat teffects and margins to interpret results of random-effects
models as well. See [ERM] Example 7 and [ERM] Example 9.
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Video examples

Extended regression models, part 4: Interpreting the model

Extended regression models, part 3: Endogenous sample selection

Extended regression models, part 2: Nonrandom treatment assignment

Extended regression models, part 1: Endogenous covariates
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[ERM] Intro 1 — An introduction to the ERM commands
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Description

eintreg fits an interval regression model that accommodates any combination of endogenous co-
variates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and
ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous.
A probit or tobit model may be used to account for endogenous sample selection.

xteintreg fits a random-effects interval regression model that accommodates endogenous covari-
ates, treatment, and sample selection in the same way as eintreg and also accounts for correlation
of observations within panels or within groups.

Quick start
All quick start examples use an interval-measured dependent variable with the interval’s lower bound
recorded in variable y l and its upper bound recorded in y u.

Regression of [y l, y u] on x with continuous endogenous covariate y2 modeled by x and z

eintreg y_l y_u x, endogenous(y2 = x z)

Same as above, but adding continuous endogenous covariate y3 modeled by x and z2

eintreg y_l y_u x, endogenous(y2 = x z) endogenous(y3 = x z2)

Regression of [y l, y u] on x with binary endogenous covariate d modeled by x and z

eintreg y_l y_u x, endogenous(d = x z, probit)

Regression of [y l, y u] on x with endogenous treatment recorded in trtvar and modeled by x
and z

eintreg y_l y_u x, entreat(trtvar = x z)

Regression of [y l, y u] on x with exogenous treatment recorded in trtvar

eintreg y_l y_u x, extreat(trtvar)

Random-effects regression of [y l, y u] on x using xtset data
xteintreg y_l y_u x

Regression of [y l, y u] on x with endogenous sample-selection indicator selvar modeled by x
and z

eintreg y_l y_u x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2

eintreg y_l y_u x, select(selvar = x z) endogenous(y2 = x z2)

68
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Same as above, but adding endogenous treatment recorded in trtvar and modeled by x and z3

eintreg y_l y_u x, select(selvar = x z) endogenous(y2 = x z2) ///
entreat(trtvar = x z3)

Same as above, but with random effects and without endogenous treatment
xteintreg y_l y_u x, select(selvar = x z) endogenous(y2 = x z2)

Menu
eintreg

Statistics > Endogenous covariates > Models adding selection and treatment > Interval regression

xteintreg

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Interval
regression (RE)
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Syntax

Basic interval regression with endogenous covariates

eintreg depvar1 depvar2
[

indepvars
]
, endogenous(depvarsen = varlisten)

[
options

]
Basic interval regression with endogenous treatment assignment

eintreg depvar1 depvar2
[

indepvars
]
, entreat(depvartr

[
= varlisttr

]
)
[

options
]

Basic interval regression with exogenous treatment assignment

eintreg depvar1 depvar2
[

indepvars
]
, extreat(tvar)

[
options

]
Basic interval regression with sample selection

eintreg depvar1 depvar2
[

indepvars
]
, select(depvars = varlists)

[
options

]
Basic interval regression with tobit sample selection

eintreg depvar1 depvar2
[

indepvars
]
, tobitselect(depvars = varlists)

[
options

]
Basic interval regression with random effects

xteintreg depvar1 depvar2
[

indepvars
] [

, options
]

Interval regression combining endogenous covariates, treatment, and selection

eintreg depvar1 depvar2
[

indepvars
] [

if
] [

in
] [

weight
] [

, extensions options
]

Interval regression combining random effects, endogenous covariates, treatment, and selection

xteintreg depvar1 depvar2
[

indepvars
] [

if
] [

in
] [

, extensions options
]

depvar1 and depvar2 should have the following form:

Type of data depvar1 depvar2

point data a = [ a, a ] a a

interval data [ a, b ] a b

left-censored data (−∞, b ] . b

right-censored data [ a,+∞ ) a .

missing . .
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extensions Description

Model

endogenous(enspec) model for endogenous covariates; may be repeated
entreat(entrspec) model for endogenous treatment assignment
extreat(extrspec) exogenous treatment
select(selspec) probit model for selection
tobitselect(tselspec) tobit model for selection

options Description

Model

noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points for integration over
four or more dimensions; default is intpoints(128)

triintpoints(#) set the number of integration (quadrature) points for integration over
three dimensions; default is triintpoints(10)

reintpoints(#) set the number of integration (quadrature) points for
random-effects integration; default is reintpoints(7)

reintmethod(intmethod) integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics

enspec is depvarsen = varlisten
[
, enopts

]
where depvarsen is a list of endogenous covariates. Each variable in depvarsen specifies an
endogenous covariate model using the common varlisten and options.

entrspec is depvartr
[
= varlisttr

] [
, entropts

]
where depvartr is a variable indicating treatment assignment. varlisttr is a list of covariates
predicting treatment assignment.
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extrspec is tvar
[
, extropts

]
where tvar is a variable indicating treatment assignment.

selspec is depvars = varlists
[
, selopts

]
where depvars is a variable indicating selection status. depvars must be coded as 0, indicating
that the observation was not selected, or 1, indicating that the observation was selected. varlists
is a list of covariates predicting selection.

tselspec is depvars = varlists
[
, tselopts

]
where depvars is a continuous variable. varlists is a list of covariates predicting depvars. The
censoring status of depvars indicates selection, where a censored depvars indicates that the
observation was not selected and a noncensored depvars indicates that the observation was
selected.

enopts Description

Model

probit treat endogenous covariate as binary
oprobit treat endogenous covariate as ordinal
povariance estimate a different variance for each level of a binary or an ordinal

endogenous covariate
pocorrelation estimate different correlations for each level of a binary or an ordinal

endogenous covariate
nomain do not add endogenous covariate to main equation
nore do not include random effects in model for endogenous covariate
noconstant suppress constant term

nore is available only with xteintreg.

entropts Description

Model

povariance estimate a different variance for each potential outcome
pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nointeract do not interact treatment with covariates in main equation
nore do not include random effects in model for endogenous treatment
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteintreg.

extropts Description

Model

povariance estimate a different variance for each potential outcome
pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nointeract do not interact treatment with covariates in main equation



eintreg — Extended interval regression 73

selopts Description

Model

nore do not include random effects in selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteintreg.

tselopts Description

Model
∗ll(varname | #) left-censoring variable or limit
∗ul(varname | #) right-censoring variable or limit
main add censored selection variable to main equation
nore do not include random effects in tobit selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
∗ You must specify either ll() or ul().
nore is available only with xteintreg.

indepvars, varlisten, varlisttr, and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar1, depvar2, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvars, and varlists may contain

time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, collect, jackknife, and statsby are allowed with eintreg and xteintreg. rolling and svy

are allowed with eintreg. See [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with eintreg; see [U] 11.1.6 weight.
reintpoints() and reintmethod() are available only with xteintreg.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec),
tobitselect(tselspec); see [ERM] ERM options.

noconstant, offset(varnameo), constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype); see [ERM] ERM options.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intpoints(#), triintpoints(#), reintpoints(#), reintmethod(intmethod); see [ERM] ERM
options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize.

The default technique for eintreg is technique(nr). The default technique for xteintreg is
technique(bhhh 10 nr 2).

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with eintreg and xteintreg but are not shown in the dialog
box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
eintreg and xteintreg fit models that we refer to as “extended interval regression models”,

meaning that they accommodate endogenous covariates, nonrandom treatment assignment, endogenous
sample selection, and panel data or other grouped data.

eintreg fits models for cross-sectional data (one-level models). eintreg can account for en-
dogenous covariates, treatment, and sample selection, whether these complications arise individually
or in combination.

xteintreg fits random-effects models (two-level models) for panel data or grouped data. xtein-
treg accounts for endogenous covariates, treatment, and sample selection in the same way as eintreg
and also accounts for within-panel or within-group correlation among observations.

In this entry, you will find information on the syntax for the eintreg and xteintreg commands.
You can see Methods and formulas for a full description of the models that can be fit with these
commands and for details about how those models are fit.

More information on extended interval regression models is found in the separate introductions and
example entries. We recommend reading those entries to learn how to use eintreg and xteintreg.
Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eintreg, xteintreg, and the other extended regression commands for
continuous, binary, and ordinal outcomes, see [ERM] Intro 1–[ERM] Intro 9.

[ERM] Intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] Intro 2 provides background on the four types of models—linear regression, interval
regression, probit regression, and ordered probit regression—that can be fit using ERM commands.
This intro also demonstrates how to fit tobit models using eintreg by transforming your
dependent variable into the required format. This same transformation can be used to fit
random-effects tobit models with xteintreg.

[ERM] Intro 3 considers the problem of endogenous covariates and how to solve it using ERM
commands.

[ERM] Intro 4 gives an overview of endogenous sample selection and using ERM commands to
account for it.
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[ERM] Intro 5 covers nonrandom treatment assignment and how to account for it using eintreg
or any of the other ERM commands.

[ERM] Intro 6 covers random-effects models for panel data and other grouped data. It discusses
xteintreg and the other ERM commands for panel data.

[ERM] Intro 7 discusses interpretation of results. You can interpret coefficients from eintreg
and xteintreg in the usual way, but this introduction goes beyond the interpretation of
coefficients. We demonstrate how to find answers to interesting questions by using margins. If
your model includes an endogenous covariate or an endogenous treatment, the use of margins
differs from its use after other estimation commands, so we strongly recommend reading this
intro if you are fitting these types of models.

[ERM] Intro 8 will be helpful if you are familiar with ivtobit, xtintreg, xttobit, and
other commands that address endogenous covariates, sample selection, nonrandom treatment
assignment, or panel data. This introduction is a Rosetta stone that maps the syntax of those
commands to the syntax of eintreg and xteintreg. If your outcome is stored in a single
variable, which is necessary with tobit, ivtobit, and xttobit, the Rosetta stone also
demonstrates how to create the lower- and upper-bound variables necessary for eintreg and
xteintreg.

[ERM] Intro 9 walks you through an example that gives insight into the concepts of endogenous
covariates, treatment assignment, and sample selection while fitting models with eregress
that address these complications. Although the example uses eregress, the discussion applies
equally to eintreg. This intro also demonstrates how to interpret results by using margins
and estat teffects.

Additional examples are presented in [ERM] Example 1a–[ERM] Example 9. For examples using
eintreg, see

[ERM] Example 1b Interval regression with continuous endogenous covariate
[ERM] Example 1c Interval regression with endogenous covariate and sample selection

See Examples in [ERM] Intro for an overview of all the examples. All examples may be interesting
because they handle complications in the same way. Examples using eregress and xteregress
will be of particular interest because results of models fit by eintreg and xteintreg are interpreted
in the same way.

eintreg and xteintreg fit many models discussed in the literature. For instance, the tobit
model was originally conceived in Tobin (1958) as a model of consumption of consumer durables,
where purchases were left-censored at 0. Wooldridge (2020, sec. 17.4) introduces censored and
truncated regression models. Cameron and Trivedi (2022, chap. 19) discuss the tobit model using Stata
examples. eintreg can also fit models like the tobit regression model with continuous endogenous
regressors (Newey 1987) and the censored regression model with binary endogenous regressors
(Angrist 2001). xteintreg can fit the random-effects tobit model discussed in (Wooldridge 2010,
sec. 17.8). Roodman (2011) investigated interval regression models with endogenous covariates and
endogenous sample selection and demonstrated how multiple observational data complications could
be addressed with a triangular model structure. He and Tamás Bartus showed how random effects
could be used in the triangular model structure in Bartus and Roodman (2014). Roodman’s work
has been used to model processes like the effect of innovation on labor productivity (Mairesse and
Robin 2009) and the effect of insect-resistant crops on pesticide demand (Fernandez-Cornejo and
Wechsler 2012).
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Stored results

eintreg stores the following in e():

Scalars
e(N) number of observations
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(N int) number of interval-censored observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) eintreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
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e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

xteintreg stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(N int) number of interval-censored observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(n requad) number of integration points for random effects
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xteintreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(ivar) variable denoting groups
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(reintmethod) integration method for random effects
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
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e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here are for the interval model. The estimators implemented

in eintreg and xteintreg are maximum likelihood estimators covered by the results in chapter 13
of Wooldridge (2010) and White (1996).

The log-likelihood functions maximized by eintreg and xteintreg are implied by the triangular
structure of the model. Specifically, the joint distribution of the endogenous variables is a product
of conditional and marginal distributions because the model is triangular. For a few of the many
relevant applications of this result in literature, see chapter 10 of Amemiya (1985); Heckman (1976,
1979); chapter 5 of Maddala (1983); Maddala and Lee (1976); sections 15.7.2, 15.7.3, 16.3.3,
17.5.2, and 19.7.1 in Wooldridge (2010); and Wooldridge (2014). Roodman (2011) and Bartus and
Roodman (2014) used this result to derive the formulas discussed below.

Methods and formulas are presented under the following headings:

Introduction
Endogenous covariates

Continuous endogenous covariates
Binary and ordinal endogenous covariates

Treatment
Endogenous sample selection

Probit endogenous sample selection
Tobit endogenous sample selection

Random effects
Combinations of features
Confidence intervals
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Introduction

A regression model of outcome yi on covariates xi may be written as

yi = xiβ+ εi

where εi is normal with mean 0 and variance σ2. Instead of observing yi, we observe the endpoints
yli and yui.

If yi is left-censored, the lower endpoint yli = −∞ and we know that yi ≤ yui. If yi is
right-censored, the upper endpoint yui = +∞ and we know that yi ≥ yli. If there is no censoring,
yli = yui = yi. When yli and yui are real valued and not equal, we know that yli ≤ yi ≤ yui.

The log likelihood is

lnL =
∑
i∈U

wi lnφ
(
yi − xiβ, σ

2
)

+
∑
i∈L

wi ln Φ

(
yui − xiβ

σ

)
+
∑
i∈R

wi ln Φ

(
−yli + xiβ

σ

)
+
∑
i∈I

wi ln
{

Φ

(
yui − xiβ

σ

)
− Φ

(
yli − xiβ

σ

)}

where U is the set of observations where yi is not censored, L is the set of observations where yi
is left-censored, R is the set of observations where yi is right-censored, I is the set of observations
where yi is interval-censored, and wi are the weights.

The conditional mean of yi is
E(yi|xi) = xiβ

If we wished to condition on the censoring, we could calculate an expectation on y?i =
max{yli,min(yij , yui)} or a constrained mean E(yi|yli < yi < yui). See Predictions using the
full model in [ERM] eprobit postestimation for details on how this is done.

If you are willing to take our word for some derivations and notation, the following is complete.
Longer explanations and derivations for some terms and functions are provided in Methods and
formulas of [ERM] eprobit. For example, we need the two-sided probability function Φ∗d that is
discussed in Introduction in [ERM] eprobit.

If you are interested in all the details, we suggest you read Methods and formulas of [ERM] eprobit
in its entirety before reading this section. Here we mainly show how the complications that arise in
ERMs are handled in an interval regression framework.
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Endogenous covariates

Continuous endogenous covariates

An interval regression of yi on exogenous covariates xi and C continuous endogenous covariates
wci has the form

yi = xiβ+ wciβc + εi

wci = zciAc + εci

As in Introduction, we do not observe yi but instead observe the endpoints yli and yui. The vector
zci contains variables from xi and other covariates that affect wci. For the model to be identified,
zci must contain one extra exogenous covariate not in xi for each of the endogenous regressors in
wci. The unobserved errors εi and εci are multivariate normal with mean 0 and covariance

Σ =

[
σ2 σ′1c
σ1c Σc

]

Conditional on the endogenous and exogenous covariates, εi has mean and variance

µ1|c,i = E (εi|wci,xi, zci) = σ′1cΣ
−1
c (wci − zciAc)

′

σ2
1|c = Var (εi|wci,xi, zci) = σ2 − σ′1cΣ

−1
c σ1c

Let
rli = yli − xiβ−wciβc − µ1|c,i

rui = yui − xiβ−wciβc − µ1|c,i

The log likelihood is

lnL =
∑
i∈U

wi lnφ
(
rli, σ

2
1|c

)
+
∑
i∈L

wi ln Φ∗1

(
−∞, rui, σ2

1|c

)
+
∑
i∈R

wi ln Φ∗1

(
rli,∞, σ2

1|c

)
+
∑
i∈I

wi ln Φ∗1

(
rli, rui, σ

2
1|c

)

+

N∑
i=1

wi lnφC(wci − zciAc,Σc)

where U is the set of observations where yi is not censored, L is the set of observations where yi is
left-censored, R is the set of observations where yi is right-censored, and I is the set of observations
where yi is interval-censored.

The conditional mean of yi is

E(yi|xi,wci, zci) = xiβ+ wciβc + σ′1cΣ
−1
c (wci − zciAc)

′
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Binary and ordinal endogenous covariates

Here we begin by formulating the interval regression of yi on exogenous covariates xi and B
binary and ordinal endogenous covariates wbi = [wb1i, . . . , wbBi]. Indicator (dummy) variables for
the levels of each binary and ordinal covariate are used in the model. You can also interact other
covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

The binary and ordinal endogenous covariates wbi are formulated as in Binary and ordinal
endogenous covariates in [ERM] eprobit.

The model for the outcome can be formulated with or without different variance and correlation
parameters for each level of wbi. Level-specific parameters are obtained by specifying povariance
or pocorrelation in the endogenous() option.

If the variance and correlation parameters are not level specific, we have

yi = xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εi

The windbji vectors are defined in Binary and ordinal endogenous covariates in [ERM] eprobit. As
in Introduction, we do not observe yi but instead observe the endpoints yli and yui. The binary and
ordinal endogenous errors εb1i, . . . , εbBi and outcome error εi are multivariate normal with 0 mean
and covariance

Σ =

[
Σb σ1b

σ′1b σ2

]
From here, we discuss the model with ordinal endogenous covariates. The results for binary

endogenous covariates are similar.

As in Binary and ordinal endogenous covariates in [ERM] eregress, for the uncensored observations,
we write the joint density of yi and wbi using the conditional density of εb1i, . . . , εbBi on εi. For the
censored observations, we use tools discussed in Likelihood for multiequation models in [ERM] eprobit
to formulate the joint density directly.

For i ∈ U , the uncensored observations, define

ri = yi − (xiβ+ windb1iβb1 + · · ·+ windbBiβbB)

For the censored observations, define

rli = yli − (xiβ+ windb1iβb1 + · · ·+ windbBiβbB)

rui = yui − (xiβ+ windb1iβb1 + · · ·+ windbBiβbB)

Let

Σb|1 = Σ− σ1bσ
′
1b

σ2
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Now the log likelihood is

lnL =
∑
i∈U

wi ln
{

Φ∗B(li,ui,Σb|1)φ
(
ri, σ

2
)}

+
∑
i∈L

wi lnΦ∗B+1([ lbi −∞ ], [ ubi rui ],Σ)

+
∑
i∈R

wi lnΦ∗B+1([ lbi rli ], [ ubi ∞ ],Σ)

+
∑
i∈I

wi lnΦ∗B+1([ lbi rli ], [ ubi rui ],Σ)

where U is the set of observations where yi is not censored, L is the set of observations where yi is
left-censored, R is the set of observations where yi is right-censored, and I is the set of observations
where yi is interval-censored. The vectors lbi and ubi are the upper and lower limits for the binary and
ordinal endogenous regressors defined in Binary and ordinal endogenous covariates in [ERM] eprobit.
The vectors li and ui are the upper and lower limits for the binary and ordinal endogenous regressors
defined in Binary and ordinal endogenous covariates in [ERM] eregress.

The expected value of yi conditional on wbi can be calculated using the techniques discussed in
Predictions using the full model in [ERM] eprobit postestimation.

When the endogenous ordinal variables are different treatments, holding the variance and correlation
parameters constant over the treatment levels is a constrained form of the potential-outcome model. In
an unconstrained potential-outcome model, the variance of the outcome and the correlations between
the outcome and the treatments—the endogenous ordinal regressors wbi—vary over the levels of each
treatment.

In this unconstrained model, there is a different potential-outcome error for each level of each
treatment. For example, when the endogenous treatment variable w1 has three levels (0, 1, and 2) and
the endogenous treatment variable w2 has four levels (0, 1, 2, and 3), the unconstrained model has
12 = 3 × 4 outcome errors. So there are 12 outcome error variance parameters. Because there is a
different correlation between each potential outcome and each endogenous treatment, there are 2× 12
correlation parameters between the potential outcomes and the treatments in this example model.

We denote the number of different combinations of values for the endogenous treatments wbi by
M , and we denote the vector of values in each combination by vj (j ∈ {1, 2, . . . ,M}). Letting
kwp be the number of levels of endogenous ordinal treatment variable p ∈ {1, 2, . . . , B} implies that
M = kw1 × kw2 × · · · × kwB .

Denoting the outcome errors ε1i, . . ., εMi, we have

y1i = xiβ+ windb1iβb1 + · · ·+ windbBiβbB + ε1i

...

yMi = xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εMi

yi =

M∑
j=1

1(wbi = vj)yji

For j = 1, . . . , M , the endogenous errors εb1i, . . . , εbBi and outcome error εji are multivariate
normal with 0 mean and covariance

Σj =

[
Σb σj1b
σ′j1b σ2

j

]
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Now let

σi,b =

M∑
j=1

1(wbi = vj)σj

Σi,b =

M∑
j=1

1(wbi = vj)Σj

Σi,b|1 =

M∑
j=1

1(wbi = vj)

(
Σb −

σj1bσ
′
j1b

σ2
j

)

Now the log likelihood for this model is

lnL =
∑
i∈U

wi ln
{

Φ∗B(li,ui,Σi,b|1)φ
(
ri, σ

2
i,b

)}
+
∑
i∈L

wi lnΦ∗B+1([ lbi −∞ ], [ ubi rui ],Σi,b)

+
∑
i∈R

wi lnΦ∗B+1([ lbi rli ], [ ubi ∞ ],Σi,b)

+
∑
i∈I

wi lnΦ∗B+1([ lbi rli ], [ ubi rui ],Σi,b)

As in the other case, the expected value of yi conditional on wbi can be calculated using the
techniques discussed in Predictions using the full model in [ERM] eprobit postestimation.

Treatment

In the potential-outcomes framework, the treatment ti is a discrete variable taking T values,
indexing the T potential outcomes of the outcome yi: y1i, . . . , yTi.

When we observe treatment ti with levels v1, . . . , vT , we have

yi =

T∑
j=1

1(ti = vj)yji

So for each observation, we observe only the potential outcome associated with that observation’s
treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect
estimation method. See [CAUSAL] teffects intro advanced. We do not model the treatment assignment
process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent
to what we provide here for endogenous treatments. The treatment effect on the treated for xi for an
exogenous treatment is equivalent to what we provide here for the endogenous treatment when the
correlation parameter between the outcome and treatment errors is set to 0. The average treatment
effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous
manner to what we describe here for endogenous treatments. We can also obtain different variance
parameters for the different exogenous treatment groups by specifying povariance in extreat().
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From here, we assume an endogenous treatment ti. As in Treatment in [ERM] eprobit, we model
the treatment assignment process with a probit or an ordered probit model, and we call the treatment
assignment error εti. An interval regression of yi on exogenous covariates xi and endogenous treatment
ti taking values v1, . . . , vT has the form

y1i = xiβ1 + ε1i

...

yTi = xiβT + εTi

yi =

T∑
j=1

1(ti = vj)yji

As in Introduction, we do not observe yi but instead observe the endpoints yli and yui.

This model can be formulated with or without different variance and correlation parameters for each
potential outcome. Potential-outcome specific parameters are obtained by specifying povariance or
pocorrelation in the entreat() option.

If the variance and correlation parameters are not potential-outcome specific, for j = 1, . . . , T ,
εji and εti are bivariate normal with mean 0 and covariance

Σ =

[
σ2 σρ1t
σρ1t 1

]

The treatment is exogenous if ρ1t = 0. Note that we did not specify the structure of the correlations
between the potential-outcome errors. We do not need information about these correlations to estimate
POMs and treatment effects because all covariates and the outcome are observed in observations from
each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary
treatment models are similar. The likelihood is derived in a similar manner to Binary and ordinal
endogenous covariates.

For i ∈ U , the uncensored observations, define

ri = yi − xiβj if ti = vj

For the censored observations, define

rli = yli − xiβj if ti = vj

rui = yui − xiβj if ti = vj
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Now the log likelihood is

lnL =
∑
i∈U

wi ln
{

Φ∗1

(
lti −

ρ1t
σ
ri, uti −

ρ1t
σ
ri, 1− ρ21t

)
φ
(
ri, σ

2
)}

+
∑
i∈L

wi lnΦ∗2([ lti −∞ ], [uti rui ],Σ)

+
∑
i∈R

wi lnΦ∗2([ lti rli ], [uti ∞ ],Σ)

+
∑
i∈I

wi lnΦ∗2([ lti rli ], [uti rui ],Σ)

where U is the set of observations where yi is not censored, L is the set of observations where yi is
left-censored, R is the set of observations where yi is right-censored, and I is the set of observations
where yi is interval-censored. lti and uti are the limits for the treatment probability given in Treatment
in [ERM] eprobit.

The treatment effect yji − y1i is the difference in the outcome for individual i if the individual
receives the treatment ti = vj and what the difference would have been if the individual received the
control treatment ti = v1 instead.

The conditional POM for treatment group j is

POMj(xi) = E (yji|xi) = xiβj

For treatment group j, the treatment effect (TE) conditioned on xi is

TEj(xi) = E (yji − y1i|xi) = POMj(xi)− POM1(xi)

For treatment group j, the treatment effect on the treated (TET) in group h is

TETj(xi, ti = vh) = E (yji − y1i|xi, ti = vh)

= xiβj − xiβ1 + E (εji|xi, ti = vh)− E (ε1i|xi, ti = vh)

Remembering that the outcome errors and the treatment error εti are multivariate normal, for
j = 1, . . . , T , we can decompose εji such that

εji = σρ1tεti + ψji

where ψji has mean 0.

It follows that
TETj(xi, ti = vh) = xiβj − xiβ1

We can take the expectation of these conditional predictions over the covariates to get population
average parameters. The estat teffects or margins command is used to estimate the expectations
as predictive margins once the model is estimated with eintreg. The POM for treatment group j is

POMj = E (yji) = E {POMj(xi)}
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The ATE for treatment group j is

ATEj = E (yji − y1i) = E {TEj(xi)}

For treatment group j, the average treatment effect on the treated (ATET) in treatment group h is

ATETjh = E (yji − y1i|ti = vh) = E {TETj(xi, ti = vh)|ti = vh}

The conditional mean of yi at treatment level vj is

E(yi|xi, zti, ti = vj) = xiβj + E(εi|xi, zti, ti = vj)

In Predictions using the full model in [ERM] eprobit postestimation, we discuss how the conditional
mean of εi is calculated.

If the variance and correlation parameters are potential-outcome specific, for j = 1, . . . , T , εji
and εti are bivariate normal with mean 0 and covariance

Σj =

[
σ2
j σjρjt

σjρjt 1

]
Define

ρi =

T∑
j=1

1(ti = vj)ρjt

σi =

T∑
j=1

1(ti = vj)σj

Σi =

T∑
j=1

1(ti = vj)Σj

Now the log likelihood for the model is

lnL =
∑
i∈U

wi ln
{

Φ∗1

(
lti −

ρi
σi
ri, uti −

ρi
σi
ri, 1− ρ2i

)
φ
(
ri, σ

2
i

)}
+
∑
i∈L

wi lnΦ∗2([ lti −∞ ], [uti rui ],Σi)

+
∑
i∈R

wi lnΦ∗2([ lti rli ], [uti ∞ ],Σi)

+
∑
i∈I

wi lnΦ∗2([ lti rli ], [uti rui ],Σi)

The definitions for the potential-outcome means and treatment effects are the same as in the case
where the variance and correlation parameters did not vary by potential outcome. For the treatment
effect on the treated (TET) of group j in group h, we have

TETj(xi, ti = vh) = E (yji − y1i|xi, ti = vh)

= xiβj − xiβ1 + E (εji|xi, ti = vh)− E (ε1i|xi, ti = vh)
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The outcome errors and the treatment error εti are multivariate normal, so for j = 1, . . . , T , we can
decompose εji such that

εji = σjρjεti + ψji

where ψji has mean 0 and is independent of ti.

It follows that

TETj(xi, ti = vh) = E (yji − y1i|xi, ti = vh)

= xiβj − xiβ1 + (σjρj − σ1ρ1)E (εti|xi, ti = vh)

The mean of εti conditioned on ti and the exogenous covariates xi can be determined using
the formulas discussed in Predictions using the full model in [ERM] eprobit postestimation. It is
nonzero. So the treatment effect on the treated will be equal only to the treatment effect under
an exogenous treatment or when the correlation and variance parameters are identical between the
potential outcomes.

As in the other case, we can take the expectation of these conditional predictions over the
covariates to get population-averaged parameters. The estat teffects or margins command is
used to estimate the expectations as predictive margins once the model is fit with eintreg.

Endogenous sample selection

Probit endogenous sample selection

The regression for outcome yi with selection on si has the form

yi = xiβ+ εi

si = 1 (zsiαs + εsi > 0)

where xi are covariates that affect the outcome and zsi are covariates that affect selection. As in the
Introduction above, we do not observe yi but instead observe the endpoints yli and yui. If si = 1,
then the observation is selected, and there is an interval regression contribution to the likelihood. If
si = 0, then the observation is not selected, and there is no interval regression contribution to the
likelihood.

The unobserved errors εi and εsi are normal with mean 0 and covariance

Σ =

[
σ2 σρ1s
σρ1s 1

]
The likelihood is derived in a similar manner to that in Treatment.

For i ∈ U , the uncensored and selected observations, define

ri = yi − xiβ

Let
µs|1,i =

ρ1s
σ
ri

σs|1 = 1− ρ21s
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For the selection indicator si, the lower and upper limits on εsi are

lsi =

{−∞ si = 0

−zsiαs si = 1
usi =

{−zsiαs si = 0

∞ si = 1

For the censored but selected observations, i /∈ U , define

rli = yli − xiβj

rui = yui − xiβj

Now the log likelihood is

lnL =
∑
i∈U

wi ln
{

Φ∗1(lsi − µs|1,i, usi − µs|1,i, σ2
s|1)φ

(
ri, σ

2
)}

+
∑
i∈L

wi lnΦ∗2([ lsi −∞ ], [usi rui ],Σ)

+
∑
i∈R

wi lnΦ∗2([ lsi rli ], [usi ∞ ],Σ)

+
∑
i∈I

wi lnΦ∗2([ lsi rli ], [usi rui ],Σ)∑
i/∈S

wi lnΦ∗1(lsi, usi, 1)

where U is the set of observations where yi is not censored, L is the set of observations where yi
is left-censored, R is the set of observations where yi is right-censored, I is the set of observations
where yi is interval-censored, and S is the set of selected observations.

The conditional mean of yi is
E(yi|xi) = xiβ

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection uses
a censored continuous endogenous sample-selection indicator. We allow the selection variable to be
left-censored or right-censored.

The underlying regression model for yi with tobit selection on si has the form

yi = xiβ+ εi

We observe the selection indicator si, which indicates the censoring status of the latent selection
variable s?i ,

s?i = zsiαs + εsi

si =


li s?i ≤ li

s?i li < s?i < ui

ui s?i ≥ ui
where zsi are covariates that affect selection and li and ui are fixed lower and upper limits.
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As in Introduction, yi is observed via the endpoints yli and yui. If s?i is not censored (li < s?i < ui),
then the observation is selected, and there is an interval regression contribution to the likelihood.
Otherwise, if s?i is left-censored (s?i < li) or right-censored (s?i > li), then the observation is not
selected, and there is no interval regression contribution to the likelihood. The unobserved errors εi
and εsi are normal with mean 0 and covariance

Σ =

[
σ2 σ1s
σ1s σ2

s

]
For the selected observations, we can treat si as a continuous endogenous regressor, as in

Continuous endogenous covariates. In fact, si may even be used as a regressor for yi in eintreg
(specify tobitselect(. . . main)). On the nonselected observations, we treat si like the probit
endogenous sample-selection indicator in Probit endogenous sample selection.

Conditional on s?i and the exogenous covariates, εi has mean and variance

µ1|s,i = E (εi|s?i ,xi, zsi) = σ1sσ
−2
s (s?i − zsiαs)

σ2
1|s = Var (εi|s?i ,xi, zsi) = σ2 − σ1sσ−2s σ1s

Let
rli = yli − xiβ− µ1|s,i

rui = yui − xiβ− µ1|s,i

The log likelihood is

lnL =
∑
i∈U

wi lnφ
(
rli, σ

2
1|s

)
+
∑
i∈L

wi ln Φ∗1

(
−∞, rui, σ2

1|s

)
+
∑
i∈R

wi ln Φ∗1

(
rli,∞, σ2

1|s

)
+
∑
i∈I

wi ln Φ∗1

(
rli, rui, σ

2
1|s

)
+
∑
i∈S

wi lnφ(si − zsiαs, σ
2
s)

+
∑
i∈Ln

wi lnΦ∗1(lli, uli, 1)

+
∑
i∈Rn

wi lnΦ∗1(lui, uui, 1)

where S is the set of observations for which yli and yui are observed, U ⊂ S is the set of observations
where yi is not censored, L ⊂ S is the set of observations where yi is left-censored, R ⊂ S is
the set of observations where yi is right-censored, I ⊂ S is the set of observations where yi is
interval-censored, Ln is the set of observations for which s?i is left-censored, and Rn is the set of
observations for which s?i is right-censored. The lower and upper limits for selection— lli, uli, lui,
and uui—are defined in Tobit endogenous sample selection in [ERM] eprobit.

When si is not a covariate in xi, we use the standard conditional mean formula,

E(yi|xi) = xiβ
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Otherwise, we use
E(yi|xi, si, zsi) = xiβ+

σ1s
σ2
s

(si − zsiαs)

Random effects
For an interval regression with random effects, we observe panel data. For panel i = 1, . . . , N and

observation j = 1, . . . , Ni, an interval regression of yij on exogenous covariates xij with random
effect ui has the form

yij = xijβ+ εij + ui

As in Introduction, we do not observe yij but instead observe endpoints ylij and yuij . The random
effect ui is normal with mean 0 and variance σ2

u. It is independent of the observation-level error εij ,
which is normal with mean 0 and variance σ2.

We derive the likelihood by using the conditional density of ylij and yuij on the random effect
ui and the marginal density of ui. Multiplying them together we have the joint density, which is
integrated over ui.

Let
lij(u) =

∑
j∈Ui

φ
(
yij − xijβ− u, σ2

)
+
∑
j∈Li

Φ

(
yuij − xijβ− u

σ

)

+
∑
i∈Ri

Φ

(
−ylij + xijβ− u

σ

)
+
∑
i∈Ii

{
Φ

(
yuij − xijβ− u

σ

)
− Φ

(
ylij − xijβ− u

σ

)}
where Ui is the set of observations where yij is not censored, Li is the set of observations where
yij is left-censored, Ri is the set of observations where yij is right-censored, and Ii is the set of
observations where yij is interval-censored.

The likelihood for panel i is

Li =

∫ ∞
−∞

φ

(
ui
σu

) Ni∏
j=1

lij(ui)dui

We can approximate this integral using Gauss–Hermite quadrature. For q-point Gauss–Hermite
quadrature, let the abscissa and weight pairs be denoted by (aki, wki), k = 1, . . . , q. The Gauss–
Hermite quadrature approximation is then

∫ ∞
−∞

f(x) exp(−x2) dx ≈
q∑

k=1

wkif(aki)

The default approximation used by xteintreg is mean–variance adaptive Gauss–Hermite quadra-
ture. This chooses optimal abscissa and weights for each panel. See Likelihood for multiequation
models in [ERM] eprobit for more information on the use of mean–variance adaptive Gauss–Hermite
quadrature.



eintreg — Extended interval regression 91

Using the quadrature approximation, the log likelihood is

lnL =

N∑
i=1

ln


q∑

k=1

wki

Ni∏
j=1

lij(σuaki)


The conditional mean of yij is

E(yij |xij) = xijβ

Combinations of features
Extended interval regression models that involve multiple features can be formulated using the

techniques discussed in Likelihood for multiequation models in [ERM] eprobit. Essentially, the density
of the observed endogenous covariates can be written in terms of the unobserved normal errors. The
observed endogenous and exogenous covariates determine the range of the errors, and the joint density
can be evaluated as multivariate normal probabilities and densities.

Confidence intervals
The estimated variances will always be nonnegative, and the estimated correlations will always fall

in (−1, 1). To obtain confidence intervals that accommodate these ranges, we must use transformations.

We use the log transformation to obtain the confidence intervals for variance parameters and
the atanh transformation to obtain confidence intervals for correlation parameters. For details, see
Confidence intervals in [ERM] eprobit.
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Title

eintreg postestimation — Postestimation tools for eintreg and xteintreg

Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after eintreg and xteintreg:

Command Description

estat teffects treatment effects and potential-outcome means

The following standard postestimation commands are also available after eintreg and xteintreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
†estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗forecast dynamic forecasts and simulations
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict means, probabilities, treatment effects, etc.
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
†suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
∗forecast, hausman, and lrtest are not appropriate with svy estimation results.

†suest and the survey data estat commands are not available after xteintreg.
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predict
Predictions after eintreg and xteintreg are described in

[ERM] eintreg predict predict after eintreg and xteintreg
[ERM] predict treatment predict for treatment statistics
[ERM] predict advanced predict’s advanced features

[ERM] eintreg predict describes the most commonly used predictions. If you fit a model with
treatment effects, predictions specifically related to these models are detailed in [ERM] predict
treatment. [ERM] predict advanced describes less commonly used predictions, such as predictions
of outcomes in auxiliary equations.

margins

Description for margins

margins estimates statistics based on fitted models. These statistics include marginal means,
marginal probabilities, potential-outcome means, average and conditional derivatives, average and
conditional effects, and treatment effects.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

Main

mean mean; the default
pr probability for binary or ordinal yj
pomean potential-outcome mean
te treatment effect
tet treatment effect on the treated
xb linear prediction excluding all complications
pr(a,b) Pr(a < yj < b) for continuous yj
e(a,b) E(yj | a < yj < b) for continuous yj
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)} for continuous yj
expmean calculate E { exp(yi)}

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.



eintreg postestimation — Postestimation tools for eintreg and xteintreg 95

Remarks and examples
See [ERM] Intro 7 for an overview of using margins and predict after eintreg and xteintreg.

For examples using margins, predict, and estat teffects, see Interpreting effects in [ERM] Intro 9
and see [ERM] Example 1a.

Methods and formulas
Counterfactual predictions and inferences for the underlying model in interval regression can be

evaluated as in a linear regression model. These predictions and effects are described in Methods and
formulas of [ERM] eregress postestimation. Methods and formulas for all other predictions are given
in Methods and formulas of [ERM] eintreg.

Also see
[ERM] eintreg — Extended interval regression

[ERM] eintreg predict — predict after eintreg and xteintreg

[ERM] predict treatment — predict for treatment statistics

[ERM] predict advanced — predict’s advanced features

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[U] 20 Estimation and postestimation commands
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eintreg predict — predict after eintreg and xteintreg

Description Syntax
Options for statistics Options for asfmethod
Option for counterfactuals Remarks and examples
Methods and formulas Also see

Description

In this entry, we show how to create new variables containing observation-by-observation predictions
after fitting a model with eintreg or xteintreg.

Syntax
You previously fit the model

eintreg yl yu x1 . . . , . . .

The equation specified immediately after the eintreg command is called the main equation. It is

yi = β0 + β1x1i + · · ·+ ei.y

where yli ≤ yi ≤ yui.

Or perhaps you had panel data and you fit the model with xteintreg by typing

xteintreg yl yu x1 . . . , . . .

Then the main equation would be

yij = β0 + β1x1ij + · · ·+ ui.y + vij .y

where ylij ≤ yij ≤ yuij .

In either case, predict calculates predictions for y in the main equation. The other equations in
the model are called auxiliary equations or complications. Our discussion follows the cross-sectional
case with a single error term, but it applies to the panel-data case when we collapse the random
effects and observation-level error terms, eij .y = ui.y + vij .y.

All predictions after xteintreg assume the panel-level random effects (ui.y) are zero. Put another
way, predictions condition on random effects being set to their mean.
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The syntax of predict is

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic asfmethod counterfactual
]

statistic Description

Main

mean linear prediction; the default
xb linear prediction excluding all complications
expmean expected value of exponential of the mean; E { exp(mean)}
ystar(a,b) E(y∗j), y∗j = max{a, min(yj , b)}

a and b are numeric values, missing (.), or variable names.

asfmethod Description

Main

asf average structural function; the default
fixedasf fixed average structural function
noasf no average structural function adjustment

counterfactual Description

Main

target(valspecs) specify counterfactuals

valspecs specify the values for variables at which predictions are to be evaluated. Each valspec is of
the form

varname = #

varname = (exp)

varname = othervarname

For instance, target(valspecs) could be target(w1=0) or target(w1=0 w2=1).

Notes:

(1) predict can also calculate treatment-effect statistics. See [ERM] predict treatment.
(2) predict can also make predictions for the other equations in addition to the main-equation

predictions discussed here. It can also compute some rarely used statistics. See [ERM] predict
advanced.

Options for statistics

� � �
Main �

mean, the default, specifies that the linear prediction be calculated. In each observation, the linear
prediction is the expected value of the dependent variable y conditioned on the covariates. Results
depend on how complications are handled, which is determined by the asfmethod and counterfactual
options.
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xb specifies that the linear prediction be calculated ignoring all complications. This prediction
corresponds to what would be observed in data in which all the covariates in the main equation
were exogenous.

expmean calculates the expected value of the exponential of the mean. This is particularly useful
when the dependent variable is estimated in the log metric but you want to express results in the
natural metric of the dependent variable. expmean accounts for integrating over the error when
forming the expected value of the exponential of the mean. That expectation is not zero.

As with the nonexponentiated mean, results depend on how complications are handled, which is
determined by the asfmethod and counterfactual options. So, by default, the exponential mean
has a structural interpretation because the default asf option has computed the average structural
function of the exponential mean.

ystar(a, b) specifies that the linear prediction be censored between a and b. If a is missing (.),
then a is treated as −∞. If b is missing (.), then b is treated as +∞. a and b can be specified
as numeric values, missing (.), or variable names.

ystar(a, b) is often useful when calculating predictions or using margins to form inferences
because it gives you predictions from the censored distribution rather than treating the censoring
as a nuisance and calculating predictions from the uncensored distribution.

To obtain predictions using the censored distribution from your data, you can use the same censoring
limits you used when fitting the model. For example, if you typed

. eintreg yl yu ...

you can then type

. predict ystar, ystar(yl, yu)

to obtain predictions based on the censored distribution corresponding with your observed data.

Options for asfmethod

� � �
Main �

asf, fixedasf, and noasf determine whether and how the average structural function (ASF) of the
specified statistic is computed. These options are not allowed with xb.

asf, the default, calculates the ASF of the statistic. Thus, the default when no statistic is specified
is the ASF of the linear prediction.

asf computes the statistic conditional on the errors of the endogenous variable equations. Put
another way, it is the statistic accounting for the correlation of the endogenous covariates with
the errors of the outcome equation. Derivatives and contrasts based on asf have a structural
interpretation. See margins for computing derivatives and contrasts.

fixedasf calculates a fixed ASF. It is the specified statistic computed using only the coefficients
and variables of the outcome equation. fixedasf does not condition on the errors of the
endogenous variable equations. Contrasts between two fixed counterfactuals averaged over the
whole sample have a potential-outcome interpretation. Intuitively, it is as if the values of the
covariates were fixed at a value exogenously by fiat. See margins for computing derivatives
and contrasts.

To be clear, derivatives and contrasts between two fixed counterfactuals using the default asf option
also have a potential-outcome interpretation. And, unlike fixedasf, they retain that interpretation
when computed over subpopulations for both linear and nonlinear models.
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noasf calculates the statistic using the linear prediction with no adjustment. For extended regression
models, this is computationally equivalent to fixedasf. So fixedasf and noasf are synonyms.

Option for counterfactuals

� � �
Main �

target(valspecs) specifies counterfactual predictions. You specify a list of variables from the main
equation and values for them. Those values override the values of the variables calculating
β0 + β1x1i + · · ·. Use of target() is discussed in Remarks and examples of [ERM] eregress
predict.

Remarks and examples
Predictions after fitting models with eintreg and xteintreg are handled the same as they are

after fitting models with eregress or xteregress. The issues are the same. See [ERM] eregress
predict.

Note that censoring is treated as a nuisance in eintreg and xteintreg by default. Default
predicted values are from the uncensored distribution, not from the censored distribution.

Methods and formulas
See Methods and formulas in [ERM] eintreg postestimation.

Also see
[ERM] eintreg postestimation — Postestimation tools for eintreg and xteintreg

[ERM] eintreg — Extended interval regression
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eoprobit — Extended ordered probit regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

eoprobit fits an ordered probit regression model that accommodates any combination of endoge-
nous covariates, nonrandom treatment assignment, and endogenous sample selection. Continuous,
binary, and ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or
exogenous. A probit or tobit model may be used to account for endogenous sample selection.

xteoprobit fits a random-effects ordered probit regression model that accommodates endogenous
covariates, treatment, and sample selection in the same way as eoprobit and also accounts for
correlation of observations within panels or within groups.

Quick start
Ordered probit regression of y on x with continuous endogenous covariate y2 modeled by x and z

eoprobit y x, endogenous(y2 = x z)

Same as above, but adding continuous endogenous covariate y3 modeled by x and z2

eoprobit y x, endogenous(y2 = x z) endogenous(y3 = x z2)

Ordered probit regression of y on x with binary endogenous covariate d modeled by x and z

eoprobit y x, endogenous(d = x z, probit)

Ordered probit regression of y on x with endogenous treatment recorded in trtvar and modeled by
x and z

eoprobit y x, entreat(trtvar = x z)

Ordered probit regression of y on x with exogenous treatment recorded in trtvar

eoprobit y x, extreat(trtvar)

Random-effects ordered probit regression of y on x using xtset data
xteoprobit y x

Ordered probit regression of y on x with endogenous sample-selection indicator selvar modeled by
x and z

eoprobit y x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2

eoprobit y x, select(selvar = x z) endogenous(y2 = x z2)

Same as above, but adding endogenous treatment recorded in trtvar and modeled by x and z3

eoprobit y x, select(selvar = x z) endogenous(y2 = x z2) ///
entreat(trtvar = x z3)
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Same as above, but with random effects and without endogenous treatment
xteoprobit y x, select(selvar = x z) endogenous(y2 = x z2)

Menu
eoprobit

Statistics > Endogenous covariates > Models adding selection and treatment > Ordered probit regression

xteoprobit

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Ordered
probit regression (RE)

Syntax
Basic ordered probit regression with endogenous covariates

eoprobit depvar
[

indepvars
]
, endogenous(depvarsen = varlisten)

[
options

]
Basic ordered probit regression with endogenous treatment assignment

eoprobit depvar
[

indepvars
]
, entreat(depvartr

[
= varlisttr

]
)
[

options
]

Basic ordered probit regression with exogenous treatment assignment

eoprobit depvar
[

indepvars
]
, extreat(tvar)

[
options

]
Basic ordered probit regression with sample selection

eoprobit depvar
[

indepvars
]
, select(depvars = varlists)

[
options

]
Basic ordered probit regression with tobit sample selection

eoprobit depvar
[

indepvars
]
, tobitselect(depvars = varlists)

[
options

]
Basic ordered probit regression with random effects

xteoprobit depvar
[

indepvars
] [

, options
]

Ordered probit regression combining endogenous covariates, treatment, and selection

eoprobit depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, extensions options
]

Ordered probit regression combining random effects, endogenous covariates, treatment, and selection

xteoprobit depvar
[

indepvars
] [

if
] [

in
] [

, extensions options
]
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extensions Description

Model

endogenous(enspec) model for endogenous covariates; may be repeated
entreat(entrspec) model for endogenous treatment assignment
extreat(extrspec) exogenous treatment
select(selspec) probit model for selection
tobitselect(tselspec) tobit model for selection

options Description

Model

offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points for integration over
four or more dimensions; default is intpoints(128)

triintpoints(#) set the number of integration (quadrature) points for integration over
three dimensions; default is triintpoints(10)

reintpoints(#) set the number of integration (quadrature) points for
random-effects integration; default is reintpoints(7)

reintmethod(intmethod) integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics

enspec is depvarsen = varlisten
[
, enopts

]
where depvarsen is a list of endogenous covariates. Each variable in depvarsen specifies an
endogenous covariate model using the common varlisten and options.

entrspec is depvartr
[
= varlisttr

] [
, entropts

]
where depvartr is a variable indicating treatment assignment. varlisttr is a list of covariates
predicting treatment assignment.
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extrspec is tvar
[
, extropts

]
where tvar is a variable indicating treatment assignment.

selspec is depvars = varlists
[
, selopts

]
where depvars is a variable indicating selection status. depvars must be coded as 0, indicating
that the observation was not selected, or 1, indicating that the observation was selected. varlists
is a list of covariates predicting selection.

tselspec is depvars = varlists
[
, tselopts

]
where depvars is a continuous variable. varlists is a list of covariates predicting depvars. The
censoring status of depvars indicates selection, where a censored depvars indicates that the
observation was not selected and a noncensored depvars indicates that the observation was
selected.

enopts Description

Model

probit treat endogenous covariate as binary
oprobit treat endogenous covariate as ordinal
pocorrelation estimate different correlations for each level of a binary or an ordinal

endogenous covariate
nomain do not add endogenous covariate to main equation
nore do not include random effects in model for endogenous covariate
noconstant suppress constant term

nore is available only with xteoprobit.

entropts Description

Model

pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nocutsinteract do not interact treatment with cutpoints
nointeract do not interact treatment with covariates in main equation
nore do not include random effects in model for endogenous treatment
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteoprobit.

extropts Description

Model

pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nocutsinteract do not interact treatment with cutpoints
nointeract do not interact treatment with covariates in main equation
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selopts Description

Model

nore do not include random effects in selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteoprobit.

tselopts Description

Model
∗ll(varname | #) left-censoring variable or limit
∗ul(varname | #) right-censoring variable or limit
main add censored selection variable to main equation
nore do not include random effects in tobit selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
∗ You must specify either ll() or ul().
nore is available only with xteoprobit.

indepvars, varlisten, varlisttr, and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvars, and varlists may contain time-series

operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, collect, jackknife, and statsby are allowed with eoprobit and xteoprobit. rolling and

svy are allowed with eoprobit. See [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with eoprobit; see [U] 11.1.6 weight.
reintpoints() and reintmethod() are available only with xteoprobit.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec),
tobitselect(tselspec), re; see [ERM] ERM options.

offset(varnameo), constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype); see [ERM] ERM options.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intpoints(#), triintpoints(#), reintpoints(#), reintmethod(intmethod); see [ERM] ERM
options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize.

The default technique for eoprobit is technique(nr). The default technique for xteoprobit
is technique(bhhh 10 nr 2).

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with eoprobit and xteoprobit but are not shown in the dialog
box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
eoprobit and xteoprobit fit models that we refer to as “extended ordered probit regression

models”, meaning that they accommodate endogenous covariates, nonrandom treatment assignment,
endogenous sample selection, and panel data or other grouped data.

eoprobit fits models for cross-sectional data (one-level models). eoprobit can account for
endogenous covariates, treatment, and sample selection, whether these complications arise individually
or in combination.

xteoprobit fits random-effects models (two-level models) for panel data or grouped data.
xteoprobit accounts for endogenous covariates, treatment, and sample selection in the same way
as eoprobit and also accounts for within-panel or within-group correlation among observations.

In this entry, you will find information on the syntax for the eoprobit and xteoprobit commands.
You can see Methods and formulas for a full description of the models that can be fit with eoprobit
and xteoprobit and details about how those models are fit.

More information on extended ordered probit models is found in the separate introductions and
example entries. We recommend reading those entries to learn how to use eoprobit and xteoprobit.
Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eoprobit and xteoprobit and the other extended regression commands
for continuous, interval, and binary outcomes, see [ERM] Intro 1–[ERM] Intro 9.

[ERM] Intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] Intro 2 provides background on the four types of models—linear regression, interval
regression, probit regression, and ordered probit regression—that can be fit using ERM commands.

[ERM] Intro 3 considers the problem of endogenous covariates and how to solve it using ERM
commands.

[ERM] Intro 4 gives an overview of endogenous sample selection and using ERM commands to
account for it when fitting a linear, interval, probit, or ordered probit model.

[ERM] Intro 5 covers nonrandom treatment assignment and how to account for it using eoprobit
or any of the other ERM commands.
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[ERM] Intro 6 covers random-effects models for panel data and other grouped data. It discusses
xteoprobit and the other ERM commands for panel data.

[ERM] Intro 7 discusses interpretation of results. You can interpret coefficients from eoprobit
and xteoprobit in the usual way, but this introduction goes beyond the interpretation of
coefficients. We demonstrate how to find answers to interesting questions by using margins. If
your model includes an endogenous covariate or an endogenous treatment, the use of margins
differs from its use after other estimation commands, so we strongly recommend reading this
intro if you are fitting these types of models.

[ERM] Intro 8 will be particularly helpful if you are familiar with heckoprobit or xtoprobit
and other commands that address endogenous covariates, sample selection, nonrandom treatment
assignment, or random effects. This introduction is a Rosetta stone that maps the syntax of
those commands to the syntax of eoprobit and xteoprobit.

[ERM] Intro 9 walks you through an example that gives insight into the concepts of endogenous
covariates, treatment assignment, and sample selection while fitting models with eregress
that address these complications. Although the example uses eregress, the discussion applies
equally to eoprobit. This intro also demonstrates how to interpret results by using margins
and estat teffects.

Additional examples are presented in [ERM] Example 1a–[ERM] Example 9. For examples using
eoprobit, see

[ERM] Example 6a Ordered probit regression with endogenous treatment
[ERM] Example 6b Ordered probit regression with endogenous treatment

and sample selection

For an example using xteoprobit, see

[ERM] Example 9 Ordered probit regression with endogenous treatment
and random effects

See Examples in [ERM] Intro for an overview of all the examples. All examples may be interesting
because they handle complications in the same way.

eoprobit and xteoprobit fit many models discussed in the literature. For instance, eoprobit
can be used to fit models like the ordered probit model with endogenous sample selection discussed
in De Luca and Perotti (2011) and the ordered probit models with continuous or binary endogenous
covariates discussed in Wooldridge (2010, sec. 16.3.3). Roodman (2011) investigated ordered probit
models with endogenous covariates and endogenous sample selection and demonstrated how multiple
observational data complications could be addressed with a triangular model structure. He and Tamás
Bartus showed how random effects could be used in the triangular model structure in Bartus and
Roodman (2014). Roodman’s work has been used to model processes like the effect of living with a
child on the happiness of the elderly (Chyi and Mao 2012) and the effect of parental migration on
child education (Botezat and Pfeiffer 2014).

Stored results
eoprobit stores the following in e():

Scalars
e(N) number of observations
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
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e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) eoprobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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xteoprobit stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(n requad) number of integration points for random effects
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xteoprobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(ivar) variable denoting groups
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(reintmethod) integration method for random effects
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector



eoprobit — Extended ordered probit regression 109

e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here are for the ordered probit model. The estimators

implemented in eoprobit and xteoprobit are maximum likelihood estimators covered by the
results in chapter 13 of Wooldridge (2010) and White (1996).

The log-likelihood functions maximized by eoprobit and xteoprobit are implied by the
triangular structure of the model. Specifically, the joint distribution of the endogenous variables is a
product of conditional and marginal distributions because the model is triangular. For a few of the
many relevant applications of this result in literature, see chapter 10 of Amemiya (1985); Heckman
(1976, 1979); chapter 5 of Maddala (1983); Maddala and Lee (1976); sections 15.7.2, 15.7.3, 16.3.3,
17.5.2, and 19.7.1 in Wooldridge (2010); and Wooldridge (2014). Roodman (2011) and Bartus and
Roodman (2014) used this result to derive the formulas discussed below.

Methods and formulas are presented under the following headings:

Introduction
Endogenous covariates

Continuous endogenous covariates
Binary and ordinal endogenous covariates

Treatment
Endogenous sample selection

Probit endogenous sample selection
Tobit endogenous sample selection

Random effects
Combinations of features
Confidence intervals

Introduction

An ordered probit regression of outcome yi on covariates xi may be written as

yi = vh iff κh−1 < xiβ+ εi ≤ κh

The values v1, . . . , vH are real numbers such that vh < vm for h < m. κ0 is taken as −∞ and κH
is taken as +∞. The unobserved error εi is standard normal.
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The log likelihood for this model is

lnL =

N∑
i=1

wi ln


1(yi = v1)Φ (−xiβ)

+

H−1∑
h=2

1(yi = vh) {Φ (κh − xiβ)− Φ (κh−1 − xiβ)}

+ 1(yi = vH)Φ (xiβ)


where wi are the weights.

For h = 0, . . . , H , define

cih =


−∞ h = 0

κh − xiβ h = 1, . . . ,H − 1

∞ h = H

(1)

This leads to the limits
l1i = ci(h−1) if yi = vh (2)

and
u1i = cih if yi = vh (3)

These are limits on the unobserved εi based on the observed values of yi and xi. They let us
rewrite the log likelihood concisely as

lnL =

N∑
i=1

wi lnΦ∗1(l1i, u1i, 1)

The conditional probabilities of success can be written using similar notation. For h = 1, . . . , H ,

Pr (yi = vh|xi) = Φ∗1(ci(h−1), cih, 1) (4)

If you are willing to take our word for some derivations and notation, the following is complete.
Longer explanations and derivations for some terms and functions are provided in Methods and
formulas of [ERM] eprobit. For example, we need the two-sided probability function Φ∗d that is
discussed in Introduction in [ERM] eprobit.

If you are interested in all the details, we suggest you read Methods and formulas of [ERM] eprobit
in its entirety before reading this section. Here we mainly show how the complications that arise in
ERMs are handled in an ordered probit framework.
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Endogenous covariates

Continuous endogenous covariates

An ordered probit regression of yi on exogenous covariates xi and C continuous endogenous
covariates wci has the form

yi = vh iff κh−1 < xiβ+ wciβc + εi ≤ κh

wci = zciAc + εci

The values v1, . . . , vH are real numbers such that vh < vm for h < m. κ0 is taken as −∞ and
κH is taken as +∞. The vector zci contains variables from xi and other covariates that affect wci.
The unobserved errors εi and εci are multivariate normal with mean 0 and covariance[

1 σ′1c
σ1c Σc

]

As in Continuous endogenous covariates in [ERM] eprobit, the likelihood can be written using the
conditional density of εi on wci.

Now, for h = 0, . . . , H , define

cih =


−∞ h = 0

κh − xiβ− σ′1cΣ
−1
c (wci − zciAc)

′
h = 1, . . . ,H − 1

∞ h = H

These expressions used the conditional mean of εi. The lower and upper limits for the yi probability
are

l1i = ci(h−1) if yi = vh

and
u1i = cih if yi = vh

Using these limits, the conditional variance, and the conditional density of wci, we obtain the log
likelihood

lnL =

N∑
i=1

wi
{

lnΦ∗1
(
l1i, u1i, 1− σ′1cΣ

−1
c σ1c

)
+ lnφC(wci − zciAc,Σc)

}
The conditional probabilities of success can be written using similar notation. For h = 1, . . . , H ,

Pr (yi = vh|xi) = Φ∗1(ci(h−1), cih, 1− σ′1cΣ
−1
c σ1c)
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Binary and ordinal endogenous covariates

Here we begin by formulating the ordered probit regression of yi on exogenous covariates xi and
B binary and ordinal endogenous covariates wbi = [wb1i, . . . , wbBi]. Indicator (dummy) variables
for the levels of each binary and ordinal covariate are used in the model. You can also interact other
covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

The binary and ordinal endogenous covariates wbi are formulated as in Binary and ordinal
endogenous covariates in [ERM] eprobit.

The model for the outcome can be formulated with or without different correlation parameters
for each level of wbi. Level-specific parameters are obtained by specifying pocorrelation in the
endogenous() option.

If the correlation parameters are not level specific, we have

yi = vh iff κh−1 < xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εi ≤ κh

where the values v1, . . . , vH are real numbers such that vh < vm for h < m. κ0 is taken as −∞ and
κH is taken as +∞. The windbji vectors are defined in Binary and ordinal endogenous covariates
in [ERM] eprobit. The outcome error εi and binary and ordinal endogenous errors εb1i, . . . , εbBi are
multivariate normal with mean 0 and covariance

Σ =

[
1 ρ′1b
ρ1b Σb

]
From here, we discuss the model with ordinal endogenous covariates. The results for binary

endogenous covariates are similar.

Now, for h = 0, . . . , H , define

cih =


−∞ h = 0

κh − xiβ−windb1iβb1 − · · · −windbBiβbB h = 1, . . . ,H − 1

∞ h = H

The lower and upper limits for the yi probability are

l1i = ci(h−1) if yi = vh

and
u1i = cih if yi = vh

Let
li = [ l1i lb1i . . . lbBi ]

ui = [u1i ub1i . . . ubBi ]

where the lbji and ubji are the lower and upper limits for the binary and ordinal endogenous covariate
probabilities. They are defined in Binary and ordinal endogenous covariates in [ERM] eprobit.

So the log likelihood for this model is

lnL =

N∑
i=1

wi lnΦ∗B+1(li,ui,Σ)
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Now let
lbi = [ lb1i . . . lbBi ]

ubi = [ub1i . . . ubBi ]

lih1 = [ ci(h−1) lbi ]

uih1 = [ cih ubi ]

The conditional probabilities are

Pr (yi = vh|xi, zb1i, . . . , zbBi,wbi) =
Φ∗B+1(lih1,uih1,Σ)

Φ∗B(lbi,ubi,Σb)

When the endogenous ordinal variables are different treatments, holding the correlation parameters
constant over the treatment levels is a constrained form of the potential-outcome model. In an
unconstrained potential-outcome model, the correlations between the outcome and the treatments—the
endogenous ordinal regressors wbi—vary over the levels of each treatment.

In this unconstrained model, there is a different potential-outcome error for each level of each
treatment. For example, when the endogenous treatment variable w1 has three levels (0, 1, and 2) and
the endogenous treatment variable w2 has four levels (0, 1, 2, and 3), the unconstrained model has
12 = 3× 4 outcome errors. Because there is a different correlation between each potential outcome
and each endogenous treatment, there are 2×12 correlation parameters between the potential outcomes
and the treatments in this example model.

We denote the number of different combinations of values for the endogenous treatments wbi by
M , and we denote the vector of values in each combination by vj (j ∈ {1, 2, . . . ,M}). Letting
kwp be the number of levels of endogenous ordinal treatment variable p ∈ {1, 2, . . . , B} implies that
M = kw1 × kw2 × · · · × kwB .

In this case, we have

yi =

M∑
j=1

1(wbi = vj)yji

where for j = 1, . . . , M ,

yji = vh iff κh−1 < xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εji ≤ κh

The outcome errors εji and the endogenous errors εb1i, . . . , εbBi are multivariate normal with
0 mean and covariance

Σj =

[
1 ρ′j1b
ρj1b Σb

]
Now let

Σi,b =

M∑
j=1

1(wbi = vj)Σj

Now the log likelihood for this model is

lnL =

N∑
i=1

wi lnΦ∗B+1(li,ui,Σi,b)

The conditional probabilities are

Pr (yi = vh|xi, zb1i, . . . , zbBi,wbi) =
Φ∗B+1(lih1,uih1,Σi,b)

Φ∗B(lbi,ubi,Σb)



114 eoprobit — Extended ordered probit regression

Treatment
In the potential-outcomes framework, the treatment ti is a discrete variable taking T values,

indexing the T potential outcomes of the outcome yi: y1i, . . . , yTi.

When we observe treatment ti with levels v1, . . . , vT , we have

yi =

T∑
j=1

1(ti = vtj)yji

So for each observation, we observe only the potential outcome associated with that observation’s
treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect
estimation method. See [CAUSAL] teffects intro advanced. We do not model the treatment assignment
process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent
to what we provide here for endogenous treatments. The treatment effect on the treated for xi for an
exogenous treatment is equivalent to what we provide here for the endogenous treatment when the
correlation parameter between the outcome and treatment errors is set to 0. The average treatment
effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous
manner to what we describe here for endogenous treatments.

From here, we assume an endogenous treatment ti. As in Treatment in [ERM] eprobit, we model
the treatment assignment process with a probit or an ordered probit model, and we call the treatment
assignment error εti. An ordered probit regression of yi on treatment ti with levels vt1, . . . , vtT has
the form

yi =

T∑
j=1

1(ti = vtj)yji

where for j = 1, . . . , T and exogenous covariates xi

yji = vh iff κ(h−1)j < xiβj + εji ≤ κhj

The values v1, . . . , vH are real numbers such that vh < vm for h < m. For j = 1, . . . , T , κ0j is
taken as −∞ and κHj is taken as +∞.

This model can be formulated with or without different correlation parameters for each potential
outcome. Potential-outcome specific parameters are obtained by specifying pocorrelation in the
entreat() option.

If the correlation parameters are not potential-outcome specific, for j = 1, . . . , T , εji and εti are
bivariate normal with mean 0 and covariance

Σ =

[
1 ρ1t
ρ1t 1

]
The treatment is exogenous if ρ1t = 0. Note that we did not specify the structure of the correlations

between the potential-outcome errors. We do not need information about these correlations to estimate
POMs and treatment effects because all covariates and the outcome are observed in observations from
each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary
treatment models are similar. Because the unobserved errors are bivariate normal, we can express the
log likelihood in terms of the Φ∗2 function.
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For j = 1, . . . , T and h = 0, . . . , H , let

c1ihj =


−∞ h = 0

κhj − xiβj h = 1, . . . ,H − 1

∞ h = H

The lower and upper limits for the yi probability are

l1i = ci(h−1)j if yi = vh, ti = vtj

and
u1i = cihj if yi = vh, ti = vtj

The log likelihood for the model is

lnL =

N∑
i=1

wi lnΦ∗2([ l1i lti ], [u1i uti ],Σ)

where the lower and upper limits for the treatment probability, lti and uti, are defined in Treatment
in [ERM] eprobit.

The conditional probability of obtaining treatment level vth is

Pr(ti = vth|zti) = Φ∗1(cti(h−1), ctih, 1)

where the cutpoints for the treatment probabilities ctij are defined in Treatment in [ERM] eprobit.
For h = 1, . . . , H , the conditional probabilities for outcome level vh at treatment level vtj are

Pr(yi = vh|xi, zti, ti = vtj) =
Φ∗2([ c1i(h−1)j cti(j−1) ], [ c1ihj ctij ],Σ)

Φ∗1(cti(j−1), ctij , 1)

The conditional POM for treatment group j and outcome category h is

POMhj(xi) = E {1(yji = vh)|xi} = Φ∗1(c1i(h−1)j , c1i(h−1)j , 1)

Conditional on the covariates xi and zti and the treatment ti = vm, the POM for treatment group
j and outcome category h is

POMhj(xi, zti, ti = vm) = E {1(yji = vh)|xi, zti, ti = vtm}

=
Φ∗2([ c1i(h−1)j cti(m−1) ], [ c1ihj ctim ],Σ)

Φ∗1(cti(m−1), ctim, 1)

Without loss of generality, ti = vt1 corresponds to the control or base level of the treatment.
Treatment effects are the differences between the potential outcomes y2i, . . . , yTi and the control
y1i. When the potential outcomes are ordered probit, the treatment effect on a particular category is
of interest.
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The treatment effect of treatment group j on category h is 1(yji = vh) − 1(y1i = vh), the
difference in the outcome for individual i on being in category h if the individual receives the
treatment ti = vtj instead of the control ti = vt1. Evaluating this treatment effect lets us see how
the treatment affects the probability of belonging to outcome category h.

For treatment group j, the treatment effect (TE) on category h conditioned on xi is

TEhj(xi) = E {1(yji = vh)− 1(y1i = vh)|xi}
= POMhj(xi)− POMh1(xi)

For treatment group j, the treatment effect on the treated (TET) on category h in treatment group m
conditioned on xi and zti is

TEThj(xi, zti, ti = vm) = E {1(yji = vh)− 1(y1i = vh)|xi, ti = vt,m}
= POMhj(xi, zti, ti = vm)− POMh1(xi, zti, ti = vm)

We can take the expectation of these conditional predictions over the covariates to get population
average parameters. The estat teffects or margins command is used to estimate the expectations
as predictive margins once the model is fit with eoprobit. The POM for treatment group j and
outcome category h is

POMhj = E {1(yji = vh)} = E {POMhj(xi)}

The ATE for treatment group j and outcome category h is

ATEhj = E {1(yji = vh)− 1(y1i = vh)} = E {TEhj(xi)}

For treatment group j, the average treatment effect on the treated (ATET) for outcome category h
in treatment group m is

ATEThjm = E {1(yji = vh)− 1(y1i = vh)|ti = vm}
= E {TEThj(xi, zti, ti = vm)|ti = vm}

If the correlation parameters are potential-outcome specific, for j = 1, . . . , T , εji and εti are
bivariate normal with mean 0 and covariance

Σj =

[
1 ρj1t
ρj1t 1

]

Now define

Σi =

T∑
j=1

1(ti = vj)Σj

The log likelihood for the potential-outcome specification correlation model is

lnL =

N∑
i=1

wi lnΦ∗2([ l1i lti ], [u1i uti ],Σi)
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For h = 1, . . . , H , the conditional probabilities for outcome level vh at treatment level vtj are
now

Pr(yi = vh|xi, zti, ti = vtj) =
Φ∗2([ c1i(h−1)j cti(j−1) ], [ c1ihj ctij ],Σj)

Φ∗1(cti(j−1), ctij , 1)

The conditional POM for exogenous covariates xi, treatment group j, and outcome category h
has the same definition as in the single correlation case. However, when we also condition on the
treatment level ti = vm and zti, the POM for treatment group j and outcome category h is

POMhj(xi, zti, ti = vm) = E {1(yji = vh)|xi, zti, ti = vtm}

=
Φ∗2([ c1i(h−1)j cti(m−1) ], [ c1ihj ctim ],Σj)

Φ∗1(cti(m−1), ctim, 1)

Treatment effects are formulated as in the single correlation case but using these updated POM
definitions. We can take the expectation of these conditional predictions over the covariates to get
population-averaged parameters. The estat teffects or margins command is used to estimate the
expectations as predictive margins once the model is fit with eoprobit.

Endogenous sample selection

Probit endogenous sample selection

An ordered probit model for outcome yi with selection on si has the form

yi = vh iff κh−1 < xiβ+ εi ≤ κh

si = 1 (zsiαs + εsi > 0)

where xi are covariates that affect the outcome and zsi are covariates that affect selection. The
outcome yi is observed if si = 1 and is not observed if si = 0. The values v1, . . . , vH are real
numbers such that vh < vm for h < m. κ0 is taken as −∞ and κH is taken as +∞.

The unobserved errors εi and εsi are normal with mean 0 and covariance

Σ =

[
1 ρ1s
ρ1s 1

]
The lower and upper limits for the yi probability, l1i and u1i, are as defined in (1)–(3). For the

selection indicator, the lower and upper limits lsi and usi are defined in Probit endogenous sample
selection in [ERM] eprobit.

The log likelihood for the model is

lnL =
∑
i∈S

wi lnΦ∗2([ l1i lsi ], [u1i usi ],Σ) +
∑
i/∈S

wi lnΦ∗1(lsi, usi, 1)

where S is the set of observations for which yi is observed.

In this model, the probability of success is usually predicted conditional on the covariates xi and
not on the selection status si. The formulas for the conditional probability are thus the same as in
(4).

The conditional probability of selection is

Pr (si = 1|zsi) = Φ∗1(−zsiαs,∞, 1)
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Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection
uses a censored continuous sample-selection indicator. We allow the selection variable to be left- or
right-censored.

An ordered probit model for outcome yi with tobit selection on si has the form

yi = vh iff κh−1 < xiβ+ εi ≤ κh

where the values v1, . . . , vH are real numbers such that vh < vm for h < m. κ0 is taken as −∞
and κH is taken as +∞.

We observe the selection indicator si, which indicates the censoring status of the latent selection
variable s?i ,

s?i = zsiαs + εsi

si =


li s?i ≤ li

s?i li < s?i < ui

ui s?i ≥ ui

where zsi are covariates that affect selection and li and ui are fixed lower and upper limits.

The outcome yi is observed when s?i is not censored. If li < s?i < ui, then yi is observed. yi is
not observed if s?i ≤ li, that is, if s?i is left-censored. yi is also not observed if s?i is right-censored,
s?i ≥ ui. The unobserved errors εi and εsi are normal with mean 0 and covariance[

1 ρ1sσs
ρ1sσs σ2

s

]

For the selected observations, we can treat si as a continuous endogenous regressor, as in Continuous
endogenous covariates. In fact, si may even be used as a regressor for yi in eoprobit (specify
tobitselect(. . . main)). On the nonselected observations, we treat si like the probit endogenous
sample-selection indicator in Probit endogenous sample selection.

The conditional mean of εi is used in the lower and upper limits for the yi probability for selected
observations. Let

ci,h =


−∞ h = 0

κh − xiβ− ρ1sσ−1s (si − zsiαc) h = 1, . . . ,H − 1

∞ h = H

The limits for the yi probability for selected observations are

l1i = ci(h−1) if yi = vh

and
u1i = cih if yi = vh
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It follows that the log likelihood is

lnL =
∑
i∈S

wi
{

ln Φ∗1( l1i , u1i , 1− ρ21s) + lnφ(si − zsiαs, σ
2
s)
}

+
∑
i∈L

wi ln Φ∗1(lli, uli, 1)

+
∑
i∈U

wi ln Φ∗1(lui, uui, 1)

where S is the set of observations for which yi is observed, L is the set of observations where s?i
is left-censored, and U is the set of observations where s?i is right-censored. The lower and upper
limits for selection— lli, uli, lui, and uui—are defined in Tobit endogenous sample selection in
[ERM] eprobit.

The conditional probabilities on si = Si are

Pr (yi = vh|xi) = Φ∗1(ci(h−1), cih, 1− ρ21s)

If we do not include si in the main outcome equation, the probability of success is calculated as
(4) again.

Random effects

For an ordered probit regression with random effects, we observe panel data. For panel i = 1, . . . , N
and observation j = 1, . . . , Ni, an ordered probit regression of yij on covariates xij with random
effect ui may be written as

yij = vh iff κh−1 < xijβ+ εij + ui ≤ κh

The values v1, . . . , vH are real numbers such that vh < vm for h < m. κ0 is taken as −∞ and κH
is taken as +∞. The random effect ui is normal with mean 0 and variance σ2

u. It is independent of
the observation-level error εij , which is standard normal.

We derive the likelihood by using the conditional density of yij on the random effect ui and the
marginal density of ui. Multiplying them together, we have the joint density, which is integrated over
ui.

Let

lij(u) =


1(yij = v1)Φ (−xijβ− u)

+

H−1∑
h=2

1(yij = vh) {Φ (κh − xijβ− u)− Φ (κh−1 − xijβ− u)}

+ 1(yij = vH)Φ (xijβ+ u)


The likelihood for panel i is

Li =

∫ ∞
−∞

φ

(
ui
σu

) Ni∏
j=1

lij(ui)dui
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We can approximate this integral using Gauss–Hermite quadrature. For q-point Gauss–Hermite
quadrature, let the abscissa and weight pairs be denoted by (aki, wki), k = 1, . . . , q. The Gauss–
Hermite quadrature approximation is then

∫ ∞
−∞

f(x) exp(−x2) dx ≈
q∑

k=1

wkif(aki)

The default approximation used by xteoprobit is mean–variance adaptive Gauss–Hermite quadra-
ture. This chooses optimal abscissa and weights for each panel. See Likelihood for multiequation
models in [ERM] eprobit for more information on the use of mean–variance adaptive Gauss–Hermite
quadrature.

Using the quadrature approximation, the log likelihood is

lnL =

N∑
i=1

ln


q∑

k=1

wki

Ni∏
j=1

lij(σuaki)


Now we will derive the conditional probabilities of success. These are similar to those given in

Introduction, but the variance input to Φ?1 is the variance of the random effect plus the observation-level
error.

First, let
ξij = εij + ui

ξij is normal with mean 0 and variance σ2
ξ = 1 + σ2

u.

Now, for h = 0, . . . , H , define

cijh =


−∞ h = 0

(κh − xijβ) h = 1, . . . ,H − 1

∞ h = H

For h = 1, . . . , H , the conditional probabilities of success are

Pr (yij = vh|xij) = Φ∗1(cij(h−1), cijh, σ
2
ξ )

Combinations of features
Extended ordered probit regression models that involve multiple features can be formulated using

the techniques discussed in Likelihood for multiequation models in [ERM] eprobit. Essentially, the
density of the observed endogenous covariates can be written in terms of the unobserved normal
errors. The observed endogenous and exogenous covariates determine the range of the errors, and the
joint density can be evaluated as multivariate normal probabilities and densities.
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Confidence intervals
The estimated variances will always be nonnegative, and the estimated correlations will always

fall in (−1, 1). We use transformations to obtain confidence intervals that accommodate these ranges.

We use the log transformation to obtain the confidence intervals for variance parameters and
the atanh transformation to obtain confidence intervals for correlation parameters. For details, see
Confidence intervals in [ERM] eprobit.
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Methods and formulas References Also see

Postestimation commands
The following postestimation command is of special interest after eoprobit and xteoprobit:

Command Description

estat teffects treatment effects and potential-outcome means

The following standard postestimation commands are also available after eoprobit and xteo-
probit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
†estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗forecast dynamic forecasts and simulations
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict means, probabilities, treatment effects, etc.
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
†suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
∗forecast, hausman, and lrtest are not appropriate with svy estimation results.

†suest and the survey data estat commands are not available after xteoprobit.
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predict
Predictions after eoprobit and xteoprobit are described in

[ERM] eoprobit predict predict after eoprobit and xteoprobit
[ERM] predict treatment predict for treatment statistics
[ERM] predict advanced predict’s advanced features

[ERM] eoprobit predict describes the most commonly used predictions. If you fit a model with
treatment effects, predictions specifically related to these models are detailed in [ERM] predict
treatment. [ERM] predict advanced describes less commonly used predictions, such as predictions
of outcomes in auxiliary equations.

margins

Description for margins

margins estimates statistics based on fitted models. These statistics include marginal means,
marginal probabilities, potential-outcome means, average and conditional derivatives, average and
conditional effects, and treatment effects.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

Main

pr probability for binary or ordinal yj ; the default
mean mean
pomean potential-outcome mean
te treatment effect
tet treatment effect on the treated
xb linear prediction excluding all complications
pr(a,b) Pr(a < yj < b) for continuous yj
e(a,b) E(yj | a < yj < b) for continuous yj
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)} for continuous yj

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
See [ERM] Intro 7 for an overview of using margins and predict after eoprobit and xteoprobit.

For examples using margins, predict, and estat teffects, see Interpreting effects in [ERM] Intro 9
and see [ERM] Example 1a.

Methods and formulas
This section contains methods and formulas for the default asf prediction. Methods and formulas

for other predictions are given in Methods and formulas of [ERM] eoprobit. We begin with the
cross-sectional model, and then we extend our discussion to the random-effect models that we use
for panel data.

In the ordered probit model for exogenous covariates xi and endogenous regressors wi, we have

yi = vh iff κh−1 < xiβ+ wiβ2 + εi ≤ κh

The values v1, . . . , vH are real numbers such that vh < vm for h < m. κ0 is taken as −∞ and
κH is taken as +∞. The error εi is standard normal and correlated with wi.

Because εi is a normally distributed, mean 0, random variable, we can split it into two mean 0,
normally distributed, independent parts,

εi = ui + ψi

where ui = γε2i is the unobserved heterogeneity that gives rise to the endogeneity and ψi is an
idiosyncratic error term with variance σ2

ψ .

For h = 0, . . . ,H , define

cih =


−∞ h = 0

κh − xiβ−wiβ2 − ui h = 1, . . . ,H − 1

∞ h = H

Conditional on the covariates and the unobserved heterogeneity, we have

E{1(yi = vh)|xi,wi, ui} = Pr(yi = vh|xi,wi, ui)

= Φ∗1(ci(h−1), cih, σ
2
ψ)

Predictions and effects are computed based on the expression above. Including ui controls for
endogeneity. Thus, all effects computed using the expression above have a structural interpretation.
See Imbens and Newey (2009) and Wooldridge (2010) for a detailed description of structural functions
for models with endogeneity.

Our discussion easily extends to models for panel data with random effects. In this case, we have
N panels. Panel i = 1, . . . , N has observations t = 1, . . . , Ni, so we observe yit with random effect
αi and observation-level error εit. These errors are independent of each other. So the combined error
ξit = αi+εit is normal with mean 0 and variance 1+σ2

α, where σ2
α is the variance of αi. The results

discussed earlier can then be applied using the combined error ξit rather than the cross-sectional error.
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All predictions after xteoprobit assume the panel-level random effects (αi) are zero. Put another
way, predictions condition on the random effects being set to their means.
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Description

In this entry, we show how to create new variables containing observation-by-observation predictions
after fitting a model with eoprobit or xteoprobit.

Syntax
You previously fit the model

eoprobit y x1 . . . , . . .

The equation specified immediately after the eoprobit command is called the main equation. It is

Pr(yi = m) = Pr(cm−1 ≤ xiβ + ei.y ≤ cm)

Or perhaps you had panel data and you fit the model with xteoprobit by typing

xteoprobit y x1 . . . , . . .

Then the main equation would be

Pr(yij = m) = Pr(cm−1 ≤ xijβ + ui.y + vij .y ≤ cm)

In either case, note that the equation produces a probability for each ordered category recorded in
y. We will call the ordered categories outcomes. If there are M outcomes, a probability is produced
for each of m, m = 1 to M outcomes. predict calculates predictions for the probabilities in the
main equation. The other equations in the model are called auxiliary equations or complications. Our
discussion follows the cross-sectional case with a single error term, but it applies to the panel-data
case when we collapse the random effects and observation-level error terms, eij .y = ui.y + vij .y.

All predictions after xteoprobit assume the panel-level random effects (ui.y) are zero. Put
another way, predictions condition on random effects being set to their mean.
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The syntax of predict is

predict
[

type
]
{ newvar | stub* | newvarlist }

[
if
] [

in
][

, statistic asfmethod counterfactual
]

statistic Description

Main

pr probability of each outcome; the default
xb linear prediction excluding all complications
outlevel(#) calculate probability for m = # only

You specify one or M new variables with pr, where M is the number of outcomes. If you specify
one new variable and you do not specify outlevel(), then outlevel(#1) is assumed.

You specify one new variable with xb.

asfmethod Description

Main

asf average structural function; the default
fixedasf fixed average structural function
noasf no average structural function adjustment

counterfactual Description

Main

target(valspecs) specify counterfactuals

valspecs specify the values for variables at which predictions are to be evaluated. Each valspec is of
the form

varname = #

varname = (exp)

varname = othervarname

For instance, target(valspecs) could be target(w1=0) or target(w1=0 w2=1).

Notes:

(1) predict can also calculate treatment-effect statistics. See [ERM] predict treatment.
(2) predict can also make predictions for the other equations in addition to the main-equation

predictions discussed here. It can also compute some rarely used statistics. See [ERM] predict
advanced.
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Options for statistics� � �
Main �

pr, the default, calculates the predicted probability for all outcomes or for a specific outcome. To
compute probabilities for all outcomes, you specify M new variables, where M is the number of
categories of the dependent variable. Alternatively, you can specify stub*, in which case pr will
store predicted probabilities in variables stub1, stub2, . . . , stubM . To compute the probability for
a specific outcome, you specify one new variable and, optionally, the outcome value in option
outlevel(); if you omit outlevel(), the first outcome value, outlevel(#1), is assumed.

In each observation, the predictions are the probabilities conditioned on the covariates. Results
depend on how complications are handled, which is determined by the asfmethod and counterfactual
options.

xb specifies that the linear prediction be calculated ignoring all complications.

outlevel(#) specifies to calculate only the probability for outcome m = # rather than calculating
M probabilities, one for each ordered category (outcome) recorded in the dependent variable. If
you do not specify this option and y records three outcomes, you type

. predict p1 p2 p3

to obtain the probabilities for each outcome. If you want only the probability of the third outcome,
you can type

. predict p3, outlevel(#3)

If the third outcome corresponded to y==3, you could instead type
. predict p3, outlevel(3)

If the third outcome corresponded to y==57, you could instead type
. predict p3, outlevel(57)

Most users number the outcomes 1, 2, and 3. Some users number them 0, 1, and 2. You could
even number them 3, 5, and 57. Stata does not care how they are numbered.

Options for asfmethod� � �
Main �

asf, fixedasf, and noasf determine whether and how the average structural function (ASF) of the
specified statistic is computed. These options are not allowed with xb.

asf, the default, calculates the ASF of the statistic. Thus, the default when no statistic is specified
is the ASF of the probability of one or more ordered categories (outcomes) recorded in the
dependent variable.

asf computes the statistic conditional on the errors of the endogenous variable equations. Put
another way, it is the statistic accounting for the correlation of the endogenous covariates with
the errors of the outcome equation. Derivatives and contrasts based on asf have a structural
interpretation. See margins for computing derivatives and contrasts.

fixedasf calculates a fixed ASF. It is the specified statistic computed using only the coefficients
and variables of the outcome equation. fixedasf does not condition on the errors of the
endogenous variable equations. Contrasts between two fixed counterfactuals averaged over the
whole sample have a potential-outcome interpretation. Intuitively, it is as if the values of the
covariates were fixed at a value exogenously by fiat. See margins for computing derivatives
and contrasts.
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To be clear, derivatives and contrasts between two fixed counterfactuals using the default asf option
also have a potential-outcome interpretation. And, unlike fixedasf, they retain that interpretation
when computed over subpopulations for both linear and nonlinear models.

noasf calculates the statistic using the linear prediction with no adjustment. For extended regression
models, this is computationally equivalent to fixedasf. So fixedasf and noasf are synonyms.

Option for counterfactuals

� � �
Main �

target(valspecs) specifies counterfactual predictions. You specify a list of variables from the main
equation and values for them. Those values override the values of the variables calculating
β0 + β1x1i + · · ·. Use of target() is discussed in Remarks and examples of [ERM] eregress
predict.

Remarks and examples
Remarks are presented under the following headings:

Using predict after eoprobit and xteoprobit
How to think about nonlinear models

Using predict after eoprobit and xteoprobit

eoprobit and xteoprobit fit ordinal probit models. The outcome variable y takes on various
values such as 1, 2, 3, and 4, and each represents an ordered category, such as cannot walk, walks
with difficulty, walks with few problems, and walks well. When you use predict after eoprobit
or xteoprobit, remember to specify variables corresponding to each category.

. predict p1 p2 p3 p4

Alternatively, specify the outlevel(#) option.

With this exception, predictions after fitting models with eoprobit and xteoprobit are handled
the same as they are after fitting models with eregress and xteregress. The issues are the same.
See [ERM] eregress predict.

How to think about nonlinear models
What we wrote in [ERM] eprobit predict applies equally to the use of predict after eoprobit

and xteoprobit. We wrote

Probit is a nonlinear model, and yet we just said that predictions after fitting models with
eprobit and xteprobit are handled the same as they are after fitting models with eregress
and xteregress. That statement is partly true, not misleading, but false in its details.

The regression-based discussion that we routed you to is framed in terms of expected values.
In the nonlinear models, it needs to be framed in terms of distributional assumptions about
the errors. For instance, predict after eprobit does not predict the expected value (mean)
of ei.y. It calculates the probability that ei.y exceeds −xiβ. These details matter hugely in
implementation but can be glossed over for understanding the issues. For a full treatment of
the issues, see Methods and formulas of [ERM] eprobit.
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Methods and formulas
See Methods and formulas of [ERM] eoprobit postestimation.

Also see
[ERM] eoprobit postestimation — Postestimation tools for eoprobit and xteoprobit

[ERM] eoprobit — Extended ordered probit regression



Title

eprobit — Extended probit regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

eprobit fits a probit regression model that accommodates any combination of endogenous co-
variates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and
ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous.
A probit or tobit model may be used to account for endogenous sample selection.

xteprobit fits a random-effects probit regression model that accommodates endogenous covariates,
treatment, and sample selection in the same way as eprobit and also accounts for correlation of
observations within panels or within groups.

Quick start
Probit regression of y on x with continuous endogenous covariate y2 modeled by x and z

eprobit y x, endogenous(y2 = x z)

Same as above, but adding continuous endogenous covariate y3 modeled by x and z2

eprobit y x, endogenous(y2 = x z) endogenous(y3 = x z2)

Probit regression of y on x with binary endogenous covariate d modeled by x and z

eprobit y x, endogenous(d = x z, probit)

Probit regression of y on x with endogenous treatment recorded in trtvar and modeled by x and z

eprobit y x, entreat(trtvar = x z)

Probit regression of y on x with exogenous treatment recorded in trtvar

eprobit y x, extreat(trtvar)

Random-effects probit regression of y on x using xtset data
xteprobit y x

Probit regression of y on x with endogenous sample-selection indicator selvar modeled by x and z

eprobit y x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2

eprobit y x, select(selvar = x z) endogenous(y2 = x z2)

Same as above, but adding endogenous treatment recorded in trtvar and modeled by x and z3

eprobit y x, select(selvar = x z) endogenous(y2 = x z2) ///
entreat(trtvar = x z3)

Same as above, but with random effects and without endogenous treatment
xteprobit y x, select(selvar = x z) endogenous(y2 = x z2)

131
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Menu
eprobit

Statistics > Endogenous covariates > Models adding selection and treatment > Probit regression

xteprobit

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Probit
regression (RE)

Syntax
Basic probit regression with endogenous covariates

eprobit depvar
[

indepvars
]
, endogenous(depvarsen = varlisten)

[
options

]
Basic probit regression with endogenous treatment assignment

eprobit depvar
[

indepvars
]
, entreat(depvartr

[
= varlisttr

]
)
[

options
]

Basic probit regression with exogenous treatment assignment

eprobit depvar
[

indepvars
]
, extreat(tvar)

[
options

]
Basic probit regression with sample selection

eprobit depvar
[

indepvars
]
, select(depvars = varlists)

[
options

]
Basic probit regression with tobit sample selection

eprobit depvar
[

indepvars
]
, tobitselect(depvars = varlists)

[
options

]
Basic probit regression with random effects

xteprobit depvar
[

indepvars
] [

, options
]

Probit regression combining endogenous covariates, treatment, and selection

eprobit depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, extensions options
]

Probit regression combining random effects, endogenous covariates, treatment, and selection

xteprobit depvar
[

indepvars
] [

if
] [

in
] [

, extensions options
]
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extensions Description

Model

endogenous(enspec) model for endogenous covariates; may be repeated
entreat(entrspec) model for endogenous treatment assignment
extreat(extrspec) exogenous treatment
select(selspec) probit model for selection
tobitselect(tselspec) tobit model for selection

options Description

Model

noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points for integration over
four or more dimensions; default is intpoints(128)

triintpoints(#) set the number of integration (quadrature) points for integration over
three dimensions; default is triintpoints(10)

reintpoints(#) set the number of integration (quadrature) points for
random-effects integration; default is reintpoints(7)

reintmethod(intmethod) integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics

enspec is depvarsen = varlisten
[
, enopts

]
where depvarsen is a list of endogenous covariates. Each variable in depvarsen specifies an
endogenous covariate model using the common varlisten and options.

entrspec is depvartr
[
= varlisttr

] [
, entropts

]
where depvartr is a variable indicating treatment assignment. varlisttr is a list of covariates
predicting treatment assignment.
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extrspec is tvar
[
, extropts

]
where tvar is a variable indicating treatment assignment.

selspec is depvars = varlists
[
, selopts

]
where depvars is a variable indicating selection status. depvars must be coded as 0, indicating
that the observation was not selected, or 1, indicating that the observation was selected. varlists
is a list of covariates predicting selection.

tselspec is depvars = varlists
[
, tselopts

]
where depvars is a continuous variable. varlists is a list of covariates predicting depvars. The
censoring status of depvars indicates selection, where a censored depvars indicates that the
observation was not selected and a noncensored depvars indicates that the observation was
selected.

enopts Description

Model

probit treat endogenous covariate as binary
oprobit treat endogenous covariate as ordinal
pocorrelation estimate different correlations for each level of a binary or an ordinal

endogenous covariate
nomain do not add endogenous covariate to main equation
nore do not include random effects in model for endogenous covariate
noconstant suppress constant term

nore is available only with xteprobit.

entropts Description

Model

pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nointeract do not interact treatment with covariates in main equation
nore do not include random effects in model for endogenous treatment
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteprobit.

extropts Description

Model

pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nointeract do not interact treatment with covariates in main equation
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selopts Description

Model

nore do not include random effects in selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteprobit.

tselopts Description

Model
∗ll(varname | #) left-censoring variable or limit
∗ul(varname | #) right-censoring variable or limit
main add censored selection variable to main equation
nore do not include random effects in tobit selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
∗ You must specify either ll() or ul().
nore is available only with xteprobit.

indepvars, varlisten, varlisttr, and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvars, and varlists may contain time-series

operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, collect, jackknife, and statsby are allowed with eprobit and xteprobit. rolling and svy

are allowed with eprobit. See [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with eprobit; see [U] 11.1.6 weight.
reintpoints() and reintmethod() are available only with xteprobit.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec),
tobitselect(tselspec); see [ERM] ERM options.

noconstant, offset(varnameo), constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype); see [ERM] ERM options.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intpoints(#), triintpoints(#), reintpoints(#), reintmethod(intmethod); see [ERM] ERM
options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize.

The default technique for eprobit is technique(nr). The default technique for xteprobit is
technique(bhhh 10 nr 2).

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with eprobit and xteprobit but are not shown in the dialog
box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
eprobit and xteprobit fit models that we refer to as “extended probit regression models”, meaning

that they accommodate endogenous covariates, nonrandom treatment assignment, endogenous sample
selection, and panel data or other grouped data.

eprobit fits models for cross-sectional data (one-level models). eprobit can account for en-
dogenous covariates, treatment, and sample selection, whether these complications arise individually
or in combination.

xteprobit fits random-effects models (two-level models) for panel data or grouped data. xtepro-
bit accounts for endogenous covariates, treatment, and sample selection in the same way as eprobit
and also accounts for within-panel or within-group correlation among observations.

In this entry, you will find information on the syntax for the eprobit and xteprobit commands.
You can see Methods and formulas for a full description of the models that can be fit with eprobit
and xteprobit and details about how those models are fit.

More information on extended probit regression models is found in the separate introductions and
example entries. We recommend reading those entries to learn how to use eprobit and xteprobit.
Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eprobit and xteprobit and the other extended regression commands for
continuous, interval, and ordinal outcomes, see [ERM] Intro 1–[ERM] Intro 9.

[ERM] Intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] Intro 2 provides background on the four types of models—linear regression, interval
regression, probit regression, and ordered probit regression—that can be fit using ERM commands.

[ERM] Intro 3 considers the problem of endogenous covariates and how to solve it using ERM
commands.

[ERM] Intro 4 gives an overview of endogenous sample selection and using ERM commands to
account for it.

[ERM] Intro 5 covers nonrandom treatment assignment and how to account for it using eprobit
or any of the other ERM commands.
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[ERM] Intro 6 covers random-effects models for panel data and other grouped data. It discusses
xteprobit and the other ERM commands for panel data.

[ERM] Intro 7 discusses interpretation of results. You can interpret coefficients from eprobit
and xteprobit in the usual way, but this introduction goes beyond the interpretation of
coefficients. We demonstrate how to find answers to interesting questions by using margins. If
your model includes an endogenous covariate or an endogenous treatment, the use of margins
differs from its use after other estimation commands, so we strongly recommend reading this
intro if you are fitting these types of models.

[ERM] Intro 8 will be particularly helpful if you are familiar with ivprobit, heckprobit,
xtprobit, and other commands that address endogenous covariates, sample selection, nonran-
dom treatment assignment, or random effects. This introduction is a Rosetta stone that maps
the syntax of those commands to the syntax of eprobit and xteprobit.

[ERM] Intro 9 walks you through an example that gives insight into the concepts of endogenous
covariates, treatment assignment, and sample selection while fitting models with eregress
that address these complications. Although the example uses eregress, the discussion applies
equally to eprobit. This intro also demonstrates how to interpret results by using margins
and estat teffects.

Additional examples are presented in [ERM] Example 1a–[ERM] Example 9. For examples using
eprobit, see

[ERM] Example 3a Probit regression with continuous endogenous covariate
[ERM] Example 3b Probit regression with endogenous covariate and treatment
[ERM] Example 4a Probit regression with endogenous sample selection
[ERM] Example 4b Probit regression with endogenous treatment and sample selection
[ERM] Example 5 Probit regression with endogenous ordinal treatment
[ERM] Example 9 Probit regression with endogenous treatment and random effects

See Examples in [ERM] Intro for an overview of all the examples. All examples may be interesting
because they handle complications in the same way.

eprobit and xteprobit fit many models discussed in the literature. This includes the probit model
with continuous endogenous covariates (Newey 1987), the probit model with multiple endogenous
binary covariates (Arendt and Holm 2006), the probit model with an endogenous treatment (Angrist 2001
and Pindyck and Rubinfeld 1998), and the random-effects probit model (Conway 1990). eprobit
can also be used for probit models with selection, such as that discussed by Van de Ven and Van
Pragg (1981), and for the model with a tobit selection equation, discussed in Wooldridge (2010,
sec. 19.7).

xteprobit can be used for the random-effects probit model with selection discussed in Semykina
and Wooldridge (2018). The bivariate probit model with random effects discussed in Mulkay (2015) may
also be fit using xteprobit. Roodman (2011) investigated probit models with endogenous covariates
and endogenous sample selection and demonstrated how multiple observational data complications
could be addressed with a triangular model structure. He and Tamás Bartus showed how random effects
could be used in the triangular model structure in Bartus and Roodman (2014). Roodman’s work has
been used to model processes like the impact of finance on the probability of being an entrepreneur
(Karymshakov, Sultakeev, and Sulaimanova 2015) and the impact of foreign direct investment on the
probability of creating an innovative product (Vahter 2011).
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Stored results
eprobit stores the following in e():

Scalars
e(N) number of observations
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) eprobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample



eprobit — Extended probit regression 139

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

xteprobit stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(n requad) number of integration points for random effects
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xteprobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(ivar) variable denoting groups
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(reintmethod) integration method for random effects
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here are for the probit model. The estimators implemented

in eprobit and xteprobit are maximum likelihood estimators covered by the results in chapter 13
of Wooldridge (2010) and White (1996).

The log-likelihood functions maximized by eprobit and xteprobit are implied by the triangular
structure of the model. Specifically, the joint distribution of the endogenous variables is a product
of conditional and marginal distributions because the model is triangular. For a few of the many
relevant applications of this result in literature, see chapter 10 of Amemiya (1985); Heckman (1976,
1979); chapter 5 of Maddala (1983); Maddala and Lee (1976); sections 15.7.2, 15.7.3, 16.3.3,
17.5.2, and 19.7.1 in Wooldridge (2010); and Wooldridge (2014). Roodman (2011) and Bartus and
Roodman (2014) used this result to derive the formulas discussed below.

Methods and formulas are presented under the following headings:

Introduction
Endogenous covariates

Continuous endogenous covariates
Binary and ordinal endogenous covariates

Treatment
Endogenous sample selection

Probit endogenous sample selection
Tobit endogenous sample selection

Random effects
Combined model
Confidence intervals
Likelihood for multiequation models
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Introduction

A probit regression of outcome yi on covariates xi may be written as

yi = 1 (xiβ+ εi > 0)

where the errors εi are distributed as standard normal. The log likelihood is

lnL =

N∑
i=1

wi {yi lnΦ (xiβ) + (1− yi) lnΦ (−xiβ)}

where wi are the weights. The conditional probability of success is

E (yi|xi) = Pr (yi = 1|xi) = Φ (xiβ)

The standard normal cumulative distribution function Φ(·) used in these expressions is a one-sided
probability that the random variable is below a certain point. In the models we describe later, it will
be useful to use two-sided probabilities. For two-sided probabilities, we define Φ∗d with three inputs.
The first two inputs are d-dimensional row vectors l and u that have values in IR ∪ {−∞,∞}, the
extended real line. The final input is a d× d real-valued and positive-definite matrix Σ.

Φ∗d(l,u,Σ) =

∫ u1

l1

. . .

∫ ud

ld

φd(ε,Σ) dε1 . . . dεd

where φd is the density of a mean 0, multivariate normal random variable. For details on the calculation
of Φ∗d, see [M-5] mvnormal( ). The probabilities are approximated using numeric integration. The
number of integration or quadrature points can be varied to attain better approximations. For trivariate
errors, we use the method of Drezner (1994). For four or more errors, we use the method of Miwa,
Hayter, and Kuriki (2003).

The lower and upper limits l1i and u1i on the unobserved εi are based on the observed values of
yi and xi and are defined as

l1i =

{−∞ yi = 0

−xiβ yi = 1
u1i =

{−xiβ yi = 0

∞ yi = 1
(1)

They let us rewrite the log likelihood concisely as

lnL =

N∑
i=1

wi lnΦ∗1(l1i, u1i, 1)

The conditional probability of success can be written using similar notation:

Pr (yi = 1|xi) = Φ∗1(−xiβ,∞, 1) (2)
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Endogenous covariates

Continuous endogenous covariates

A probit regression of yi on exogenous covariates xi and C continuous endogenous covariates
wci has the form

yi = 1 (xiβ+ wciβc + εi > 0)

wci = zciAc + εci

The vector zci contains variables from xi and other covariates that affect wci. The unobserved
errors εi and εci are multivariate normal with mean 0 and covariance[

1 σ′1c
σ1c Σc

]
We can write the joint density of the dependent variables as a product:

f(yi,wci|xi, zci) = f(yi|wci,xi, zci)f(wci|xi, zci)
The conditional density of wci is

f(wci|xi, zci) = φC(wci − zciAc,Σc)

Note that

Pr(yi = 1|wci,xi, zci) = Pr(xiβ+ wciβc + εi > 0|wci,xi, zci)

So the conditional density of yi can be written as a probability for εi. Thus, the conditional distribution
of εi can be used to find the conditional density of yi. Conditional on the endogenous and exogenous
covariates, εi has mean and variance

E (εi|wci,xi, zci) = σ′1cΣ
−1
c (wci − zciAc)

′

Var (εi|wci,xi, zci) = 1− σ′1cΣ
−1
c σ1c

The conditional mean is used in the lower and upper limits for the yi probability, which are

l1i =

{
−∞ yi = 0

−xiβ− σ′1cΣ
−1
c (wci − zciAc)

′
yi = 1

u1i =

{
−xiβ− σ′1cΣ

−1
c (wci − zciAc)

′
yi = 0

∞ yi = 1

Using these limits, the conditional variance, and the conditional density of wci, we obtain the log
likelihood

lnL =

N∑
i=1

wi
{

lnΦ∗1
(
l1i, u1i, 1− σ′1cΣ

−1
c σ1c

)
+ lnφC(wci − zciAc,Σc)

}
Letting

l1i1 = −xiβ− σ′1cΣ
−1
c (wci − zciAc)

′

u1i1 =∞
the conditional probability of success is

Pr (yi = 1|wci,xi, zci) = Φ∗1(l1i1, u1i1, 1− σ′1cΣ
−1
c σ1c)
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Binary and ordinal endogenous covariates

Here we begin by formulating the probit regression of yi on exogenous covariates xi and B
binary and ordinal endogenous covariates wbi = [wb1i, . . . , wbBi]. Indicator (dummy) variables for
the levels of each binary and ordinal covariate are used in the model. You can also interact other
covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

Let j = 1, . . . , B. We use a probit model for binary endogenous covariates

wbji = 1 (zbjiαbj + εbji > 0)

For ordinal endogenous covariate wbji that takes values vbj1, . . . , vbjBj
with covariates zbji, we have

the ordered probit model

wbji = vbjh iff κbj(h−1) < zbjiαbj + εbji ≤ κbjh (3)

The values vbj1, . . . , vbjBj are real numbers such that vbjh < vbjm for h < m. κbj0 is taken as
−∞ and κbjBj

is taken as +∞. The errors εb1i, . . . , εbBi are multivariate normal with mean 0 and
covariance

Σb =


1 ρb12 · · · ρb1B
ρb12 1 · · · ρb2B

...
...

. . .
...

ρb1B ρb2B · · · 1


Because the covariate wbji is binary or ordinal, the effect of each category in the outcome equation

is made with an indicator variable.

windbji =

 1(wbji = vbj1)
...

1(wbji = vbjBj
)


′

(4)

The model for the outcome can be formulated with or without different correlation parameters
for each level of wbi. Level-specific parameters are obtained by specifying pocorrelation in the
endogenous() option.

If the correlation parameters are not level specific, we have

yi = 1(xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εi > 0)

where the outcome error εi and binary and ordinal endogenous errors εb1i, . . . , εbBi are multivariate
normal with mean 0 and covariance

Σ =

[
1 ρ′1b
ρ1b Σb

]
From here, we discuss the model with ordinal endogenous covariates. The results for binary

endogenous covariates are similar.

For j = 1, . . . , B and h = 0, . . . , Bj , let

cbjih =


−∞ h = 0

κbjh − zbjiαbj h = 1, . . . , Bj − 1

∞ h = Bj
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The probability for wbji has lower limit

lbji = cbji(h−1) if wbji = vbjh (5)

and upper limit
ubji = cbjih if wbji = vbjh (6)

Letting
cbi = −xiβ−windb1iβb1 − · · · −windbBiβbB

the lower and upper limits for the yi probability are

l1i =

{−∞ yi = 0

cbi yi = 1
u1i =

{ cbi yi = 0

∞ yi = 1

and
li = [ l1i lb1i . . . lbBi ]

ui = [u1i ub1i . . . ubBi ]

The log likelihood for this model is

lnL =

N∑
i=1

wi lnΦ∗B+1(li,ui,Σ)

Now let
lbi = [ lb1i . . . lbBi ]

ubi = [ub1i . . . ubBi ]

li1 = [−∞ lbi ]

ui1 = [ cbi ubi ]

The conditional probability of success is

Pr(yi = 1|xi, zb1i, . . . , zbBi,wbi) =
Φ∗B+1(li1,ui1,Σ)

Φ∗B(lbi,ubi,Σb)

When the endogenous ordinal variables are different treatments, holding the correlation parameters
constant over the treatment levels is a constrained form of the potential-outcome model. In an
unconstrained potential-outcome model, the correlations between the outcome and the treatments—the
endogenous ordinal regressors wbi—vary over the levels of each treatment.

In this unconstrained model, there is a different potential-outcome error for each level of each
treatment. For example, when the endogenous treatment variable w1 has three levels (0, 1, and 2) and
the endogenous treatment variable w2 has four levels (0, 1, 2, and 3), the unconstrained model has
12 = 3× 4 outcome errors. Because there is a different correlation between each potential outcome
and each endogenous treatment, there are 2×12 correlation parameters between the potential outcomes
and the treatments in this example model.

We denote the number of different combinations of values for the endogenous treatments wbi by
M , and we denote the vector of values in each combination by vj (j ∈ {1, 2, . . . ,M}). Letting
kwp be the number of levels of endogenous ordinal treatment variable p ∈ {1, 2, . . . , B} implies that
M = kw1 × kw2 × · · · × kwB .
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Denoting the outcome errors ε1i, . . . , εMi, we have

y1i = 1(xiβ+ windb1iβb1 + · · ·+ windbBiβbB + ε1i > 0)

...

yMi = 1(xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εMi > 0)

yi =

M∑
j=1

1(wbi = vj)yji

For j = 1, . . . ,M , the outcome error εji and the endogenous errors εb1i, . . . , εbBi are multivariate
normal with 0 mean and covariance

Σj =

[
1 ρ′j1b
ρj1b Σb

]
Now let

Σi,b =

M∑
j=1

1(wbi = vj)Σj

Now the log likelihood for this model is

lnL =

N∑
i=1

wi lnΦ∗B+1(li,ui,Σi,b)

The conditional probability of success is

Pr(yi = 1|xi, zb1i, . . . , zbBi,wbi) =
Φ∗B+1(li1,ui1,Σi,b)

Φ∗B(lbi,ubi,Σb)

Treatment
In the potential-outcomes framework, the treatment ti is a discrete variable taking T values,

indexing the T potential outcomes of the outcome yi: y1i, . . . , yTi.

When we observe treatment ti with levels v1, . . . , vT , we have

yi =

T∑
j=1

1(ti = vj)yji

So for each observation, we observe only the potential outcome associated with that observation’s
treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect
estimation method. See [CAUSAL] teffects intro advanced. We do not model the treatment assignment
process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent
to what we provide here for endogenous treatments. The treatment effect on the treated for xi for an
exogenous treatment is equivalent to what we provide here for the endogenous treatment when the
correlation parameter between the outcome and treatment errors is set to 0. The average treatment
effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous
manner to what we describe here for endogenous treatments.
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From here, we assume an endogenous treatment ti. For ordinal treatment ti with covariates zti,
we have the ordered probit model

ti = vh iff κh−1 < ztiαt + εti ≤ κh (7)

The treatment values v1, . . . , vT are real numbers such that vh < vm for h < m. κ0 is taken as −∞
and κT is taken as +∞. The treatment error εti is standard normal.

We use a probit model for binary treatments that take values in {0, 1},

ti = 1 (ztiαt + εti > 0)

A probit regression of yi on exogenous covariates xi and endogenous treatment ti taking values
v1, . . . , vT has the form

y1i = 1 (xiβ1 + ε1i > 0)

...

yTi = 1 (xiβT + εTi > 0)

yi =

T∑
j=1

1(ti = vj)yji

This model can be formulated with or without different correlation parameters for each potential
outcome. Potential-outcome specific parameters are obtained by specifying pocorrelation in the
entreat() option.

If the correlation parameters are not potential-outcome specific, for j = 1, . . . , T , εji and εti are
bivariate normal with mean 0 and covariance

Σ =

[
1 ρ1t
ρ1t 1

]

The treatment is exogenous if ρ1t = 0. Note that we did not specify the structure of the correlations
between the potential-outcome errors. We do not need information about these correlations to estimate
POMs and treatment effects because all covariates and the outcome are observed in observations from
each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary
treatment models are similar. Because the unobserved errors are bivariate normal, we can express the
log likelihood in terms of the Φ∗2 function.

For j = 1, . . . , T , let
c1ij = −xiβj

The lower and upper limits for the yi probability are

l1i =

{−∞ yi = 0

c1ij yi = 1, ti = vj

u1i =

{ c1ij yi = 0, ti = vj

∞ yi = 1
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For j = 0, . . . , T , define

ctij =


−∞ j = 0

κj − ztiαt j = 1, . . . , T − 1

∞ j = T

So for the ti probability, we have lower limit

lti = cti(j−1) if ti = vj (8)

and upper limit
uti = ctij if ti = vj (9)

The log likelihood for the model is

lnL =

N∑
i=1

wi lnΦ∗2([ l1i lti ], [u1i uti ],Σ)

The conditional probability of obtaining treatment level vh is

Pr(ti = vh|zti) = Φ∗1(cti(h−1), ctih, 1)

The conditional probability of success at treatment level vj is

Pr(yi = 1|xi, zti, ti = vj) =
Φ∗2([ c1ij cti(j−1) ], [∞ ctij ],Σ)

Φ∗1(cti(j−1), ctij , 1)

The conditional POM for treatment group j is

POMj(xi) = E (yji|xi) = Φ∗1(c1ij ,∞, 1)

Conditional on the covariates xi and zti and the treatment ti = vh, the POM for treatment group
j is

POMj(xi, zti, ti = vh) = E (yji|xi, zti, ti = vh)

=
Φ∗2([ c1ij cti(h−1) ], [∞ ctih ],Σ)

Φ∗1(cti(h−1), ctih, 1)

The treatment effect yji − y1i is the difference in the outcome for individual i if the individual
receives the treatment ti = vj instead of the control ti = v1 and what the difference would have
been if the individual received the control treatment instead.

For treatment group j, the treatment effect (TE) conditioned on xi is

TEj(xi) = E (yji − y1i|xi) = POMj(xi)− POM1(xi)
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For treatment group j, the treatment effect on the treated (TET) in treatment group h conditioned
on xi and zti is

TETj(xi, zti, ti = vh) = E (yji − y1i|xi, zti, ti = vh)

= POMj(xi, zti, ti = vh)− POM1(xi, zti, ti = vh)

We can take the expectation of these conditional predictions over the covariates to get population
average parameters. The margins command is used to estimate the expectations as predictive margins
once the model is fit with eprobit. The POM for treatment group j is

POMj = E (yji) = E {POMj(xi)}

The ATE for treatment group j is

ATEj = E (yji − y1i) = E {TEj(xi)}

For treatment group j, the average treatment effect on the treated (ATET) in treatment group h is

ATETjh = E (yji − y1i|ti = vh)

= E {TETj(xi, zti, ti = vh)|ti = vh}

If the correlation parameters are potential-outcome specific, for j = 1, . . . , T , εji and εti are
bivariate normal with mean 0 and covariance

Σj =

[
1 ρj1t
ρj1t 1

]
Now define

Σi =

T∑
j=1

1(ti = vj)Σj

The log likelihood for the potential-outcome specification correlation model is

lnL =

N∑
i=1

wi lnΦ∗2([ l1i lti ], [u1i uti ],Σi)

The conditional probability of success at treatment level vj is

Pr(yi = 1|xi, zti, ti = vj) =
Φ∗2([ c1ij cti(j−1) ], [∞ ctij ],Σj)

Φ∗1(cti(j−1), ctij , 1)

The conditional POM for exogenous covariates xi and treatment group j has the same definition
as in the single correlation case. However, when we also condition on the treatment level ti = vh
and zti, the POM for treatment group j is

POMj(xi, zti, ti = vh) = E (yji|xi, zti, ti = vh)

=
Φ∗2([ c1ij cti(h−1) ], [∞ ctih ],Σj)

Φ∗1(cti(h−1), ctih, 1)

Treatment effects are formulated as in the single correlation case but using these updated POM
definitions. We can take the expectation of these conditional predictions over the covariates to get
population-averaged parameters. The estat teffects or margins command is used to estimate the
expectations as predictive margins once the model is fit with eprobit.
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Endogenous sample selection

Probit endogenous sample selection

A probit model for outcome yi with selection on si has the form

yi = 1 (xiβ+ εi > 0)

si = 1 (zsiαs + εsi > 0)

where xi are covariates that affect the outcome and zsi are covariates that affect selection. The
outcome yi is observed if si = 1 and not observed if si = 0. The unobserved errors εi and εsi are
normal with mean 0 and covariance

Σ =

[
1 ρ1s
ρ1s 1

]
The lower and upper limits for the yi probability, l1i and u1i, are as defined in (1). For the

selection indicator, we have lower and upper limits

lsi =

{−∞ si = 0

−zsiαs si = 1
usi =

{−zsiαs si = 0

∞ si = 1
(10)

The log likelihood for the model is

lnL =
∑
i∈S

wi lnΦ∗2([ l1i lsi ], [u1i usi ],Σ) +∑
i/∈S

wi lnΦ∗1(lsi, usi, 1)

where S is the set of observations for which yi is observed.

In this model, the probability of success is usually predicted conditional on the covariates xi and
not on the selection status si. The formulas for the conditional probability are thus the same as in
(2).

The conditional probability of selection is

Pr (si = 1|zsi) = Φ∗1(−zsiαs,∞, 1)

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection
uses a censored continuous sample-selection indicator. We allow the selection variable to be left- or
right-censored.

A probit model for outcome yi with tobit selection on si has the form

yi = 1 (xiβ+ εi > 0)
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We observe the selection indicator si, which indicates the censoring status of the latent selection
variable s?i ,

s?i = zsiαs + εsi

si =


li s?i ≤ li

s?i li < s?i < ui

ui s?i ≥ ui
where zsi are covariates that affect selection and li and ui are fixed lower and upper limits.

The outcome yi is observed when s?i is not censored (li < s?i < ui). The outcome yi is not
observed when s?i is left-censored (s?i ≤ li) or s?i is right-censored (s?i ≥ ui). The unobserved errors
εi and εsi are normal with mean 0 and covariance[

1 ρ1sσs
ρ1sσs σ2

s

]

For the selected observations, we can treat si as a continuous endogenous regressor, as in
Continuous endogenous covariates. In fact, si may even be used as a regressor for yi in eprobit
(specify tobitselect(. . . main)). On the nonselected observations, we treat si like the probit
endogenous sample-selection indicator in Probit endogenous sample selection.

For nonselected observations, we have

Pr(s?i ≤ li|zsi,xi) = Pr(zsiαs + εsi ≤ li)

= Φ

(
li − zsiαs

σs

)
and

Pr(s?i ≥ ui|zsi,xi) = Pr(zsiαs + εsi ≥ ui)

= Φ

(
zsiαs − ui

σs

)
The lower and upper limits for the si probability for nonselected observations where s?i is

left-censored are
lli = −∞

uli =
li − zsiαs

σs

The lower and upper limits for the si probability for nonselected observations where s?i is right-censored
are

lui =
ui − zsiαs

σs

uui =∞

Now we consider the selected observations. For si = s?i = Si, we can write the joint density of
the dependent variables as a product,

f(yi, si = Si|xi, zsi) = f(yi|si = Si,xi, zsi)f(si = Si|xi, zsi)



eprobit — Extended probit regression 151

The marginal density of si = Si is

f(si = Si|xi, zs,i) = φ(Si − zsiαs, σ
2
s)

The conditional density of yi can be written as a probability for εi. Thus, the conditional distribution
of εi can be used to find the conditional density of yi. Conditional on si = Si, εi has mean and
variance

E (εi|si = Si,xi, zsi) = ρ1sσ
−1
s (Si − zsiα)

Var (εi|si = Si,xi, zsi) = 1− ρ21,s

The conditional mean is used in the lower and upper limits for the yi probability for selected
observations, which are

l1i =

{−∞ yi = 0

−xiβ− ρ1sσ−1s (si − zsiα) yi = 1

u1i =

−xiβ− ρ1sσ−1s (si − zsiα) yi = 0

∞ yi = 1

It follows that the log likelihood is

lnL =
∑
i∈S

wi
{

ln Φ∗1( l1i , u1i , 1− ρ21s) + lnφ(si − zsiαs, σ
2
s)
}

+
∑
i∈L

wi ln Φ∗1(lli, uli, 1)

+
∑
i∈U

wi ln Φ∗1(lui, uui, 1)

where S is the set of observations for which yi is observed, L is the set of observations where s?i is
left-censored, and U is the set of observations where s?i is right-censored.

The probability of success conditional on si = s?i = Si is

Pr(yi = 1|xi, si = s?i = Si) = Φ∗1{−xiβ− ρ1sσ−1s (Si − zsiα) ,∞, 1− ρ21s}

If we do not include si in the main outcome equation, the probability of success is calculated as
(2) again.

Random effects
For a probit regression with random effects, we observe panel data. For panel i = 1, . . . , N and

observation j = 1, . . . , Ni, a probit regression of outcome yij on covariates xij may be written as

yij = 1 (xijβ+ εij + ui > 0)

The random effect ui is normal with mean 0 and variance σ2
u. It is independent of the observation-level

error εij , which is standard normal.
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We derive the likelihood by using the conditional density of yij on the random effect ui and the
marginal density of ui. Multiplying them together, we have the joint density, which is integrated over
ui.

Let
lij(u) = yijΦ (xijβ+ u) + (1− yij)Φ (−xijβ− u)

The likelihood for panel i is

Li =

∫ ∞
−∞

φ

(
ui
σu

) Ni∏
j=1

lij(ui)dui

We can approximate this integral using Gauss–Hermite quadrature. For q-point Gauss–Hermite
quadrature, let the abscissa and weight pairs be denoted by (aki, wki), k = 1, . . . , q. Then, the
Gauss–Hermite quadrature approximation is

∫ ∞
−∞

f(x) exp(−x2) dx ≈
q∑

k=1

wkif(aki)

The default approximation used by xteprobit is mean–variance adaptive Gauss–Hermite quadra-
ture. This chooses optimal abscissa and weights for each panel. See Likelihood for multiequation
models in [ERM] eprobit for more information on the use of mean–variance adaptive Gauss–Hermite
quadrature.

Using the quadrature approximation, the log likelihood is

lnL =

N∑
i=1

ln


q∑

k=1

wki

Ni∏
j=1

lij(σuaki)


Now we will derive the conditional probability of success. This is similar to what was given in

Introduction, but the variance input to Φ?1 is the variance of the random effect plus the observation-level
error.

First, let
ξij = εij + ui

where ξij is normal with mean 0 and variance σ2
ξ = 1 + σ2

u.

Then, the conditional probability of success is

Pr (yij = 1|xij) = Φ∗1(−xijβ,∞, σ2
ξ )

Combined model
Here we present the likelihood for the probit model with continuous endogenous covariates,

ordinal endogenous covariates, an ordinal endogenous treatment, and endogenous sample selection.
This combines all the extensions to the standard probit model that are supported by eprobit. In
Likelihood for multiequation models, we describe the general framework for ERMs with multiple
features and show how random effects may be combined with other features, how xteprobit can
support the other ERM features.
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Deriving the combined model with tobit rather than probit endogenous sample selection is straightfor-
ward. On selected observations, the selection indicator would be treated like a continuous endogenous
covariate. On nonselected observations, the model would be identical to the combined model with
probit selection. The correlations between the outcome errors and other errors are also the same
between treatment groups and levels of ordinal endogenous covariates. Deriving the model with
different correlations for the treatment groups and endogenous covariate groups is straightforward.
Take the likelihood given here in this section, and use a different covariance matrix depending on the
levels of treatment and the ordinal endogenous covariates.

In this model, the treatment ti takes T values, indexing the potential outcomes of the main outcome
yi: y1i, . . . , yTi. The relationship between the ordinal treatment ti, treatment covariates zt,i, and error
εti is described in (7). For j = 1, . . . , B, the relationship between the ordinal endogenous covariates
wbji, exogenous covariates zbji, and error εbji is given in (3). The model also uses the windbji
terms that are defined in (4).

The probit regression of yi on exogenous covariates xi, C continuous endogenous covariates wci,
and B ordinal endogenous covariates wbi = [wb1i, . . . , wbBi] with endogenous treatment ti and
endogenous sample selection on si has the form

y1i = 1 (xiβ1 + wciβc1 + windb1iβb11 + · · ·+ windbBiβbB1 + ε1i > 0)

...

yTi = 1 (xiβT + wciβcT + windb1iβb1T + · · ·+ windbBiβbBT + εTi > 0)

yi =

T∑
j=1

1(ti = vj)yji

wci = zciAc + εci

si = 1 (zsiαs + εsi > 0)

where zsi are covariates that affect selection and zci are covariates that affect the continuous endogenous
covariates. The outcome yi is observed if si = 1 and is not observed if si = 0.

For j = 1, . . . , T , the unobserved errors εji, εsi, εti, εb1i, . . . , εbBi, εci are multivariate normal
with mean 0 and covariance

Σ =


1 ρ1s ρ1t ρ′1b σ′1c
ρ1s 1 ρst ρ′sb σ′sc
ρ1t ρst 1 ρ′tb σ′tc
ρ1b ρsb ρtb Σb Σ′bc
σ1c σsc σtc Σbc Σc


As in Continuous endogenous covariates, we can write the joint density of the dependent variables

as a product. We have

f(yi, si, ti,wbi,wci|xi, zsi, zti, zb1i, . . . , zbBi, zci) =

f(yi, si, ti,wbi|wci,xi, zsi, zti, zb1i, . . . , zbBi, zci)f(wci|zci)

We can then use the conditional distribution of εji, εsi, εti, εb1i, . . . , εbBi to obtain the conditional
density of yi, si, ti, and wbi.
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For j = 1, . . . , T , conditional on wci and the exogenous covariates, εji has mean

e1i = E (εji|wci,xi, zsi, zti, zb1i, . . . , zbBi, zci)

= σ′1,cΣ
−1
c (wci − zc,iAc)

′

Now, for j = 1, . . . , T , let

c1ij =



−xiβ1 −wciβc,1 −windb1iβb11 − · · · −windbBiβbB1 − e1i j = 1

...

−xiβT −wciβcT −windb1iβb1T − · · · −windbBiβbBT − e1i j = T

The lower and upper limits for the yi probability are

l1i =

{−∞ yi = 0

c1ij yi = 1, ti = vj

u1i =

{ c1ij yi = 0, ti = vj

∞ yi = 1

The conditional means of the unobserved errors εsi, εti, εb1i, . . . , εbBi have similar forms to e1i.
Denote these means by esi, eti, eb1i, . . . , ebBi. The lower and upper probability limits for si, ti, and
the ordinal endogenous covariates are obtained by subtracting the means from the limits defined in
(10), (8), (9), (5), and (6).

l∗si = lsi − esi
u∗si = usi − esi
l∗ti = lti − eti
u∗ti = uti − eti
l∗b1i = lb1i − eb1i
u∗b1i = ub1i − eb1i

...

l∗bBi = lbBi − ebBi
u∗bBi = ubBi − ebBi

We have lower and upper limits; we need a conditional covariance and the conditional density of
wci to formulate the likelihood. For j = 1, . . . , T , conditional on wci and the exogenous covariates,
εji, εsi, εti, εb1i, . . . , εbBi have covariance

Σo|c =


1 ρ1s ρ1t ρ′1b
ρ1s 1 ρst ρ′sb
ρ1t ρst 1 ρ′tb
ρ1b ρsb ρtb Σb

−

σ′1c
σ′sc
σ′tc
Σ′bc

Σ−1c


σ′1c
σ′sc
σ′tc
Σ′bc


′

The conditional density of wci is

f(wci|zci) = φC(wci − zciAc,Σc)
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Let
l1i = [ l1i l∗si l∗ti l∗b1i . . . l∗bBi ]

u1i = [u1i u∗si u∗ti u∗b1i . . . u∗bBi ]

li = [ l∗si l∗ti l∗b1i . . . l∗bBi ]

ui = [u∗si u∗ti u∗b1i . . . u∗bBi ]

The log likelihood of the model is

lnL =
∑
i∈S

wi lnΦ∗3+B
(
l1i,u1i,Σo|c

)
+∑

i/∈S

wi lnΦ∗2+B
(
li,ui,Σo|c,−1

)
+

N∑
i=1

wi lnφC(wci − zciAc,Σc)

where S is the set of observations where yi is observed and Σo|c,−1 is Σo|c with the first row and
column removed.

As in previous sections, we use the joint and marginal probabilities to determine conditional
probabilities.

For j = 1, . . . , T and i such that ti = vj , let

li11 = [ c1ij l∗ti l∗b1i . . . l∗bBi ]

ui11 = [∞ u∗ti u∗b1i . . . u∗bBi ]

li12 = [ l∗ti l∗b1i . . . l∗bBi ]

ui12 = [u∗ti u∗b1i . . . u∗bBi ]

Let Σo|c,−s be Σo|c with the second row and column removed. This is the conditional covariance
matrix without the endogenous sample-selection equation components. Let Σo|c,−s−1 be Σo|c,−s
with the first row and column removed.

The conditional probability of success at treatment level ti = vj is

Pr(yi = 1|ti = vj ,wbi,wci,xi, zsi, zti, zb1i, . . . , zbBi, zci) =
Φ∗2+B

(
li11,ui11,Σo|c,−s

)
Φ∗1+B

(
li12,ui12,Σo|c,−s−1

)
The conditional probabilities of treatment, selection, and the ordinal endogenous covariates are

derived in similar ways. We condition on the treatment and the other endogenous covariates together
with the exogenous covariates that affect the outcome. POMs and treatment effects are conditioned
on the endogenous and exogenous covariates. See Predictions using the full model in [ERM] eprobit
postestimation for more details.
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Confidence intervals

The estimated variances will always be nonnegative, and the estimated correlations will always
fall in (−1, 1). We use transformations to obtain confidence intervals that accommodate these ranges.

We use the log transformation to obtain the confidence intervals for variance parameters. Let
σ̂2 be a point estimate for the variance parameter σ2, and let ŜE(σ̂2) be its standard error. The
(1− α)× 100% confidence interval for ln(σ2) is

ln(σ̂2)± zα/2
ŜE(σ̂2)

σ̂2

where zα/2 is the 1−α/2 quantile of the standard normal distribution. Let ku be the upper endpoint
of this interval, and let kl be the lower. The (1−α)× 100% confidence interval for σ2 is then given
by (

ekl , eku
)

We use the inverse hyperbolic tangent transformation to obtain confidence intervals for correlation
parameters; for details on the hyperbolic functions, see [FN] Trigonometric functions. Let ρ̂ be a
point estimate for the correlation parameter ρ, and let ŜE(ρ̂) be its standard error. The (1−α)×100%
confidence interval for atanh(ρ) is

atanh(ρ̂)± zα/2ŜE(ρ̂)
1

1− ρ̂2

where zα/2 is the 1−α/2 quantile of the standard normal distribution. Let ku be the upper endpoint
of this interval, and let kl be the lower. The (1− α)× 100% confidence interval for ρ is then given
by

{tanh(kl), tanh(ku)}

Likelihood for multiequation models

The general framework for ERMs is formulated such that it accommodates multiple features. Binary
and ordinal endogenous covariates may occur together with continuous endogenous covariates in ERMs.
Endogenous covariates may also occur together with endogenous sample selection or treatments in
ERMs. Random effects may occur in any combination with the other features as well.

Here we show how the log likelihood is formulated when we have multiple auxiliary equations.
We begin with the cross-sectional case, where there are no random effects.

Suppose that we have H auxiliary equations with endogenous outcomes y1i, . . . , yHi. We will
treat the main outcome yi as stage J = H + 1, so yJi = yi. The ERMs that we fit with eintreg,
eoprobit, eprobit, and eregress are triangular, so we can order the equations such that the first
depends only on exogenous covariates—say, w1i = zi—and for j = 2, . . . , J , equation j depends
only on the exogenous covariates zi and the endogenous covariates from equation h = j − 1 and
y1i, . . . , yhi below. These are stored together in wji.
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So we have
y1i = g1i(w1iβ1 + v1i)

...

yHi = gHi(wHiβH + vHi)

yi = yJi = gJi(wJiβJ + vJi)

where the form of the functions gji(·) is determined by whether the outcome yji has a linear, probit,
or interval model. The errors v1i, . . . , vJi are multivariate normal with mean 0 and covariance Σ.

The covariates wji and the outcome yji determine a range for the error vji. For example, if yji has
a linear model, then vji = yji−wjiβj , the residual. If yji = 1 and yji has a probit model, then vji
is in the range (−wjiβj ,∞). If yij is left-censored at li, then vji is in the range (−∞, li−wjiβj).

The density of the endogenous variables can be represented using a multivariate normal density
function that is evaluated at the residuals for the continuous outcomes and integrated over the error
ranges of the noncontinuous outcomes.

The conditional density of the error vji on wji has the form

f(vji|wji) =

∫
V?

hi
φj(v1i, . . . , vji,Σj)dv

?
hi∫

V?
hi
φh(v1i, . . . , vhi,Σh)dv?hi

where Σj is the covariance of v1i, . . . , vji and Σh is the covariance of v1i, . . . , vhi, where h = j−1.
The vector v?hi contains the errors that correspond to binary, ordinal, or censored outcomes in y1i,
. . . , yhi. These outcomes induce the error ranges V?

hi, which we integrate over. The other errors are
determined by the outcomes and covariates as residuals.

If yji is continuous, then
f(yji|wji) = f(vji|wji) (11)

When yji is a binary, ordinal, or censored outcome, we have

f(yji|wji) =

∫
V?

ji
φj(v1i, . . . , vji,Σj)dv

?
ji∫

V?
hi
φh(v1i, . . . , vhi,Σh)dv?hi

(12)

So we also integrate over the range of the error vji when yji is not continuous.

We can express the joint density of the main outcome and the endogenous covariates in terms
of the marginal and conditional densities. The denominator in (11) or (12) in the higher stage will
cancel out the numerator of (11) or (12) in the lower stage, so we have

f(y1i, . . . , yji|zi) =

∫
V?

ji

φj(v1i, . . . , vji,Σj)dv
?
ji (13)

If we have only continuous endogenous variables, we have

f(y1i, . . . , yji|zi) = φj(v1i, . . . , vji,Σj)

If V?
ji has dimension j, we can calculate the integral given in (13) by using the Φ∗j . Let li contain

the lower endpoints and ui contain the upper endpoints for V?
ji. When we do not have continuous

endogenous covariates, we have

f(y1i, . . . , yji|zi) = Φ∗j (li,ui,Σj)
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Now suppose that we have C < j continuous outcomes in y1i, . . . , yji, so the dimension of
V?
ji is j − C. Without loss of generality, these C correspond to the last C endogenous covariates

y(j−C+1)i, . . . , yji. The covariates can be reordered as needed.

We partition the covariance

Σj =

[
Σ11 Σ′12
Σ12 Σ22

]
where Σ22 is the covariance of the last C errors.

Conditional on v(j−C+1)i, . . . , vji, the errors v1i, . . . , v(j−C)i have mean and variance

µ1|2,i = Σ12Σ
−1
22

 v(j−C+1)i

...
vji


Σ1|2 = Σ11 −Σ12Σ

−1
22 Σ′12

By conditioning on v(j−C+1)i, . . . , vji, we can express the density in terms of φC and Φ∗j−C .
We can write the joint density in terms of the marginal and conditional densities to obtain

f(y1i, . . . , yji|zi) = φC(v(j−C+1)i, . . . , vji,Σ22)Φ∗j−C(li − µ1|2,i,ui − µ1|2,i,Σ1|2)

The natural logarithm of the density f(y1i, . . . , yJi|zi) is the log likelihood of the model. We
maximize the log likelihood to estimate the model parameters.

We can relax the assumption that the errors v1i, . . . , vJi are multivariate normal with mean 0 and
covariance Σ. We will allow the covariance matrix to vary based on the M different levels of the
binary or ordinal endogenous covariates wpoi: ω1, . . . ,ωM . These are the different combinations of
values for the covariates wpoi.

We use a potential-outcome framework for the outcome errors vJi. For the potential-outcome
errors v1Ji, . . ., vMJi, we have

vJi =

M∑
m=1

1(wpoi = ωm)vmJi

For m = 1, . . . , M , vmJi and v1i, . . ., vHi are multivariate normal mean 0 and covariance

Σm =

[
σ2
m σ′mo

σmo Σo

]

For observations where wpoi = ωm, the log likelihood can be derived with Σm in place of Σ.
The log likelihoods from the different potential-outcome group observations can then be summed
together to get the log likelihood of the model.

Now we assume that we have random effects in each equation and a panel-data structure. This
discussion applies to the models fit by xteintreg, xteoprobit, xteprobit, and xteregress.
For simplicity, we assume that the errors do not follow a potential-outcome framework. We have N
panels. For panel i = 1, . . . , N , there are Ni observations, and for t = 1, . . . , Ni, we have
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y1it = g1it(w1itβ1 + v1it + u1i)

...

yHit = gHit(wHitβH + vHit + uHi)

yit = yJit = gJit(wJitβJ + vJit + uJi)

The observation-level errors v1it, . . . , vJit are multivariate normal with mean 0 and covariance Σ.
They are independent of the panel-level errors, or random effects u1i, . . . , uJi, which are multivariate
normal with mean 0 and covariance Σu. We further assume that the observation-level errors are
independent within panels.

Now the covariates wjit, random effect uji, and the outcome yjit determine a range for the
error vjit. For example, if yjit has a linear model, then vjit = yjit −wjitβj − uji, the residual.
If yjit = 1 and yjit has a probit model, then vjit is in the range (−wjitβj − uji,∞). If yijt is
left-censored at lit, then vjit is in the range (−∞, li −wjitβj − uji).

Conditional on the random effects u1i, . . . , uJi, the density of the endogenous variables can be
represented using a multivariate normal density function that is evaluated at the residuals for the
continuous outcomes and integrated over the error ranges of the noncontinuous outcomes. So the
conditional density is formulated as in the cross-sectional case. The random effects are essentially
added to the covariates w1it, . . . , wJit.

Note that each panel has the same random effects for every observation. So if panel i has random
effects ui = (u1i, . . . , uJi), its likelihood is

Li =

∫
<J

{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui)

}
φJ(ui,Σu)dui (14)

This multivariate integral is generally not tractable. We can use a change-of-variables technique
to transform the multivariate integral in (14) into a set of nested univariate integrals. Let L be the
Cholesky decomposition of Σu; that is, Σu = LL′. It follows that ui = Lψi, where ψi is a vector
of independent standard normal random variables.

So we can rewrite (14) as

Li =

∫ ∞
−∞

. . .

∫ ∞
−∞

{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lψi)

}
φ(ψ1i) . . . φ(ψJi)dψ1i . . . dψJi (15)

Now the univariate integral can be approximated using Gauss–Hermite quadrature (GHQ). For
q-point GHQ, let the abscissa and weight pairs be denoted by (a∗k, w

∗
k), k = 1, . . . , q. Then, the GHQ

approximation is

∫ ∞
−∞

f(x) exp(−x2) dx ≈
q∑

k=1

w∗kf(a∗k)

Consider a J -dimensional quadrature grid containing q quadrature points in each dimension. Let
the vector of abscissas ak = (ak1 , . . . , akJ )′ be a point in this grid, and let wk = (wk1 , . . . , wkJ )′

be the vector of corresponding weights. The GHQ approximation to the likelihood for a given panel is
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Li =

q∑
k1=1

. . .

q∑
kJ=1

[{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lak)

}{
J∏
s=1

wks

}]
(16)

Rather than using regular GHQ, we can use mean–variance adaptive Gauss–Hermite quadrature.
Fixing the observed variables and model parameters in the integrand of (14), we see the posterior
density for ψi is proportional to{

Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lψi)

}
φ(ψi)

It is reasonable to assume that this posterior density can be approximated by a multivariate normal
density with mean vector µvi and variance matrix τvi. Instead of using the prior density of ψi as
the weighting distribution in the integral, we can use our approximation for the posterior density,

Li =

∫
<J

{∏Ni

t=1 f(y1it, . . . , yJit|zit,ui = Lψi)
}
φ(ψi)

φ(ψi,µvi, τvi)
φ(ψi,µvi, τvi) dψi

The likelihood is then approximated by

Li =

q∑
k1=1

. . .

q∑
kJ=1

[{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lαk)

}{
J∏
s=1

ωks

}]
(17)

where αk and ωks are the adaptive versions of the abscissas and weights after an orthogonalizing
transformation, which eliminates posterior covariances between elements of ψi. The posterior means
µvi and posterior variances τvi are computed iteratively by updating the posterior moments by using
the mean–variance adaptive Gauss–Hermite approximation, starting with a 0 mean vector and identity
variance matrix.

Then, the log likelihood for all panels is

lnL =

N∑
i=1

(
ln

q∑
k1=1

. . .

q∑
kJ=1

[{
Ni∏
t=1

f(y1it, . . . , yJit|zit,ui = Lαk)

}{
J∏
s=1

ωks

}])
(18)

As in the cross-sectional case, we can relax the assumption that the errors v1it, . . . , vJit are
multivariate normal with mean 0 and covariance Σ. We will allow the covariance matrix to vary
based on the M different levels of the binary or ordinal endogenous covariates wpoit: ω1, . . . ,ωM .
These are the different combinations of values for the covariates wpoit.

We use a potential-outcome framework for the outcome errors vJit. For the potential-outcome
errors v1Jit, . . ., vMJit, we have

vJit =

M∑
m=1

1(wpoit = ωm)vmJit
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For m = 1, . . . , M , vmJit and v1it, . . ., vHit are multivariate normal mean 0 and covariance

Σm =

[
σ2
m σ′mo

σmo Σo

]
For observations where wpoit = ωm, the likelihood can be derived with Σm in place of Σ.
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Postestimation commands
The following postestimation command is of special interest after eprobit and xteprobit:

Command Description

estat teffects treatment effects and potential-outcome means

The following standard postestimation commands are also available after eprobit and xteprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
†estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗forecast dynamic forecasts and simulations
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict means, probabilities, treatment effects, etc.
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
†suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
∗forecast, hausman, and lrtest are not appropriate with svy estimation results.

†suest and the survey data estat commands are not available after xteprobit.
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predict
Predictions after eprobit and xteprobit are described in

[ERM] eprobit predict predict after eprobit and xteprobit
[ERM] predict treatment predict for treatment statistics
[ERM] predict advanced predict’s advanced features

[ERM] eprobit predict describes the most commonly used predictions. If you fit a model with
treatment effects, predictions specifically related to these models are detailed in [ERM] predict
treatment. [ERM] predict advanced describes less commonly used predictions, such as predictions
of outcomes in auxiliary equations.

margins

Description for margins

margins estimates statistics based on fitted models. These statistics include marginal means,
marginal probabilities, potential-outcome means, average and conditional derivatives, average and
conditional effects, and treatment effects.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

Main

pr probability for binary or ordinal yj ; the default
mean mean
pomean potential-outcome mean
te treatment effect
tet treatment effect on the treated
xb linear prediction excluding all complications
pr(a,b) Pr(a < yj < b) for continuous yj
e(a,b) E(yj | a < yj < b) for continuous yj
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)} for continuous yj

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
See [ERM] Intro 7 for an overview of using margins and predict after eprobit and xteprobit.

For examples using margins, predict, and estat teffects, see Interpreting effects in [ERM] Intro 9
and see [ERM] Example 1a.

Methods and formulas
These methods build on the discussions in Methods and formulas of [ERM] eprobit.
Methods and formulas are presented under the following headings:

Predictions and inferences using the default asf
General prediction framework

Predictions and inferences using the default asf

In the probit model, for exogenous covariates xi and endogenous covariates wi, we have

yi = 1(xiβ+ wiβ2 + εi > 0)

where εi is a standard normal error.

Because εi is a normally distributed, mean 0, random variable, we can split it into two mean 0,
normally distributed, independent parts,

εi = ui + ψi

where ui = γε2i is the unobserved heterogeneity that gives rise to the endogeneity and ψi is
an idiosyncratic error term with variance σ2

ψ . Conditional on the covariates and the unobserved
heterogeneity, for one endogenous covariate, the probability that yi = 1 is

Pr(yi = 1|xi, wi, ui) = Φ

(
xiβ+ wiβ2 + ui

σψ

)

Default predictions and effects are computed based on the expression above. Including ui controls
for endogeneity. Thus, all effects computed using the expression above have a structural interpretation.
See Imbens and Newey (2009) and Wooldridge (2010) for a detailed description of structural functions
for models with endogeneity.

Our discussion easily extends to models for panel data with random effects. In this case, we have
N panels. Panel i = 1, . . . , N has observations t = 1, . . . , Ni, so we observe yit with random effect
αi and observation-level error εit. These errors are independent of each other. So the combined error
ξit = αi+εit is normal with mean 0 and variance 1+σ2

α, where σ2
α is the variance of αi. The results

discussed earlier can then be applied using the combined error ξit rather than the cross-sectional error.

All predictions after xteprobit assume the panel-level random effects (αi) are zero. Put another
way, predictions condition on the random effects being set to their means.
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General prediction framework

In this section, we discuss the general framework for predictions made after ERMs with multiple
auxiliary equations and conditioned on both the covariates and the instruments. The predictions
consider the total effect of all the covariates and instruments on the outcome.

First, assume that we have a model with random effects in each equation and a panel-data structure.
We have N panels. For panel i = 1, . . . , N , there are Ni observations, and for t = 1, . . . , Ni, we
have

y1it = g1it(w1itβ1 + v1it + u1i)

...

yHit = gHit(wHitβH + vHit + uHi)

yit = yJit = gJit(wJitβJ + vJit + uJi)

The observation-level errors v1it, . . . , vJit are multivariate normal with mean 0 and covariance Σ.
They are independent of the panel-level errors, or random effects u1i, . . . , uJi, which are multivariate
normal with mean 0 and covariance Σu. We further assume that the observation-level errors are
independent within panels.

We will perform prediction conditional on the observed covariates, so we can collapse the random
effects and observation-level errors. The new observation-level errors are ξjit = vjit + uji. These
errors, ξ1it, . . . , ξJit, are multivariate normal with mean 0 and variance Σξ = Σ + Σu.

In the following, we will derive prediction formulas for the cross-sectional case without a panel
structure, but our results will apply to the random-effects model we have just discussed, using the
combined covariance Σξ rather than the cross-sectional covariance matrix Σ.

In the cross-sectional case, we have H auxiliary equations with endogenous outcomes y1i, . . . , yHi.
We will treat the main outcome yit as stage J = H + 1, so yJi = yit. The ERMs that we fit with
eintreg, eoprobit, eprobit, and eregress are triangular, so we can order the equations such
that the first depends only on exogenous covariates and instruments—say, w1i = zi—and for j = 2,
. . . , J , equation j depends only on the exogenous covariates and instruments zi and the endogenous
covariates from equation h = j − 1 and y1i, . . . , yhi below. These are stored together in wji.

When we predict conditional probabilities for binary and ordinal outcomes, we condition on all
the endogenous and exogenous covariates and instruments that affect yji. Conditional probabilities
are calculated as the ratio of the joint density over the marginal density of the conditioning covariates.
For binary or ordinal outcome yji, we have

Pr(yji = Y |y1i, . . . , y(j−1)i, zi) =
f(Y, y1i, . . . , y(j−1)i|zi)
f(y1i, . . . , y(j−1)i|zi)

where the densities can be computed as described in [ERM] eprobit.
Now, suppose instead that yji is continuous. We can predict the probability that yji lies in the

range (lji, uji):

Pr(lji, uji) = Pr(lji < yji < uji|y1i, . . . , y(j−1)i, zi)

=

∫
(lji,uji)×V?

(j−1)i

φj(v1i, . . . , vji,Σj)dvjidv
?
(j−1)i

This integral can be evaluated using the methods discussed in Likelihood for multiequation models
in [ERM] eprobit.



eprobit postestimation — Postestimation tools for eprobit and xteprobit 167

The conditional mean of continuous outcome yji is

E(yji|wji) = wjiβj + E(vji|wji)

where wji contains the endogenous covariates y1i, . . . , y(j−1)i and exogenous covariates zi that
affect yji.

By conditioning on the binary and ordinal endogenous covariates y1i, . . . , y(j−1)i, the errors
vhi, . . . , vJi become truncated normal. Together with vji, they have a truncated multivariate distribu-
tion. So the mean of the continuous endogenous covariate is calculated using the moment formulas for
the truncated multivariate normal. The first and second moments of the doubly truncated multivariate
normal were derived in Manjunath and Wilhelm (2012). Tallis (1961) derived the first and second
moments of the multivariate normal with one-sided truncation.

A key result in Manjunath and Wilhelm (2012) is that∫ u1

l1

. . .

∫ ud

ld

εfφd(ε,Σ) dε1 . . . dεd =

d∑
k=1

σfk {Fk(lk)− Fk(uk)} (1)

where the functions Fk(·) are defined as

Fk(e) =

∫ u1

l1

. . .

∫ uk−1

lk−1

∫ uk+1

lk+1

φd(e1, . . . , ek−1, e, ek+1, . . . , ek,Σ)de1 . . . dek−1dek+1 . . . ded

The Fk(·) functions can be computed like the joint density in Likelihood for multiequation models
in [ERM] eprobit. So we have

E(vji|wji) =

∑J
k=j σjk {Fk(lki)− Fk(uki)}

Φ∗J(li,ui,Σj)

where lji = −∞ and uji =∞.

If there are continuous endogenous regressors in y1i, . . . , yji, we condition on them in calculating
(1). As in the calculation of the joint density in Likelihood for multiequation models in [ERM] eprobit,
we multiply by the marginal density and adjust the cutpoints and variance.

The constrained mean of continuous outcome yji, the mean of yji when yji falls between lji and
uji, is

E(lji, uji) = E(yji|wji, lji < yji < uji)

= wjiβj + E(vji|wji, lji −wjiβj < εji < vji −wjiβj)

We use the same method as for the unconstrained mean, with cutpoints lji−wjiβj and uji−wjiβj
instead of −∞ and ∞.

The expected value of continuous yji with censoring at lji and uji is

E(y?ji|wji) = lji1(wjiβj + εji < lji) + uji1(wjiβj + εji > uji)

+ (wjiβj + εji)1(lji ≤ wjiβj + εji ≤ uji)

where y?ji = max {lij ,min(yij , uij)}. This can be calculated using predictions we have already
discussed:

E(y?ji|wji) = Pr(−∞, lji)lji + Pr(lji, uji)E(lji, uji) + Pr(uji,∞)uji
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Sometimes, we model a continuous outcome yji that is the natural logarithm of another outcome
yeji. In this case, the conditional mean of yeji is

E(yeji|wji) = E { exp(yji)|wji} = E
{

exp
(
wjiβj + vji

)
wji

}
= exp

(
wjiβj

)
E { exp (vji) |wji}

As discussed earlier, vji can be truncated normal when we condition on wji. So the conditional
expectation above is the moment-generating function of a truncated normal random variable. This
function was also derived in Manjunath and Wilhelm (2012). Letting σj be the jth column of Σj ,
we have

E { exp (vji) |wji} = exp

(
σ2
j

2

)
Φ∗j (li − σj ,ui − σj ,Σj)

Φ∗j (li,ui,Σj)

All the predictions above can be made after estimation by using predict. By also specifying
either the pr or the pr(lji,uji) option in predict, we can obtain conditional probabilities for a
binary or ordinal outcome or the conditional probability that a continuous outcome lies in the specified
range (lji, uji).

By also specifying the mean option, we obtain the conditional mean of a continuous endogenous
covariate. The e(lji,uji) option is used to obtain the constrained mean, and ystar(lji,uji) is used
to obtain the expected value with censoring.

Prediction of treatment effects and potential-outcome means in models with endogenous covariates
use the above formulas for the conditional mean and probabilities applied to the potential outcomes
y1i, . . . , yTi rather than the observed yi. Methods and formulas for other predictions are given in the
Methods and formulas sections of [ERM] eoprobit, [ERM] eintreg, and [ERM] eregress.
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Title

eprobit predict — predict after eprobit and xteprobit

Description Syntax
Options for statistics Options for asfmethod
Option for counterfactuals Remarks and examples
Methods and formulas Also see

Description

In this entry, we show how to create new variables containing observation-by-observation predictions
after fitting a model with eprobit or xteprobit.

Syntax
You previously fit the model

eprobit y x1 . . . , . . .

The equation specified immediately after the eprobit command is called the main equation. It is

Pr(yi) = Pr(β0 + β1x1i + · · ·+ ei.y > 0)

Or perhaps you had panel data and you fit the model with xteprobit by typing

xteprobit y x1 . . . , . . .

Then the main equation would be

Pr(yij) = Pr(β0 + β1x1ij + · · ·+ ui.y + vij .y > 0)

In either case, predict calculates predictions for Pr(y) in the main equation. The other equations
in the model are called auxiliary equations or complications. Our discussion follows the cross-sectional
case with a single error term, but it applies to the panel-data case when we collapse the random
effects and observation-level error terms, eij .y = ui.y + vij .y.

All predictions after xteprobit assume the panel-level random effects (ui.y) are zero. Put another
way, predictions condition on random effects being set to their mean.
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The syntax of predict is

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic asfmethod counterfactual
]

statistic Description

Main

pr probability of a positive outcome; the default
xb linear prediction excluding all complications

asfmethod Description

Main

asf average structural function; the default
fixedasf fixed average structural function
noasf no average structural function adjustment

counterfactual Description

Main

target(valspecs) specify counterfactuals

valspecs specify the values for variables at which predictions are to be evaluated. Each valspec is of
the form

varname = #

varname = (exp)

varname = othervarname

For instance, target(valspecs) could be target(w1=0) or target(w1=0 w2=1).

Notes:

(1) predict can also calculate treatment-effect statistics. See [ERM] predict treatment.
(2) predict can also make predictions for the other equations in addition to the main-equation

predictions discussed here. It can also compute some rarely used statistics. See [ERM] predict
advanced.

Options for statistics

� � �
Main �

pr, the default, calculates the predicted probability of a positive outcome. In each observation, the
prediction is the probability conditioned on the covariates. Results depend on how complications
are handled, which is determined by the asfmethod and counterfactual options.

xb specifies that the linear prediction be calculated ignoring all complications.



eprobit predict — predict after eprobit and xteprobit 171

Options for asfmethod

� � �
Main �

asf, fixedasf, and noasf determine whether and how the average structural function (ASF) of the
specified statistic is computed. These options are not allowed with xb.

asf, the default, calculates the ASF of the statistic. Thus, the default when no statistic is specified
is the ASF of the probability of a positive outcome.

asf computes the statistic conditional on the errors of the endogenous variable equations. Put
another way, it is the statistic accounting for the correlation of the endogenous covariates with
the errors of the outcome equation. Derivatives and contrasts based on asf have a structural
interpretation. See margins for computing derivatives and contrasts.

fixedasf calculates a fixed ASF. It is the specified statistic computed using only the coefficients
and variables of the outcome equation. fixedasf does not condition on the errors of the
endogenous variable equations. Contrasts between two fixed counterfactuals averaged over the
whole sample have a potential-outcome interpretation. Intuitively, it is as if the values of the
covariates were fixed at a value exogenously by fiat. See margins for computing derivatives
and contrasts.

To be clear, derivatives and contrasts between two fixed counterfactuals using the default asf option
also have a potential-outcome interpretation. And, unlike fixedasf, they retain that interpretation
when computed over subpopulations for both linear and nonlinear models.

noasf calculates the statistic using the linear prediction with no adjustment. For extended regression
models, this is computationally equivalent to fixedasf. So fixedasf and noasf are synonyms.

Option for counterfactuals

� � �
Main �

target(valspecs) specifies counterfactual predictions. You specify a list of variables from the main
equation and values for them. Those values override the values of the variables calculating
β0 + β1x1i + · · ·. Use of target() is discussed in Remarks and examples of [ERM] eregress
predict.

Remarks and examples
Remarks are presented under the following headings:

Using predict after eprobit
How to think about nonlinear models

Using predict after eprobit

Predictions after fitting models with eprobit or xteprobit are handled the same as they are
after fitting models with eregress and xteregress. The issues are the same. See [ERM] eregress
predict.
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How to think about nonlinear models

Probit is a nonlinear model, and yet we just said that predictions after fitting models with eprobit
and xteprobit are handled the same as they are after fitting models with eregress. That statement
is partly true, not misleading, but false in its details.

The regression-based discussion that we routed you to is framed in terms of expected values. In
the nonlinear models, it needs to be framed in terms of distributional assumptions about the errors.
For instance, predict after eprobit does not predict the expected value (mean) of ei.y. It calculates
the probability that ei.y exceeds −xiβ. These details matter hugely in implementation but can be
glossed over for understanding the issues. For a full treatment of the issues, see Methods and formulas
in [ERM] eprobit.

Methods and formulas
See Methods and formulas in [ERM] eprobit postestimation.

Also see
[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] eprobit — Extended probit regression



Title

eregress — Extended linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

eregress fits a linear regression model that accommodates any combination of endogenous co-
variates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and
ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous.
A probit or tobit model may be used to account for endogenous sample selection.

xteregress fits a random-effects linear regression model that accommodates endogenous covari-
ates, treatment, and sample selection in the same way as eregress and also accounts for correlation
of observations within panels or within groups.

Quick start
Regression of y on x with continuous endogenous covariate y2 modeled by x and z

eregress y x, endogenous(y2 = x z)

Same as above, but adding continuous endogenous covariate y3 modeled by x and z2

eregress y x, endogenous(y2 = x z) endogenous(y3 = x z2)

Regression of y on x with binary endogenous covariate d modeled by x and z

eregress y x, endogenous(d = x z, probit)

Regression of y on x with endogenous treatment recorded in trtvar and modeled by x and z

eregress y x, entreat(trtvar = x z)

Regression of y on x with exogenous treatment recorded in trtvar

eregress y x, extreat(trtvar)

Random-effects regression of y on x using xtset data
xteregress y x

Regression of y on x with endogenous sample-selection indicator selvar modeled by x and z

eregress y x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2

eregress y x, select(selvar = x z) endogenous(y2 = x z2)

Same as above, but adding endogenous treatment recorded in trtvar and modeled by x and z3

eregress y x, select(selvar = x z) endogenous(y2 = x z2) ///
entreat(trtvar = x z3)

Same as above, but with random effects and without endogenous treatment
xteregress y x, select(selvar = x z) endogenous(y2 = x z2)
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Menu
eregress

Statistics > Endogenous covariates > Models adding selection and treatment > Linear regression

xteregress

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Linear
regression (RE)

Syntax
Basic linear regression with endogenous covariates

eregress depvar
[

indepvars
]
, endogenous(depvarsen = varlisten)

[
options

]
Basic linear regression with endogenous treatment assignment

eregress depvar
[

indepvars
]
, entreat(depvartr

[
= varlisttr

]
)
[

options
]

Basic linear regression with exogenous treatment assignment

eregress depvar
[

indepvars
]
, extreat(tvar)

[
options

]
Basic linear regression with sample selection

eregress depvar
[

indepvars
]
, select(depvars = varlists)

[
options

]
Basic linear regression with tobit sample selection

eregress depvar
[

indepvars
]
, tobitselect(depvars = varlists)

[
options

]
Basic linear regression with random effects

xteregress depvar
[

indepvars
] [

, options
]

Linear regression combining endogenous covariates, treatment, and selection

eregress depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, extensions options
]

Linear regression combining random effects, endogenous covariates, treatment, and selection

xteregress depvar
[

indepvars
] [

if
] [

in
] [

, extensions options
]
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extensions Description

Model

endogenous(enspec) model for endogenous covariates; may be repeated
entreat(entrspec) model for endogenous treatment assignment
extreat(extrspec) exogenous treatment
select(selspec) probit model for selection
tobitselect(tselspec) tobit model for selection

options Description

Model

noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points for integration over
four or more dimensions; default is intpoints(128)

triintpoints(#) set the number of integration (quadrature) points for integration over
three dimensions; default is triintpoints(10)

reintpoints(#) set the number of integration (quadrature) points for
random-effects integration; default is reintpoints(7)

reintmethod(intmethod) integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics

enspec is depvarsen = varlisten
[
, enopts

]
where depvarsen is a list of endogenous covariates. Each variable in depvarsen specifies an
endogenous covariate model using the common varlisten and options.

entrspec is depvartr
[
= varlisttr

] [
, entropts

]
where depvartr is a variable indicating treatment assignment. varlisttr is a list of covariates
predicting treatment assignment.
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extrspec is tvar
[
, extropts

]
where tvar is a variable indicating treatment assignment.

selspec is depvars = varlists
[
, selopts

]
where depvars is a variable indicating selection status. depvars must be coded as 0, indicating
that the observation was not selected, or 1, indicating that the observation was selected. varlists
is a list of covariates predicting selection.

tselspec is depvars = varlists
[
, tselopts

]
where depvars is a continuous variable. varlists is a list of covariates predicting depvars. The
censoring status of depvars indicates selection, where a censored depvars indicates that the
observation was not selected and a noncensored depvars indicates that the observation was
selected.

enopts Description

Model

probit treat endogenous covariate as binary
oprobit treat endogenous covariate as ordinal
povariance estimate a different variance for each level of a binary or an ordinal

endogenous covariate
pocorrelation estimate different correlations for each level of a binary or an ordinal

endogenous covariate
nomain do not add endogenous covariate to main equation
nore do not include random effects in model for endogenous covariate
noconstant suppress constant term

nore is available only with xteregress.

entropts Description

Model

povariance estimate a different variance for each potential outcome
pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nointeract do not interact treatment with covariates in main equation
nore do not include random effects in model for endogenous treatment
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteregress.

extropts Description

Model

povariance estimate a different variance for each potential outcome
pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nointeract do not interact treatment with covariates in main equation
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selopts Description

Model

nore do not include random effects in selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteregress.

tselopts Description

Model
∗ll(varname | #) left-censoring variable or limit
∗ul(varname | #) right-censoring variable or limit
main add censored selection variable to main equation
nore do not include random effects in tobit selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
∗ You must specify either ll() or ul().
nore is available only with xteregress.

indepvars, varlisten, varlisttr, and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvars, and varlists may contain time-series

operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, collect, jackknife, and statsby are allowed with eregress and xteregress. rolling and

svy are allowed with eregress. See [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with eregress; see [U] 11.1.6 weight.
reintpoints() and reintmethod() are available only with xteregress.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec),
tobitselect(tselspec); see [ERM] ERM options.

noconstant, offset(varnameo), constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype); see [ERM] ERM options.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intpoints(#), triintpoints(#), reintpoints(#), reintmethod(intmethod); see [ERM] ERM
options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize.

The default technique for eregress is technique(nr). The default technique for xteregress
is technique(bhhh 10 nr 2).

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with eregress and xteregress but are not shown in the dialog
box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
eregress and xteregress fit models that we refer to as “extended linear regression models”,

meaning that they accommodate endogenous covariates, nonrandom treatment assignment, endogenous
sample selection, and panel data or other grouped data.

eregress fits models for cross-sectional data (one-level models). eregress can account for
endogenous covariates, treatment, and sample selection, whether these complications arise individually
or in combination.

xteregress fits random-effects models (two-level models) for panel data or grouped data.
xteregress accounts for endogenous covariates, treatment, and sample selection in the same way
as eregress and also accounts for within-panel or within-group correlation among observations.

In this entry, you will find information on the syntax for the eregress and xteregress commands.
You can see Methods and formulas for a full description of the models that can be fit with eregress
and xteregress and details about how those models are fit.

More information on extended linear regression models is found in the separate introductions and
example entries. We recommend reading those entries to learn how to use eregress and xteregress.
Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eregress and xteregress and the other extended regression commands
for interval, binary, and ordinal outcomes, see [ERM] Intro 1–[ERM] Intro 9.

[ERM] Intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] Intro 2 provides background on the four types of models—linear regression, interval
regression, probit regression, and ordered probit regression—that can be fit using ERM commands.

[ERM] Intro 3 considers the problem of endogenous covariates and how to solve it using ERM
commands.

[ERM] Intro 4 gives an overview of endogenous sample selection and using ERM commands to
account for it.

[ERM] Intro 5 covers nonrandom treatment assignment and how to account for it using eregress
or any of the other ERM commands.
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[ERM] Intro 6 covers random-effects models for panel data and other grouped data. It discusses
xteregress and the other ERM commands for panel data.

[ERM] Intro 7 discusses interpretation of results. You can interpret coefficients from eregress
and xteregress in the usual way, but this introduction goes beyond the interpretation of
coefficients. We demonstrate how to find answers to interesting questions by using margins. If
your model includes an endogenous covariate or an endogenous treatment, the use of margins
differs from its use after other estimation commands, so we strongly recommend reading this
intro if you are fitting these types of models.

[ERM] Intro 8 will be helpful if you are familiar with heckman, ivregress, etregress,
xtreg, or xtivreg and other commands that address endogenous covariates, sample selection,
nonrandom treatment assignment, or random effects. This introduction is a Rosetta stone that
maps the syntax of those commands to the syntax of eregress and xteregress.

[ERM] Intro 9 walks you through an example that gives insight into the concepts of endogenous
covariates, treatment assignment, and sample selection while fitting models with eregress
that address these complications. This intro also demonstrates how to interpret results by using
margins and estat teffects.

Additional examples are presented in [ERM] Example 1a–[ERM] Example 9. For examples using
eregress, see

[ERM] Example 1a Linear regression with continuous endogenous covariate
[ERM] Example 2a Linear regression with binary endogenous covariate
[ERM] Example 2b Linear regression with exogenous treatment
[ERM] Example 2c Linear regression with endogenous treatment

For examples using xteregress, see

[ERM] Example 7 Random-effects regression with continuous endogenous covariate
[ERM] Example 8a Random-effects regression with constraint and endogenous covariate
[ERM] Example 8b Random-effects, endogenous covariate, and endogenous sample selection

See Examples in [ERM] Intro for an overview of all the examples. All examples may be interesting
because they handle complications in the same way.

eregress and xteregress fit many models discussed in the literature. For example, eregress
can fit the linear regression model with endogenous sample selection (Heckman 1976), the linear
regression model with an endogenous treatment (Heckman 1978; Maddala 1983), and the linear
regression model with a tobit selection equation (Amemiya 1985; Wooldridge 2010, sec. 19.7).
eregress also supports the linear regression model with endogenous regressors and endogenous
sample selection discussed in Wooldridge (2010, sec 19.6) along with the tobit selection regression
with endogenous regressors discussed in Wooldridge (2010, sec 19.7).

For panel data, xteregress can fit the linear regression model with random effects discussed in
Baltagi (2013, chap. 2) and Wooldridge (2020, chap. 14). The xteregress command can also fit the
linear regression model with an endogenous treatment and random effects discussed in Drukker (2016)
and the linear regression model with random effects and endogenous covariates discussed in Balt-
agi (2013). Roodman (2011) investigated linear regression models with endogenous covariates and
endogenous sample selection and demonstrated how multiple observational data complications could
be addressed with a triangular model structure. He and Tamás Bartus showed how random effects
could be used in the triangular model structure in Bartus and Roodman (2014). Roodman’s work has
been used to model processes like the effect of aphid infestations and virus outbreaks on crop yields
(Elbakidze, Lu, and Eigenbrode 2011) and the effect of calorie intake per day on food security in
poor neighborhoods (Maitra and Rao 2014).
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Stored results
eregress stores the following in e():

Scalars
e(N) number of observations
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) eregress
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

xteregress stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(N selected) number of selected observations
e(N nonselected) number of nonselected observations
e(k) number of parameters
e(k cat#) number of categories for the #th depvar, ordinal
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(n quad) number of integration points for multivariate normal
e(n quad3) number of integration points for trivariate normal
e(n requad) number of integration points for random effects
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) xteregress
e(cmdline) command as typed
e(depvar) names of dependent variables
e(tsel ll) left-censoring limit for tobit selection
e(tsel ul) right-censoring limit for tobit selection
e(ivar) variable denoting groups
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(reintmethod) integration method for random effects
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved



182 eregress — Extended linear regression

Matrices
e(b) coefficient vector
e(cat#) categories for the #th depvar, ordinal
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here are for the linear model. The estimators implemented in

eregress and xteregress are maximum likelihood estimators covered by the results in chapter 13
of Wooldridge (2010) and White (1996).

The log-likelihood functions maximized by eregress and xteregress are implied by the
triangular structure of the model. Specifically, the joint distribution of the endogenous variables is a
product of conditional and marginal distributions because the model is triangular. For a few of the
many relevant applications of this result in literature, see chapter 10 of Amemiya (1985); Heckman
(1976, 1979); chapter 5 of Maddala (1983); Maddala and Lee (1976); sections 15.7.2, 15.7.3, 16.3.3,
17.5.2, and 19.7.1 in Wooldridge (2010); and Wooldridge (2014). Roodman (2011) and Bartus and
Roodman (2014) used this result to derive the formulas discussed below.

Methods and formulas are presented under the following headings:
Introduction
Endogenous covariates

Continuous endogenous covariates
Binary and ordinal endogenous covariates

Treatment
Endogenous sample selection

Probit endogenous sample selection
Tobit endogenous sample selection

Random effects
Combinations of features
Confidence intervals

Introduction

A linear regression of outcome yi on covariates xi may be written as

yi = xiβ+ εi

where the error εi is normal with mean 0 and variance σ2. The log likelihood is

lnL =

N∑
i=1

wi lnφ
(
yi − xiβ, σ

2
)
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The conditional mean of yi is
E(yi|xi) = xiβ

If you are willing to take our word for some derivations and notation, the following is complete.
Longer explanations and derivations for some terms and functions are provided in Methods and
formulas of [ERM] eprobit. For example, we need the two-sided probability function Φ∗d that is
discussed in Introduction in [ERM] eprobit.

If you are interested in all the details, we suggest you read Methods and formulas of [ERM] eprobit
in its entirety before reading this section. Here we mainly show how the complications that arise in
ERMs are handled in a linear regression framework.

Endogenous covariates

Continuous endogenous covariates

A linear regression of yi on exogenous covariates xi and C continuous endogenous covariates
wci has the form

yi = xiβ+ wciβc + εi

wci = zciAc + εci

The vector zci contains variables from xi and other covariates that affect wci. For the model to
be identified, zci must contain one extra exogenous covariate not in xi for each of the endogenous
regressors in wci. The unobserved errors εi and εci are multivariate normal with mean 0 and covariance

Σ =

[
σ2 σ′1c
σ1c Σc

]

The log likelihood is

lnL =

N∑
i=1

wi lnφC+1(ri,Σ)

where
ri = [ yi − xi wci − zciAc ]

The conditional mean of yi is

E(yi|xi,wci, zci) = xiβ+ wciβc + σ′1cΣ
−1
c (wci − zciAc)

′

Binary and ordinal endogenous covariates

Here we begin by formulating the linear regression of yi on exogenous covariates xi and B
binary and ordinal endogenous covariates wbi = [wb1i, . . . , wbBi]. Indicator (dummy) variables for
the levels of each binary and ordinal covariate are used in the model. You can also interact other
covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

The binary and ordinal endogenous covariates wbi are formulated as in Binary and ordinal
endogenous covariates in [ERM] eprobit.
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The model for the outcome can be formulated with or without different variance and correlation
parameters for each level of wbi. Level-specific parameters are obtained by specifying povariance
or pocorrelation in the endogenous() option.

If the variance and correlation parameters are not level specific, we have

yi = xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εi

The windbji vectors are defined in Binary and ordinal endogenous covariates in [ERM] eprobit. The
binary and ordinal endogenous errors εb1i, . . . , εbBi and outcome error εi are multivariate normal
with mean 0 and covariance

Σ =

[
Σb σ1b

σ′1b σ2

]
From here, we discuss the model with ordinal endogenous covariates. The results for binary

endogenous covariates are similar.

Using results from Likelihood for multiequation models in [ERM] eprobit, we can write the joint
density of yi and wbi using the conditional density of εb1i, . . . , εbBi on εi.

Define
ri = yi − (xiβ+ windb1iβb1 + · · ·+ windbBiβbB)

Let

µb|1,i =
σ′1b
σ2

ri = [ eb1i . . . ebBi ]

Σb|1 = Σb −
σ1bσ

′
1b

σ2

For j = 1, . . . , B and h = 0, . . . , Bj , let

cbjih =


−∞ h = 0

κbjh − zbjiαbj − ebji h = 1, . . . , Bj − 1

∞ h = Bj

So, for j = 1, . . . , B, the probability for wbji has lower limit

lbji = cbji(h−1) if wbji = vbjh

and upper limit
ubji = cbjih if wbji = vbjh

Let
li = [ lb1i . . . lbBi ]

ui = [ub1i . . . ubBi ]

So, the log likelihood for this model is

lnL =

N∑
i=1

wi ln
{

Φ∗B(li,ui,Σb|1)φ
(
ri, σ

2
)}
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The expected value of yi conditional on wbi can be calculated using the techniques discussed in
Predictions using the full model in [ERM] eprobit postestimation.

When the endogenous ordinal variables are different treatments, holding the variance and correlation
parameters constant over the treatment levels is a constrained form of the potential-outcome model. In
an unconstrained potential-outcome model, the variance of the outcome and the correlations between
the outcome and the treatments—the endogenous ordinal regressors wbi—vary over the levels of each
treatment.

In this unconstrained model, there is a different potential-outcome error for each level of each
treatment. For example, when the endogenous treatment variable w1 has three levels (0, 1, and 2) and
the endogenous treatment variable w2 has four levels (0, 1, 2, and 3), the unconstrained model has
12 = 3 × 4 outcome errors. So there are 12 outcome error variance parameters. Because there is a
different correlation between each potential outcome and each endogenous treatment, there are 2× 12
correlation parameters between the potential outcomes and the treatments in this example model.

We denote the number of different combinations of values for the endogenous treatments wbi by
M , and we denote the vector of values in each combination by vj (j ∈ {1, 2, . . . ,M}). Letting
kwp be the number of levels of endogenous ordinal treatment variable p ∈ {1, 2, . . . , B} implies that
M = kw1 × kw2 × · · · × kwB .

Denoting the outcome errors ε1i, . . ., εMi, we have

y1i = xiβ+ windb1iβb1 + · · ·+ windbBiβbB + ε1i

...

yMi = xiβ+ windb1iβb1 + · · ·+ windbBiβbB + εMi

yi =

M∑
j=1

1(wbi = vj)yji

For j = 1, . . . , M , the endogenous errors εb1i, . . . , εbBi and outcome error εji are multivariate
normal with 0 mean and covariance

Σj =

[
Σb σj1b
σ′j1b σ2

j

]
Now let

σi,b =

M∑
j=1

1(wbi = vj)σj

Σi,b|1 =

M∑
j=1

1(wbi = vj)

(
Σb −

σj1bσ
′
j1b

σ2
j

)

Now the log likelihood for this model is

lnL =

N∑
i=1

wi ln
{

Φ∗B(li,ui,Σi,b|1)φ
(
ri, σ

2
i,b

)}
As in the other case, the expected value of yi conditional on wbi can be calculated using the

techniques discussed in Predictions using the full model in [ERM] eprobit postestimation.
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Treatment
In the potential-outcomes framework, the treatment ti is a discrete variable taking T values,

indexing the T potential outcomes of the outcome yi: y1i, . . . , yTi.

When we observe treatment ti with levels v1, . . . , vT , we have

yi =

T∑
j=1

1(ti = vj)yji

So for each observation, we observe only the potential outcome associated with that observation’s
treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect
estimation method. See [CAUSAL] teffects intro advanced. We do not model the treatment assignment
process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent
to what we provide here for endogenous treatments. The treatment effect on the treated for xi for an
exogenous treatment is equivalent to what we provide here for the endogenous treatment when the
correlation parameter between the outcome and treatment errors is set to 0. The average treatment
effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous
manner to what we describe here for endogenous treatments. We can also obtain different variance
parameters for the different exogenous treatment groups by specifying povariance in extreat().

From here, we assume an endogenous treatment ti. As in Treatment in [ERM] eprobit, we model
the treatment assignment process with a probit or ordered probit model, and we call the treatment
assignment error εti. A linear regression of yi on exogenous covariates xi and endogenous treatment
ti taking values v1, . . . , vT has the form

y1i = xiβ1 + ε1i

...

yTi = xiβT + εTi

yi =

T∑
j=1

1(ti = vj)yji

This model can be formulated with or without different variance and correlation parameters for each
potential outcome. Potential-outcome specific parameters are obtained by specifying povariance or
pocorrelation in the entreat() option.

If the variance and correlation parameters are not potential-outcome specific, for j = 1, . . . , T ,
εji and εti are bivariate normal with mean 0 and covariance

Σ =

[
σ2 σρ1t
σρ1t 1

]
The treatment is exogenous if ρ1t = 0. Note that we did not specify the structure of the correlations

between the potential-outcome errors. We do not need information about these correlations to estimate
POMs and treatment effects because all covariates and the outcome are observed in observations from
each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary
treatment models are similar.
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As in Binary and ordinal endogenous covariates, using the results from Likelihood for multiequation
models in [ERM] eprobit, we can write the joint density of yi and ti using the conditional density
of the treatment error εti on the outcome errors εi1, . . . , εTi.

Define
ri = yi − xiβj if ti = vj

The log likelihood for the model is

lnL =

N∑
i=1

wi ln
{

Φ∗1

(
lti −

ρ1t
σ
ri, uti −

ρ1t
σ
ri, 1− ρ21t

)
φ
(
ri, σ

2
)}

where lti and uti are the limits for the treatment probability given in Treatment in [ERM] eprobit.
The treatment effect yji − y1i is the difference in the outcome for individual i if the individual

receives the treatment ti = vj and what the difference would have been if the individual received the
control treatment ti = v1 instead.

The conditional POM for treatment group j is

POMj(xi) = E (yji|xi) = xiβj

For treatment group j, the treatment effect (TE) conditioned on xi is

TEj(xi) = E (yji − y1i|xi) = POMj(xi)− POM1(xi)

For treatment group j, the treatment effect on the treated (TET) in group h for covariates xi is

TETj(xi, ti = vh) = E (yji − y1i|xi, ti = vh)

= xiβj − xiβ1 + E (εji|xi, ti = vh)− E (ε1i|xi, ti = vh)

Remembering that the outcome errors and the treatment error εti are multivariate normal, for
j = 1, . . . , T , we can decompose εji such that

εji = σρ1tεti + ψji

where ψji has mean 0.

It follows that
TETj(xi, ti = vh) = xiβj − xiβ1

We can take the expectation of these conditional predictions over the covariates to get population
average parameters. The estat teffects or margins command is used to estimate the expectations
as predictive margins once the model is estimated with eregress. The POM for treatment group j is

POMj = E (yji) = E {POMj(xi)}

The ATE for treatment group j is

ATEj = E (yji − y1i) = E {TEj(xi)}
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For treatment group j, the average treatment effect on the treated (ATET) in treatment group h is

ATETjh = E (yji − y1i|ti = vh) = E {TETj(xi, ti = vh)|ti = vh}

The conditional mean of yi at treatment level vj is

E(yi|xi, zti, ti = vj) = xiβj + E(εi|xi, zti, ti = vj)

In Predictions using the full model in [ERM] eprobit postestimation, we discuss how the conditional
mean of εi is calculated.

If the variance and correlation parameters are potential-outcome specific, for j = 1, . . . , T , εji
and εti are bivariate normal with mean 0 and covariance

Σj =

[
σ2
j σjρjt

σjρjt 1

]
Now define

ρi =

T∑
j=1

1(ti = vj)ρjt

σi =

T∑
j=1

1(ti = vj)σj

The log likelihood for the model is

lnL =

N∑
i=1

wi ln
{

Φ∗1

(
lti −

ρi
σi
ri, uti −

ρi
σi
ri, 1− ρ2i

)
φ
(
ri, σ

2
i

)}
The definitions for the potential-outcome means and treatment effects are the same as in the case

where the variance and correlation parameters did not vary by potential outcome. For the treatment
effect on the treated (TET) of group j in group h, we have

TETj(xi, ti = vh) = E (yji − y1i|xi, ti = vh)

= xiβj − xiβ1 + E (εji|xi, ti = vh)− E (ε1i|xi, ti = vh)

The outcome errors and the treatment error εti are multivariate normal, so for j = 1, . . . , T , we can
decompose εji such that

εji = σjρjεti + ψji

where ψji has mean 0 and is independent of ti.

It follows that
TETj(xi, ti = vh) = E (yji − y1i|xi, ti = vh)

= xiβj − xiβ1 + (σjρj − σ1ρ1)E (εti|xi, ti = vh)

The mean of εti conditioned on ti and the exogenous covariates xi can be determined using
the formulas discussed in Predictions using the full model in [ERM] eprobit postestimation. It is
nonzero. So the treatment effect on the treated will be equal only to the treatment effect under
an exogenous treatment or when the correlation and variance parameters are identical between the
potential outcomes.

As in the other case, we can take the expectation of these conditional predictions over the
covariates to get population-averaged parameters. The estat teffects or margins command is
used to estimate the expectations as predictive margins once the model is fit with eregress.
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Endogenous sample selection

Probit endogenous sample selection

A linear regression for outcome yi with selection on si has the form

yi = xiβ+ εi > 0

si = 1 (zsiαs + εsi > 0)

where xi are covariates that affect the outcome and zsi are covariates that affect selection. The
outcome yi is observed if si = 1 and is not observed if si = 0. The unobserved errors εi and εsi are
normal with mean 0 and covariance

Σ =

[
σ2 σρ1s
σρ1s 1

]

As in the previous section, using the results from Likelihood for multiequation models in [ERM] epro-
bit, we can write the joint density of yi and si using the conditional density of the selection error
εsi on the outcome error εi.

For the selection indicator si, we have lower and upper limits

lsi =


−∞ si = 0

−zsiαs − ρ1s
σ (yi − xiβ) si = 1

usi =

{−zsiαs si = 0

∞ si = 1

The log likelihood for the model is

lnL =

N∑
i=1

wi lnΦ∗1
(
lsi, usi, 1− siρ21s

)
+
∑
i∈S

wi lnφ
(
yi − xiβ, σ

2
)

where S is the set of observations for which yi is observed.

The conditional mean of yi is
E(yi|xi) = xiβ

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection uses
a censored continuous sample-selection indicator. We allow the selection variable to be left-censored
or right-censored.

A linear regression model for outcome yi with tobit selection on si has the form

yi = xiβ+ εi > 0
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We observe the selection indicator si, which indicates the censoring status of the latent selection
variable s?i ,

s?i = zsiαs + εsi

si =


li s?i ≤ li

s?i li < s?i < ui

ui s?i ≥ ui
where zsi are covariates that affect selection and li and ui are fixed lower and upper limits.

The outcome yi is observed when s?i is not censored (li < s?i < ui). The outcome yi is not
observed when s?i is left-censored (s?i ≤ li) or s?i is right-censored (s?i ≥ ui). The unobserved errors
εi and εsi are normal with mean 0 and covariance[

σ2 σ1s
σ1s σ2

s

]

For the selected observations, we can treat si as a continuous endogenous regressor, as in
Continuous endogenous covariates. In fact, si may even be used as a regressor for yi in eregress
(specify tobitselect(. . . main)). On the nonselected observations, we treat si like the probit
sample-selection indicator in Probit endogenous sample selection.

The log likelihood is

lnL =
∑
i∈S

wi lnφ2 (yi − xiβ, si − zsiαs,Σ)

+
∑
i∈L

wi lnΦ∗1(lli, uli, 1)

+
∑
i∈U

wi lnΦ∗1(lui, uui, 1)

where S is the set of observations for which yi is observed, L is the set of observations where s?i
is left-censored, and U is the set of observations where s?i is right-censored. The lower and upper
limits for selection— lli, uli, lui, and uui—are defined in Tobit endogenous sample selection in
[ERM] eprobit.

When si is not a covariate in xi, we use the standard conditional mean formula,

E(yi|xi) = xiβ

Otherwise, we use
E(yi|xi, si, zsi) = xiβ+

σ1s
σ2
s

(si − zsiαs)
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Random effects
For a linear regression with random effects, we observe panel data. For panel i = 1, . . . , N and

observation j = 1, . . . , Ni, a linear regression of outcome yij on covariates xij may be written as

yij = xijβ+ εij + ui

The random effect ui is normal with mean 0 and variance σ2
u. It is independent of the observation-level

error εij , which is normal with mean 0 and variance σ2.

We derive the likelihood by using the conditional density of yij on the random effect ui and the
marginal density of ui. Multiplying them together, we have the joint density, which is integrated over
ui.

Let
lij(u) = φ

(
yij − xijβ− u, σ2

)
The likelihood for panel i is

Li =

∫ ∞
−∞

φ

(
ui
σu

) Ni∏
j=1

lij(ui)dui

We can approximate this integral using Gauss–Hermite quadrature. For q-point Gauss–Hermite
quadrature, let the abscissa and weight pairs be denoted by (aki, wki), k = 1, . . . , q. The Gauss–
Hermite quadrature approximation is then

∫ ∞
−∞

f(x) exp(−x2) dx ≈
q∑

k=1

wkif(aki)

The default approximation used by xteregress is mean–variance adaptive Gauss–Hermite quadra-
ture. This chooses optimal abscissa and weights for each panel. See Likelihood for multiequation
models in [ERM] eprobit for more information on the use of mean–variance adaptive Gauss–Hermite
quadrature.

Using the quadrature approximation, the log likelihood is

lnL =

N∑
i=1

ln


q∑

k=1

wki

Ni∏
j=1

lij(σuaki)


The conditional mean of yij is

E(yij |xij) = xijβ

Combinations of features
Extended linear regression models that involve multiple features can be formulated using the

techniques discussed in Likelihood for multiequation models in [ERM] eprobit. Essentially, the
density of the observed endogenous covariates can be written in terms of the unobserved normal
errors. The observed endogenous and exogenous covariates determine the range of the errors, and the
joint density can be evaluated as multivariate normal probabilities and densities.
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Confidence intervals
The estimated variances will always be nonnegative, and the estimated correlations will always fall

in (−1, 1). To obtain confidence intervals that accommodate these ranges, we must use transformations.

We use the log transformation to obtain the confidence intervals for variance parameters and
the atanh transformation to obtain confidence intervals for correlation parameters. For details, see
Confidence intervals in [ERM] eprobit.
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Also see
[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] eregress predict — predict after eregress and xteregress

[ERM] predict advanced — predict’s advanced features

[ERM] predict treatment — predict for treatment statistics

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 9 — Conceptual introduction via worked example

[CAUSAL] etregress — Linear regression with endogenous treatment effects

[R] heckman — Heckman selection model

[R] ivregress — Single-equation instrumental-variables regression

[R] regress — Linear regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtheckman — Random-effects regression with sample selection

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[XT] xtivreg — Instrumental variables and two-stage least squares for panel-data models

[U] 20 Estimation and postestimation commands



Title

eregress postestimation — Postestimation tools for eregress and xteregress

Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation command is of special interest after eregress and xteregress:

Command Description

estat teffects treatment effects and potential-outcome means

The following standard postestimation commands are also available after eregress and
xteregress:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
†estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗forecast dynamic forecasts and simulations
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict means, probabilities, treatment effects, etc.
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
†suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses
∗forecast, hausman, and lrtest are not appropriate with svy estimation results.

†suest and the survey data estat commands are not available after xteregress.
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predict
Predictions after eregress and xteregress are described in

[ERM] eregress predict predict after eregress
[ERM] predict treatment predict for treatment statistics
[ERM] predict advanced predict’s advanced features

[ERM] eregress predict describes the most commonly used predictions. If you fit a model with
treatment effects, predictions specifically related to these models are detailed in [ERM] predict
treatment. [ERM] predict advanced describes less commonly used predictions, such as predictions
of outcomes in auxiliary equations.

margins

Description for margins

margins estimates statistics based on fitted models. These statistics include marginal means,
marginal probabilities, potential-outcome means, average and conditional derivatives, average and
conditional effects, and treatment effects.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

Main

mean mean; the default
pr probability for binary or ordinal yj
pomean potential-outcome mean
te treatment effect
tet treatment effect on the treated
xb linear prediction excluding all complications
pr(a,b) Pr(a < yj < b) for continuous yj
e(a,b) E(yj | a < yj < b) for continuous yj
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)} for continuous yj
expmean calculate E { exp(yi)}

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
See [ERM] Intro 7 for an overview of using margins and predict after eregress. For examples

using margins, predict, and estat teffects, see Interpreting effects in [ERM] Intro 9 and see
[ERM] Example 1a.

Methods and formulas
This section contains methods and formulas for predictions and inference for the default average

structural function. Methods and formulas for all other predictions are given in Methods and formulas
of [ERM] eregress. We begin with the cross-sectional model and then extend our discussion to the
random effect models that we use for panel data.

In the linear regression model, for exogenous covariates xi and C endogenous regressors wi, we
have

yi = xiβ+ wiβ2 + εi

where the error εi is normal and correlated with wi.

Because εi is a normally distributed, mean 0, random variable, we can split it into two mean 0,
normally distributed, independent parts,

εi = γε2i + ψi

where ε2i is the unobserved heterogeneity that gives rise to the endogeneity and ψi is an idiosyncratic
error term with variance σ2

ψ .

Conditional on the covariates and the unobserved heterogeneity, the conditional mean of yi is

E(yi|xi,wi, εi) = xiβ+ wiβ2 + γε2i

Predictions and effects are computed based on the expression above. Including ε2i controls for
endogeneity. Thus, all effects computed using the expression above have a structural interpretation.
See Imbens and Newey (2009) and Wooldridge (2010) for a detailed description of structural functions
for models with endogeneity.

Our discussion easily extends to models for panel data with random effects. In this case, we
have N panels. Panel i = 1, . . . , N has observations t = 1, . . . , Ni, so we observe yit with random
effect αi and observation-level error εit. These errors are independent of each other. So the combined
error ξit = αi + εit is normal with mean 0 and variance σ2 + σ2

α, where σ2
α is the variance of

αi. The results discussed earlier can then be applied using the combined error ξit rather than the
cross-sectional error.

All predictions after xteregress assume the panel-level random effects (αi) are zero. Put another
way, predictions condition on the random effects being set to their means.
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Also see
[ERM] eregress — Extended linear regression

[ERM] eregress predict — predict after eregress and xteregress

[ERM] predict treatment — predict for treatment statistics

[ERM] predict advanced — predict’s advanced features

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[U] 20 Estimation and postestimation commands



Title

eregress predict — predict after eregress and xteregress

Description Syntax
Options for statistics Options for asfmethod
Option for counterfactuals Remarks and examples
Methods and formulas References
Also see

Description

In this entry, we show how to create new variables containing observation-by-observation predictions
after fitting a model with eregress or xteregress.

Syntax
You previously fit the model

eregress y x1 . . . , . . .

The equation specified immediately after the eregress command is called the main equation. It is

yi = β0 + β1x1i + · · ·+ ei.y

Or perhaps you had panel data and you fit the model with xteregress by typing

xteregress y x1 . . . , . . .

Then the main equation would be

yij = β0 + β1x1ij + · · ·+ ui.y + vij .y

In either case, predict calculates predictions for y in the main equation. The other equations in
the model are called auxiliary equations or complications. Our discussion follows the cross-sectional
case with a single error term, but it applies to the panel-data case when we collapse the random
effects and observation-level error terms, eij .y = ui.y + vij .y.

All predictions after xteregress assume the panel-level random effects (ui.y) are zero. Put
another way, predictions condition on random effects being set to their mean.
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The syntax of predict is

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic asfmethod counterfactual
]

statistic Description

Main

mean linear prediction; the default
xb linear prediction excluding all complications
expmean expected value of exponential of the mean; E { exp(mean)}

asfmethod Description

Main

asf average structural function; the default
fixedasf fixed average structural function
noasf no average structural function adjustment

counterfactual Description

Main

target(valspecs) specify counterfactuals

valspecs specify the values for variables at which predictions are to be evaluated. Each valspec is of
the form

varname = #

varname = (exp)

varname = othervarname

For instance, target(valspecs) could be target(w1=0) or target(w1=0 w2=1).

Notes:

(1) predict can also calculate treatment-effect statistics. See [ERM] predict treatment.

(2) predict can also make predictions for the other equations in addition to the main-equation
predictions discussed here. It can also compute some rarely used statistics. See [ERM] predict
advanced.

Options for statistics

� � �
Main �

mean, the default, specifies that the linear prediction be calculated. In each observation, the linear
prediction is the expected value of the dependent variable conditioned on the covariates. Results
depend on how complications are handled, which is determined by the asfmethod and counterfactual
options.
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xb specifies that the linear prediction be calculated ignoring all complications. This prediction
corresponds to what would be observed in data in which all the covariates in the main equation
were exogenous.

expmean calculates the expected value of the exponential of the mean. This is particularly useful
when the dependent variable is estimated in the log metric but you want to express results in the
natural metric of the dependent variable. expmean accounts for integrating over the error when
forming the expected value of the exponential of the mean. That expectation is not zero.

As with the nonexponentiated mean, results depend on how complications are handled, which is
determined by the asfmethod and counterfactual options. So, by default, the exponential mean
has a structural interpretation because the default asf option has computed the average structural
function of the exponential mean.

Options for asfmethod

� � �
Main �

asf, fixedasf, and noasf determine whether and how the average structural function (ASF) of the
specified statistic is computed. These options are not allowed with xb.

asf, the default, calculates the ASF of the statistic. Thus, the default when no statistic is specified
is the ASF of the linear prediction.

asf computes the statistic conditional on the errors of the endogenous variable equations. Put
another way, it is the statistic accounting for the correlation of the endogenous covariates with
the errors of the outcome equation. Derivatives and contrasts based on asf have a structural
interpretation. See margins for computing derivatives and contrasts.

fixedasf calculates a fixed ASF. It is the specified statistic computed using only the coefficients
and variables of the outcome equation. fixedasf does not condition on the errors of the
endogenous variable equations. Contrasts between two fixed counterfactuals averaged over the
whole sample have a potential-outcome interpretation. Intuitively, it is as if the values of the
covariates were fixed at a value exogenously by fiat. See margins for computing derivatives
and contrasts.

To be clear, derivatives and contrasts between two fixed counterfactuals using the default asf option
also have a potential-outcome interpretation. And, unlike fixedasf, they retain that interpretation
when computed over subpopulations for both linear and nonlinear models.

noasf calculates the statistic using the linear prediction with no adjustment. For extended regression
models, this is computationally equivalent to fixedasf. So fixedasf and noasf are synonyms.

Option for counterfactuals

� � �
Main �

target(valspecs) specifies counterfactual predictions. You specify a list of variables from the main
equation and values for them. Those values override the values of the variables calculating
β0 + β1x1i + · · ·. Use of target() is discussed in Remarks and examples below.
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Remarks and examples
Remarks are presented under the following headings:

How to think about the model you fit
The default asf mean calculation for predictions
The fixedasf calculation for predictions

How to think about the model you fit

You have fit a model, perhaps by typing
. eregress y x1 x2 (1)

or
. eregress y x1 x2, endogenous(x1 = z1 z2, nomain) (2)

The equation specified immediately after the eregress command is called the main equation. In
the models above, it is

. eregress y x1 x2 (1)

. eregress y x1 x2 (2)

The equations specified in the options are called the auxiliary equations or complications. In the
models above, they are

none (1)

. endogenous(x1 = z1 z2, nomain) (2)

The auxiliary equations arose because of complications in the data you used to fit the model. The
focus of ERMs is on fitting the main equation correctly in the presence of complications.

The default asf mean calculation for predictions

When you use predict without options, you type
. predict yhat

predict calculates the expected values of yi that would be observed given the complications
present in your data.

Let’s consider the two models we mentioned earlier.
. eregress y x1 x2 (1)

. eregress y x1 x2, endogenous(x1 = z1 z2, nomain) (2)

The result from typing predict yhat without options will be

1. The expected values of yi given x1 and x2.

2. The expected values of yi given x1 and x2 and taking into account that x1 is endogenous and
predicted by z1 and z2.

predict without options can be used to calculate expected values with the data used in fitting the
model and with other data that include the same complications. After fitting the model, you can type

. use anotherdataset

. predict yhat

You will sometimes use predict to calculate counterfactuals, although most of the time you can
get the answers you want using margins.
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You cannot haphazardly change the value of an endogenous variable such as x1 and expect to
produce meaningful results. What would happen if you did? In (2) above, there is an equation for
x1. It is

endogenous(x1 = z1 z2, nomain)

which, written mathematically, is

x1i = γ0 + γ1z1i + γ2z2i + ei.x1

Say you type the following:
. replace x1 = x1 + 1
. predict yhat

You increased x1 by 1 but did not change anything else. The equation above still holds, and so
incrementing x1 increased ei.x1 by 1 too.

What does it mean to increase ei.x1? You are assuming that x1 increased by 1 because the subjects
decided to choose x1+1 instead of x1. The only way that could happen is if they were different
subjects.

Here is the thought experiment you just performed. You have data on subjects. What if you had
different data on different subjects, each with the same characteristics as the current subjects, but
who had chosen a value of x1 that was one unit larger. Well, if these alternate subjects had chosen
a value one unit larger than the current subjects, they would have done so for good reason, and their
larger e.x1 would have passed along its effect to the e.y because of the correlation. The new value
of y would be the direct effect of x1 in the y equation plus the change in e.y.

predict yhat without options produces the answer to the question that you never wanted to ask.
What you wanted to ask was what would be the effect on y for the current subjects if endogenous
variable x1 was “exogenously” incremented by 1.

The subjects in your data are who they are because of their errors. Errors such as e.x1 are the
unobserved things about them that affect their choice of x1. You cannot change their errors without
changing those unobserved things that make them who they are. If you want to ask about the effects
of changes in x1 holding the subjects constant, you need to ask about changes in x1 holding ei.x1
constant.

To compute the counterfactual you want, you would type

. predict yhat, target(x1=(x1+1))

target() makes its changes to form the counterfactuals after the estimates of all errors like ei.x1
and e.y and their implied unobserved components have been formed from the observed data. So
your subjects retain the estimates of their original unobserved components when the counterfactual is
computed.

All of this works because by default predict computes values on the ASF. See Blundell and
Powell (2004) and Wooldridge (2010) for detailed discussions on ASFs and their interpretation.

The fixedasf calculation for predictions

The purpose of the counterfactual and asfmethod options is to make meaningful counterfactuals
when you change the values of endogenous covariates. The fixedasf option makes predictions as
if the complications associated with varname were removed.

Assume you have fit (2):
. eregress y x1 x2 selected, endogenous(x1 = z1 z2, nomain)
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Then, typing

. predict yhat1, fixedasf

would produce predictions that correspond to “what would have been observed” if the complication
for x1 had not been present either in the data or in the fitted model.

In this counterfactual world, x1 is no longer endogenous. This switch from being endogenous to
being exogenous is not a technicality. It is full of import. In the real world, e.x1 is correlated with
e.y. When we made the default prediction in the previous section, that correlation was taken into
account. In this alternative world, there is no correlation. Perhaps x1 records each subject’s amount
of health insurance coverage, and y is a health outcome. In the world of the data used to fit the model,
subjects chose to purchase health insurance, and presumably those who perceived a larger benefit
would purchase more. Thus, the correlation between e.x1 and e.y was positive. In the counterfactual
world, we want to assume that everyone has $1 million coverage, perhaps because the purchase of
this level of health insurance is mandatory or its free. Either way, the correlation between e.x1 and
e.y becomes 0.

Let’s now calculate a counterfactual prediction under this scenario. To fix x1 at $1 million x1 =
1, you would type

. predict yhat2, target(x1=1) fixedasf

We have predicted a counterfactual for which all individuals have a value of $1 million for x1
and for which the correlation of the unobservables and the covariates is zero.

Methods and formulas
See Methods and formulas in [ERM] eregress postestimation.
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Title

ERM options — Extended regression model options

Description Syntax Options Also see

Description
This entry describes the options that are common to the extended regression commands; see

[ERM] eregress, [ERM] eprobit, [ERM] eoprobit, and [ERM] eintreg.

Syntax
erm cmd . . .

[
, extensions options

]
erm cmd is one of eregress, eprobit, eoprobit, eintreg, xteregress, xteprobit,
xteoprobit, or xteintreg

extensions Description

Model

endogenous(enspec) model for endogenous covariates; may be repeated
entreat(entrspec) model for endogenous treatment assignment
extreat(extrspec) exogenous treatment
select(selspec) probit model for selection
tobitselect(tselspec) tobit model for selection
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options Description

Model

noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points for integration over
four or more dimensions; default is intpoints(128)

triintpoints(#) set the number of integration (quadrature) points for integration over
three dimensions; default is triintpoints(10)

reintpoints(#) set the number of integration (quadrature) points for
random-effects integration; default is reintpoints(7)

reintmethod(intmethod) integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics

reintpoints() and reintmethod() are available only with xteregress, xteintreg, xteprobit, and xteoprobit.
collinear and coeflegend do not appear in the dialog box.

enspec is depvarsen = varlisten
[
, enopts

]
where depvarsen is a list of endogenous covariates. Each variable in depvarsen specifies an
endogenous covariate model using the common varlisten and options.

entrspec is depvartr
[
= varlisttr

] [
, entropts

]
where depvartr is a variable indicating treatment assignment. varlisttr is a list of covariates
predicting treatment assignment.

extrspec is tvar
[
, extropts

]
where tvar is a variable indicating treatment assignment.

selspec is depvars = varlists
[
, selopts

]
where depvars is a variable indicating selection status. depvars must be coded as 0, indicating
that the observation was not selected, or 1, indicating that the observation was selected. varlists
is a list of covariates predicting selection.
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tselspec is depvars = varlists
[
, tselopts

]
where depvars is a continuous variable. varlists is a list of covariates predicting depvars. The
censoring status of depvars indicates selection, where a censored depvars indicates that the
observation was not selected and a noncensored depvars indicates that the observation was
selected.

enopts Description

Model

probit treat endogenous covariate as binary
oprobit treat endogenous covariate as ordinal
povariance estimate a different variance for each level of a binary or an ordinal

endogenous covariate
pocorrelation estimate different correlations for each level of a binary or an ordinal

endogenous covariate
nomain do not add endogenous covariate to main equation
nore do not include random effects in model for endogenous covariate
noconstant suppress constant term

povariance is available only with eregress, eintreg, xteregress, and xteintreg.
nore is available only with xteregress, xteintreg, xteprobit, and xteoprobit.

entropts Description

Model

povariance estimate a different variance for each potential outcome
pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nocutsinteract do not interact treatment with cutpoints
nointeract do not interact treatment with covariates in main equation
nore do not include random effects in model for endogenous treatment
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

povariance is available only with eregress, eintreg, xteregress, and xteintreg.
nocutsinteract is available only with eoprobit.
nore is available only with xteregress, xteintreg, xteprobit, and xteoprobit.

extropts Description

Model

povariance estimate a different variance for each potential outcome
pocorrelation estimate different correlations for each potential outcome
nomain do not add treatment indicator to main equation
nocutsinteract do not interact treatment with cutpoints
nointeract do not interact treatment with covariates in main equation

povariance is available only with eregress, eintreg, xteregress, and xteintreg.
nocutsinteract is available only with eoprobit.
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selopts Description

Model

nore do not include random effects in selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1

nore is available only with xteregress, xteintreg, xteprobit, and xteoprobit.

tselopts Description

Model
∗ll(varname | #) left-censoring variable or limit
∗ul(varname | #) right-censoring variable or limit
main add censored selection variable to main equation
nore do not include random effects in tobit selection model
noconstant suppress constant term
offset(varnameo) include varnameo in model with coefficient constrained to 1
∗ You must specify either ll() or ul().
nore is available only with xteregress, xteintreg, xteprobit, and xteoprobit.

Options

� � �
Model �

endogenous(depvarsen = varlisten
[
, enopts

]
) specifies the model for endogenous covariates.

depvarsen is a list of one or more endogenous covariates modeled with varlisten. This option
may be repeated to allow a different model specification for each endogenous covariate. By de-
fault, the endogenous covariates are assumed to be continuous, and a linear Gaussian model is used.
Unless the nomain suboption is specified, the variables specified in depvarsen are automatically
included in the main equation. The following enopts are available:

probit specifies to use a probit model for the endogenous covariates. probit may not be specified
with oprobit; however, you may specify endogenous(. . ., probit) and endogenous(. . .,
oprobit).

oprobit specifies to use an ordered probit model for the endogenous covariates. oprobit may
not be specified with probit; however, you may specify endogenous(. . ., probit) and
endogenous(. . ., oprobit).

povariance specifies that different variance parameters be estimated for each level of the
endogenous covariates. In a treatment-effects framework, we refer to levels of endogenous
covariates as potential outcomes, and povariance specifies that the variance be estimated
separately for each potential outcome. povariance may be specified only with eregress and
eintreg and with a binary or an ordinal endogenous covariate.

pocorrelation specifies that different correlation parameters be estimated for each level of the
endogenous covariates. In a treatment-effects framework, we refer to levels of endogenous
covariates as potential outcomes, and pocorrelation specifies that correlations be estimated
separately for each potential outcome. pocorrelation may be specified only with a binary
or an ordinal endogenous covariate.
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nomain specifies that the endogenous covariate of covariates be excluded from the main model,
thus removing the effect. This option is for those who intend to manually construct the effect
by adding it to the main model in their own way.

nore specifies that random effects not be included in the equations for the endogenous covariates.

noconstant suppresses the constant term (intercept) in the model for the endogenous covariates.

entreat() and extreat() specify a model for treatment assignment. You may specify only one.

entreat(depvartr
[
= varlisttr

] [
, trtopts modopts

]
) specifies a model for endogenous treatment

assignment with depvartr = 1 indicating treatment and depvartr = 0 indicating no treatment.
varlisttr are the covariates for the treatment model; they are optional.

extreat(depvartr
[
, trtopts

]
) specifies a variable that signals exogenous treatment. depvartr = 1

indicates treatment and depvartr = 0 indicates no treatment.

trtopts are

povariance specifies that different variance parameters be estimated for each potential outcome
(for each treatment level). povariance may be specified only with eregress and eintreg.

pocorrelation specifies that different correlation parameters be estimated for each potential
outcome (for each treatment level).

nomain, nocutsinteract, and nointeract affect the way the treatment enters the main
equation.

nomain specifies that the main effect of treatment be excluded from the main equation. Thus,
a separate intercept is not estimated for each treatment level. In the case of eoprobit,
this means separate cutpoints are not added.

nocutsinteract specifies that instead of the default of having separate cutpoints for each
treatment level, you get one set of cutpoints that are shifted by a constant value for each
treatment level. This is implemented by placing a separate constant in the main equation
for each treatment level. nocutsinteract is available only with eoprobit.

nointeract specifies that the treatment variable not be interacted with the other covariates
in the main equation.

These options allow you to customize how the treatment enters the main equation. When
nomain and nointeract are specified together, they remove the effect entirely, and you will
need to explicitly reintroduce the treatment effect.

modopts are

nore specifies that a random effect not be included in the treatment equation.

noconstant suppresses the constant term (intercept) in the treatment model.

offset(varnameo) specifies that varnameo be included in the treatment model with the
coefficient constrained to 1.

select() and tobitselect() specify a model for endogenous sample selection. You may specify
only one.

select(depvars = varlists
[
, modopts

]
) specifies a probit model for sample selection with

varlists as the covariates for the selection model. When depvars = 1, the model’s dependent
variable is treated as observed (selected); when depvars = 0, it is treated as unobserved (not
selected).
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tobitselect(depvars = varlists
[
, ll(varname | #) ul(varname | #) main modopts

]
) specifies

a tobit model for sample selection with depvars as a censored selection variable and varlists
as the covariates for the selection model.

ll(arg) specifies that when depvars ≤ arg, the selection variable is treated as censored and
the model’s dependent variable is unobserved (not selected).

ul(arg) specifies that when depvars ≥ arg, the selection variable is treated as censored and
the model’s dependent variable is unobserved (not selected).

main specifies that the censored selection variable be included as a covariate in the main
equation. By default, it is excluded from the main equation.

Only the uncensored values of the selection variable contribute to the likelihood through the
main equation. Thus, the selection variable participates as though it were uncensored.

modopts are

nore specifies that a random effect not be included in the selection equation.

noconstant suppresses the constant term (intercept) in the selection model.

offset(varnameo) specifies that varnameo be included in the selection model with the
coefficient constrained to 1.

noconstant, offset(varnameo), constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intpoints(#) and triintpoints(#) control the number of integration (quadrature) points used
to approximate multivariate normal probabilities in the likelihood and scores.

intpoints() sets the number of integration (quadrature) points for integration over four or more
dimensions. The number of integration points must be between 3 and 5,000. The default is
intpoints(128).

triintpoints() sets the number of integration (quadrature) points for integration over three
dimensions. The number of integration points must be between 3 and 5,000. The default is
triintpoints(10).

When four dimensions of integration are used in the likelihood, three will be used in the scores. The
algorithm for integration over four or more dimensions differs from the algorithm for integration
over three dimensions.
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reintpoints(#) and reintmethod(intmethod) control how the integration of random effects is
numerically calculated.

reintpoints() sets the number of integration (quadrature) points used for integration of the
random effects. The default is intpoints(7). Increasing the number increases accuracy but
also increases computational time. Computational time is roughly proportional to the number
specified. See Likelihood for multiequation models in [ERM] eprobit for more details.

reintmethod() specifies the integration method. The default method is mean–variance adap-
tive Gauss–Hermite quadrature, reintmethod(mvaghermite). We recommend this method.
reintmethod(ghermite) specifies that nonadaptive Gauss–Hermite quadrature be used. This
method is less computationally intensive and less accurate. It is sometimes useful to try
reintmethod(ghermite) to get the model to converge and then perhaps use the results as
initial values specified in option from when fitting the model using the more accurate int-
method(mvaghermite). See Likelihood for multiequation models in [ERM] eprobit for more
details.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize.

The default technique for eintreg, eoprobit, eprobit, and eregress is technique(nr). The
default technique for xteintreg, xteoprobit, xteprobit, and xteregress is technique(bhhh
10 nr 2).

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with erm cmd but is not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Also see
[ERM] eintreg — Extended interval regression

[ERM] eoprobit — Extended ordered probit regression

[ERM] eprobit — Extended probit regression

[ERM] eregress — Extended linear regression
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estat teffects — Average treatment effects for extended regression models

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description

estat teffects estimates the average treatment effect, average treatment effect on the treated,
and potential-outcome mean for ERMs.

Menu
Statistics > Postestimation

Syntax

estat teffects
[
, options

]
options Description

ate estimate average treatment effect; the default
atet estimate average treatment effect on the treated
pomean estimate potential-outcome mean
tlevel(numlist) calculate treatment effects or potential-outcome means for specified

treatment levels
outlevel(numlist) calculate treatment effects or potential-outcome means for specified levels

of ordinal dependent variable
subpop(subspec) estimate for subpopulation

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, line width and
factor-variable labeling

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

ate estimates the average treatment effect (ATE). This is the default.

atet estimates the average treatment effect on the treated (ATET). For binary treatments, the ATET
is reported for the treated group subpopulation. For ordinal treatments, by default, the ATET is
reported for the first noncontrol treatment group subpopulation. You can use the subpop() option
to calculate the ATET for a different treatment group.

pomean estimates the potential-outcome mean (POM).
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tlevel(numlist) specifies the treatment levels for which treatment effects or POMs are calculated.
By default, the treatment effects are computed for all noncontrol treatment levels, and the POMs
are computed for all treatment levels.

outlevel(numlist) specifies the levels of the ordinal dependent variable for which treatment effects
or POMs are to be calculated. By default, treatment effects or POMs are computed for all levels of
the ordinal dependent variable. This option is only available after eoprobit and xteoprobit.

subpop(
[

varname
] [

if
]
) specifies the subpopulation for which the ATE, ATET, and POM are

calculated. The subpopulation is identified by the indicator variable, by the if expression, or by
both. A 0 indicates that the observation be excluded, a nonzero indicates that it be included, and
a missing value indicates that it be treated as outside of the population (and thus ignored). For
instance, for an ordinal treatment trtvar with levels 1, 2, and 3, you can specify subpop(if
trtvar==3) to obtain the ATETs for trtvar = 3.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

display options: noci, nopvalues, vsquish, nofvlabel, fvwrap(#), fvwrapon(style),
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch.

noci suppresses confidence intervals from being reported in the coefficient table.

nopvalues suppresses p-values and their test statistics from being reported in the coefficient table.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated
variables from other variables in the model be suppressed.

nofvlabel displays factor-variable level values rather than attached value labels. This option
overrides the fvlabel setting; see [R] set showbaselevels.

fvwrap(#) allows long value labels to wrap the first # lines in the coefficient table. This option
overrides the fvwrap setting; see [R] set showbaselevels.

fvwrapon(style) specifies whether value labels that wrap will break at word boundaries or break
based on available space.

fvwrapon(word), the default, specifies that value labels break at word boundaries.

fvwrapon(width) specifies that value labels break based on available space.

This option overrides the fvwrapon setting; see [R] set showbaselevels.

cformat(% fmt) specifies how to format estimates, standard errors, and confidence limits in the
estimates table. The maximum format width is 9.

pformat(% fmt) specifies how to format p-values in the estimates table. The maximum format
width is 5.

sformat(% fmt) specifies how to format test statistics in the estimates table. The maximum format
width is 8.

nolstretch specifies that the width of the estimates table not be automatically widened to
accommodate longer variable names. The default, lstretch, is to automatically widen the
estimates table up to the width of the Results window. Specifying lstretch or nolstretch
overrides the setting given by set lstretch. If set lstretch has not been set, the default
is lstretch. nolstretch is not shown in the dialog box.
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Remarks and examples
estat teffects estimates ATEs, ATETs, and POMs after extended regression commands. These

are calculated as means of predictions by using margins on the predictions from predict after
the extended regression commands. If the ERM command reported robust standard errors, estat
teffects reports unconditional standard errors so that inference is for the population effect instead
of the sample effect. See Unconditional standard errors in [R] margins for more information.

See [ERM] Intro 9 for an example using estat teffects. Methods and formulas for treatment-
effect estimation are given in Methods and formulas of [ERM] eprobit, [ERM] eoprobit, [ERM] eregress,
and [ERM] eintreg.

Stored results
estat teffects stores the following in r():

Macros
r(vce) vcetype specified in vce()
r(vcetype) title used to label Std. err.
r(clustvar) name of cluster variable

Matrices
r(b) estimates
r(V) variance–covariance matrix of the estimates
r(table) matrix containing the estimates with their standard errors, test statistics, p-values, and

confidence intervals

Also see
[ERM] eintreg postestimation — Postestimation tools for eintreg and xteintreg

[ERM] eoprobit postestimation — Postestimation tools for eoprobit and xteoprobit

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress



Title

Example 1a — Linear regression with continuous endogenous covariate

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a continuous outcome and continuous endogenous covariate.

Remarks and examples
The fictional State University is studying the relationship between the high school grade point

average (GPA) of the students it admits and their final college GPA. They suspect that unobserved ability
affects both high school GPA and college GPA. Thus, high school GPA is an endogenous covariate.

Using data on the 2,500 students in the cohort expected to graduate in 2010, the researchers at
State U model college GPA (gpa) as a function of high school GPA (hsgpa). In both cases, GPA is
measured in 0.01 increments, and we ignore complications due to the boundary points. We also ignore
that, unfortunately, State U has a high dropout rate and college GPA is missing for these students,
leaving the researchers with a sample of about 1,500 students.

The State U researchers expect that the effect of high school competitiveness on college GPA
is negligible once high school GPA is controlled for. So they include a ranking of the high school
(hscomp) as an instrumental covariate for high school GPA. They include parental income measured
in $10,000s, which they believe may also influence student performance, in the main model and in
the model for high school GPA.
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. use https://www.stata-press.com/data/r18/class10
(Class of 2010 profile)

. eregress gpa income, endogenous(hsgpa = income i.hscomp)

Iteration 0: Log likelihood = -638.58598
Iteration 1: Log likelihood = -638.58194
Iteration 2: Log likelihood = -638.58194

Extended linear regression Number of obs = 1,528
Wald chi2(2) = 1167.79

Log likelihood = -638.58194 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

gpa
income .0575145 .0055174 10.42 0.000 .0467007 .0683284
hsgpa 1.235868 .133686 9.24 0.000 .9738484 1.497888
_cons -1.217141 .3828614 -3.18 0.001 -1.967535 -.4667464

hsgpa
income .0356403 .0019553 18.23 0.000 .0318079 .0394726

hscomp
Moderate -.1310549 .0136503 -9.60 0.000 -.1578091 -.1043008

High -.2331173 .0232712 -10.02 0.000 -.278728 -.1875067

_cons 2.951233 .0164548 179.35 0.000 2.918982 2.983483

var(e.gpa) .1436991 .0083339 .1282592 .1609977
var(e.hsgpa) .0591597 .0021403 .05511 .063507

corr(e.hsgpa,
e.gpa) .2642138 .0832669 3.17 0.002 .0948986 .4186724

The estimate of the correlation between the errors from the main and auxiliary equations is 0.26.
The z statistic may be used for a Wald test of the null hypothesis that there is no endogeneity. The
researchers reject this hypothesis. Because the estimate is positive, they conclude that unobservable
factors that increase high school GPA tend to also increase college GPA.

Having satisfied themselves that it is appropriate to account for endogeneity of high school GPA,
they examine the coefficient estimates. The estimates for the main equation are interpreted just like
those from regress; see [R] regress. For example, the researchers expect the difference in college
GPA is about 1.24 points for students with a difference of 1 point in high school GPA.

As we discussed in [ERM] Intro 9, the coefficients on hsgpa and income in this regression pretty
much say everything there is to say about how college GPA changes when either high school GPA or
parents’ income changes. This is true because our model is linear and we have no interactions. We
could make this the end of our story. But it is not the end if we want to ask questions about expected
levels of college GPA.

Let’s look at a single observation; we will pretend it is for Billy.
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. generate str name = "Billy" in 537
(2,499 missing values generated)

. list gpa hsgpa income hscomp if name=="Billy"

gpa hsgpa income hscomp

537. 1.03 2 2 High

We have information on Billy’s high school competitiveness, hscomp, and his parents’ income.
With this information, we could form counterfactuals about Billy. We could fix Billy’s high school
GPA at 2.00, and we could fix his high school GPA at 3.00. We will let margins give us the expected
values for college GPA under these two counterfactuals.

. margins if name=="Billy", at(hsgpa=(2 3))
warning: prediction constant over observations.

Predictive margins Number of obs = 1
Model VCE: OIM

Expression: Average structural function mean, predict()
1._at: hsgpa = 2
2._at: hsgpa = 3

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 1.044564 .039223 26.63 0.000 .9676881 1.12144
2 2.280432 .1214604 18.78 0.000 2.042374 2.51849

When we set Billy’s high school GPA to 2.00, Billy’s expected college GPA is 1.04. Because we
did not specify values for the other covariates, margins took them from the observation for Billy.
So, more completely and correctly, this is the expected GPA for anyone whose high school GPA is
2.00 and whose parents’ income is $20,000 and whose level of high school competitiveness is high.

Why do we care about high school competitiveness when it is not in the main equation? As
discussed in [ERM] Intro 7, if you want to make inferences that have a structural interpretation with
respect to the population (or data-generating process), you must include the level of endogeneity from
the equation for high school GPA. In this case, that is an adjustment for Billy’s unobserved ability.

When we fix Billy’s high school GPA to 3.00, while keeping his parents’ income constant at
$20,000 and also keeping the adjustment for Billy’s unobserved ability constant, we see that Billy’s
expected college GPA rises to 2.28.

As a sidebar, we note that our first counterfactual of high school GPA at 2.00 is really more of a
factual than a counterfactual. Billy’s observed GPA in the data is 2.00.

Let’s take the next step and estimate the resulting difference in expected college GPA for our two
counterfactuals. We just need to add contrast(at(r)) to our margins command.
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. margins if name=="Billy", at(hsgpa=(2 3)) contrast(at(r) effects nowald)
warning: prediction constant over observations.

Contrasts of predictive margins Number of obs = 1
Model VCE: OIM

Expression: Average structural function mean, predict()
1._at: hsgpa = 2
2._at: hsgpa = 3

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

_at
(2 vs 1) 1.235868 .133686 9.24 0.000 .9738484 1.497888

The estimated effect, its standard error, and all other associated statistics are identical to the
coefficient on hsgpa in our eregress output.

Would we see anything different if we averaged the effects over the sample to get estimates of
the effects in the population? Just remove Billy from the command.

. margins, at(hsgpa=(2 3)) contrast(at(r) effects nowald)

Contrasts of predictive margins Number of obs = 1,528
Model VCE: OIM

Expression: Average structural function mean, predict()
1._at: hsgpa = 2
2._at: hsgpa = 3

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

_at
(2 vs 1) 1.235868 .133686 9.24 0.000 .9738484 1.497888

Not surprisingly, the estimated effect is still 1.24—the same value we have gotten every time,
the same value as the coefficient on hsgpa. Perhaps more surprisingly, the standard error of the
population-average estimate is also the same as the standard error of the coefficient. We do not
gain or lose any information when we take an average over an estimate that is constant for all the
observations.

In linear models without interactions, we have just seen that the effects are the same for many
questions. In nonlinear models, the effects usually differ.

The models in the remaining two examples in this series, [ERM] Example 1b and [ERM] Example 1c,
have exactly the same interpretation we gave to the model in this entry. Adding interval-censoring
and endogenous sample selection does not affect the relevant questions or how they are answered.

Video example

Extended regression models: Endogenous covariates

https://www.youtube.com/watch?v=bPhNq6RYd-I
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Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] Intro 3 — Endogenous covariates features

[ERM] Intro 9 — Conceptual introduction via worked example
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Example 1b — Interval regression with continuous endogenous covariate

Description Remarks and examples Also see

Description
Continuing from [ERM] Example 1a, we now consider the case where the dependent variable is

interval-censored. We fit this model using eintreg.

Remarks and examples
We now assume that, for reasons of confidentiality, the researchers conducting the study do not

observe the actual college GPA for those with a GPA below 2.0. For the rest, they are given college GPA
only in increments of 0.5 points. So the outcome has both left- and interval-censored observations.
The model remains the same.

The lower and upper endpoints for college GPA are stored in gpal and gpau. Both variables
contain a missing value for students who dropped out of college. Other than the change in command
name and specification of the dependent variable, the command to fit the model is exactly the same.

. eintreg gpal gpau income, endogenous(hsgpa = income i.hscomp)

Iteration 0: Log likelihood = -1716.9969
Iteration 1: Log likelihood = -1716.9968

Extended interval regression Number of obs = 1,528
Uncensored = 0

Left-censored = 150
Right-censored = 0
Interval-cens. = 1,378

Wald chi2(2) = 912.68
Log likelihood = -1716.9968 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

income .0551638 .0057859 9.53 0.000 .0438236 .066504
hsgpa 1.111672 .1407083 7.90 0.000 .8358891 1.387456
_cons -.8180699 .4032468 -2.03 0.042 -1.608419 -.0277207

hsgpa
income .0356351 .0019553 18.22 0.000 .0318027 .0394675

hscomp
Moderate -.1317151 .0136277 -9.67 0.000 -.1584249 -.1050052

High -.2320803 .0233633 -9.93 0.000 -.2778715 -.186289

_cons 2.951568 .0164465 179.46 0.000 2.919333 2.983802

var(e.gpal) .1354248 .0090267 .1188397 .1543245
var(e.hsgpa) .0591594 .0021403 .0551097 .0635066

corr(e.hsgpa,
e.gpal) .2700108 .0897936 3.01 0.003 .0868241 .4355353
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We again find that unobservable factors that increase high school GPA tend to increase college GPA.
The parameter estimates here are interpreted just as we did in [ERM] Example 1a. In that example,
the estimated coefficient on hsgpa was 1.24; here it is 1.11. Like the relationship between regress
and intreg, the 1.24 and 1.11 estimate the same parameter, the relationship between hsgpa and the
uncensored outcome.

We will not further interpret this model here. Instead we refer you to the interpretation in
[ERM] Example 1a. The interval-censoring of the dependent variable demonstrated here makes no
difference in what commands you would type to answer questions or in how you would interpret
the results of those commands. In fact, we encourage you to run the commands discussed in
[ERM] Example 1a on this model and compare the results.

Because interval regression is a generalization of tobit regression, you can also use eintreg to
fit a tobit model with endogenous selection. However, you must convert your dependent variable into
interval form. We illustrate how to do this in [ERM] Intro 8.

Also see
[ERM] eintreg — Extended interval regression

[ERM] eintreg postestimation — Postestimation tools for eintreg and xteintreg

[ERM] Intro 3 — Endogenous covariates features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 1c — Interval regression with endogenous covariate and sample selection

Description Remarks and examples Also see

Description
In [ERM] Example 1a and [ERM] Example 1b, we ignored the observations that were dropped

because of missing data on GPA. In this example, we show you how to fit a model that includes a
continuous endogenous covariate, a censored outcome, and endogenous sample selection.

Remarks and examples
In the previous two examples, the researchers excluded students who dropped out of college

because they are missing college GPA data on these students. So they were estimating parameters for
the population of students who graduate from college. Let’s suppose they are interested in expected
college GPA for all students who enroll, even those who drop out. They suspect that unobserved ability
affects both the decision to stay in school and college GPA and thus that they have an endogenously
selected sample.

To model the selection, they need a covariate that affects the probability that they observe a
student’s GPA but does not affect the level of the student’s GPA. They include an indicator for whether
the student participated in a retention program and whether the student had a roommate who also
went to State U. They expect that students with a roommate who went to the same college were more
likely to remain in school because they felt more included in the college environment.
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. eintreg gpal gpau income, endogenous(hsgpa = income i.hscomp)
> select(graduate = hsgpa income i.roommate i.program)

(iteration log omitted )
Extended interval regression Number of obs = 2,500

Selected = 1,528
Nonselected = 972
Uncensored = 0

Left-censored = 150
Right-censored = 0
Interval-cens. = 1,378

Wald chi2(2) = 734.96
Log likelihood = -2851.3222 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

income .0338548 .0075484 4.49 0.000 .0190602 .0486495
hsgpa 1.19378 .1443563 8.27 0.000 .9108467 1.476713
_cons -.7895643 .3908796 -2.02 0.043 -1.555674 -.0234543

graduate
hsgpa 2.215481 .4411331 5.02 0.000 1.350876 3.080086

income .1920393 .0162334 11.83 0.000 .1602224 .2238563

roommate
Yes .1547087 .0455906 3.39 0.001 .0653528 .2440645

1.program .4858749 .0523443 9.28 0.000 .383282 .5884678
_cons -7.524521 1.237529 -6.08 0.000 -9.950034 -5.099008

hsgpa
income .047866 .0016981 28.19 0.000 .0445377 .0511942

hscomp
Moderate -.1337635 .0115749 -11.56 0.000 -.1564499 -.1110771

High -.2284481 .0190089 -12.02 0.000 -.2657049 -.1911914

_cons 2.793802 .0132125 211.45 0.000 2.767906 2.819698

var(e.gpal) .1753568 .0085604 .1593564 .1929636
var(e.hsgpa) .0685863 .0019399 .0648876 .0724958

corr(e.gra~e,
e.gpal) -.9124422 .0327448 -27.87 0.000 -.9583429 -.8205981

corr(e.hsgpa,
e.gpal) .0534114 .0937195 0.57 0.569 -.1300101 .2332982

corr(e.hsgpa,
e.graduate) .2747613 .0955172 2.88 0.004 .079342 .4498437

The coefficients from the main equation for hsgpa continue to be interpreted as in [ERM] Example 1b.
Now, however, they are estimates for the population of all admitted students, not the population of
all graduates. The estimated effect of high school GPA for this population is slightly higher, 1.19
compared with 1.11.

As with [ERM] Example 1b, we will not further interpret this model here. Instead we refer you
to the interpretation performed in [ERM] Example 1a. The addition of endogenous sample selection
makes no difference in what commands you would type to answer questions or to how you would
interpret the results of those commands. In fact, we encourage you to run the commands discussed
in [ERM] Example 1a on this model and compare the results. The only thing to keep in mind is that
now the population we are making inferences about is all students admitted to school, not just those
who graduate.
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Also see
[ERM] eintreg — Extended interval regression

[ERM] eintreg postestimation — Postestimation tools for eintreg and xteintreg

[ERM] Intro 3 — Endogenous covariates features

[ERM] Intro 4 — Endogenous sample-selection features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 2a — Linear regression with binary endogenous covariate

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a continuous outcome and endogenous binary covariate.

Remarks and examples
Suppose that we want to study the effect of having a college degree on wages. One way to approach

the problem is to look at the coefficient on an indicator for whether an individual has a college degree.
This gives us an idea of how different the average wage is for individuals with a college degree
compared with those without one. However, as in [ERM] Example 1a, we suspect that unobserved
factors such as ability affect both the probability of graduating from college and wage level. Thus,
we need to account for the potential endogeneity of the indicator for having a college degree.

In our fictional study, we collect data on the hourly wages (wage) and educational attainment
(college) of 6,000 adults. We believe that differences in job tenure (tenure) and age (age) may
also affect wages. We can control for these covariates by specifying them in the main equation. We
specify college in the endogenous() option, but this time we also include the probit suboption
to indicate that the variable is binary. We model graduation as a function of the level of parental
education (peduc), which we assume does not have a direct effect on wage.
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. use https://www.stata-press.com/data/r18/wageed
(Wages for 20 to 74 year olds, 2015)

. eregress wage c.age##c.age tenure, endogenous(college = i.peduc, probit)
> vce(robust)

Iteration 0: Log pseudolikelihood = -18063.148
Iteration 1: Log pseudolikelihood = -18060.2
Iteration 2: Log pseudolikelihood = -18060.164
Iteration 3: Log pseudolikelihood = -18060.164

Extended linear regression Number of obs = 6,000
Wald chi2(4) = 7584.74

Log pseudolikelihood = -18060.164 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

wage
age .4200372 .0163312 25.72 0.000 .3880286 .4520457

c.age#c.age -.0033523 .0001759 -19.06 0.000 -.003697 -.0030075

tenure .4921838 .0182788 26.93 0.000 .4563581 .5280095

college
Yes 5.238087 .1721006 30.44 0.000 4.900776 5.575398

_cons 5.524288 .3428735 16.11 0.000 4.852268 6.196307

college
peduc

College .8605996 .0361723 23.79 0.000 .7897032 .9314959
Graduate 1.361257 .0490862 27.73 0.000 1.26505 1.457465

Doctorate 1.583818 .119513 13.25 0.000 1.349577 1.818059

_cons -.9731264 .0294779 -33.01 0.000 -1.030902 -.9153508

var(e.wage) 8.99487 .2465919 8.524314 9.491402

corr(e.col~e,
e.wage) .5464027 .0286061 19.10 0.000 .4879055 .600014

The estimated correlation between the errors from the main and auxiliary equations is 0.55 and
is significantly different from 0. We conclude that having a college degree is endogenous and that
unobservable factors that increase the probability of graduating from college tend to also increase
wages.

We find that graduating from college increases the expected wage by $5.24 given a person’s age
and employment tenure. This estimate is different than comparing the average wages for college
graduates and noncollege graduates.

. tabulate college, summarize(wage)

Indicator
for college Summary of Hourly wage

degree Mean Std. dev. Freq.

No 17.768516 3.0674174 3,766
Yes 25.520703 5.045888 2,234

Total 20.654913 5.4248886 6,000
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The difference in the average wages is $7.75, but unlike our regression coefficient, that value does
not adjust for the different distribution of ages and tenures among college graduates and noncollege
graduates.

Another approach to this problem is the potential-outcomes framework. With this approach, we
consider the expected wage for each individual without a college degree versus the expected wage
for each individual with a college degree. Specifically, we might like to know the average expected
change in wages for those who complete college. This is called the average treatment effect on the
treated. We consider this approach in [ERM] Example 2b and [ERM] Example 2c.

[ERM] Example 2c also includes an interpretation of how the expected level of income varies
by age, tenure, and whether one graduates from college. That analysis could also be applied to this
model.

Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 2b — Linear regression with exogenous treatment

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a continuous outcome and exogenous binary treatment.

Remarks and examples
In [ERM] Example 2a, we analyzed the effect of having a college degree on wages as a binary

endogenous covariate. Now suppose that we approach our research question instead in the potential-
outcomes framework. With this approach, we consider the expected wage for each individual without
a college degree versus the expected wage for each individual with a college degree. Specifically,
we might like to know the average expected change in wages for those who complete college, the
average treatment effect on the treated (ATET).

As before, we use wageed.dta with educational attainment data on 6,000 adults. We control for
differences in job tenure (tenure) and age (age) by specifying them in the main equation. For the
time being, we consider the treatment (college) to be exogenous. We want to make inferences about
the average effect of a college degree on the wages of all individuals who complete college, not just
the subjects in our study sample, so we specify vce(robust). This will allow us to estimate the
standard errors of the ATET accounting for the fact the variables in our sample represent just one
draw from the population.

227



228 Example 2b — Linear regression with exogenous treatment

. use https://www.stata-press.com/data/r18/wageed
(Wages for 20 to 74 year olds, 2015)

. eregress wage c.age##c.age tenure, extreat(college) vce(robust)

Iteration 0: Log pseudolikelihood = -13989.589
Iteration 1: Log pseudolikelihood = -13989.586
Iteration 2: Log pseudolikelihood = -13989.586

Extended linear regression Number of obs = 6,000
Wald chi2(8) = 439363.91

Log pseudolikelihood = -13989.586 Prob > chi2 = 0.0000

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

college#
c.age

No .2454534 .0180052 13.63 0.000 .2101638 .280743
Yes .7042756 .0225386 31.25 0.000 .6601007 .7484505

college#
c.age#c.age

No -.0018998 .0001935 -9.82 0.000 -.002279 -.0015206
Yes -.0054223 .000243 -22.31 0.000 -.0058986 -.0049459

college#
c.tenure

No .3206065 .0207164 15.48 0.000 .2800031 .36121
Yes .4935213 .0257599 19.16 0.000 .4430329 .5440097

college
No 9.851871 .3701276 26.62 0.000 9.126435 10.57731

Yes 4.384709 .4654545 9.42 0.000 3.472435 5.296983

var(e.wage) 6.20477 .1152627 5.982922 6.434843

Because we specified the command as a treatment-effects model, eregress automatically interacts
the college variable with all other covariates in the model, thus essentially creating separate models
for those who graduate from college and those who do not. There is nothing wrong with interpreting
the coefficients. This is, after all, just a regression. The coefficients labeled no are the estimates of
the parameters of the wage model for those who are not college graduates. The coefficients labeled
yes are the estimates of the parameters for the model of those who are college graduates. Tenure in
the company has a larger effect for college graduates than nongraduates. It is 49 cents an hour per
tenure year for college graduates and 32 cents for nongraduates. The effect of age is more difficult
to interpret because of the quadratic term. The effect of age is clearly different between the groups,
but the pattern of that difference is not obvious. See [ERM] Example 2c for some tools you could
apply to this model that would make that pattern obvious. The effect of college graduation is harder
still to see. For any person, it would be the difference of the values predicted by the two models.
Again, see [ERM] Example 2c for ways to visualize the effect.
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If we are interested only in the average effect, we can estimate that using the estat teffects
command.

. estat teffects, atet

Predictive margins Number of obs = 6,000
Subpop. no. obs = 2,234

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATET
college

(Yes vs No) 7.62719 .0863465 88.33 0.000 7.457954 7.796426

The average wage is estimated to be $7.63 higher per hour for the population of college graduates
than the wage would have been if those same individuals had not completed college.

We have ignored several potential complications in this example. One of which is that unobserved
factors such as ability that influence whether individuals complete college could also influence their
wage. In that case, the treatment assignment (obtaining a college degree) would be endogenous. If
the treatment were endogenous, we would model its coefficients and the correlation between the
treatment assignment errors and the outcome errors. See [ERM] Example 2c for an example with an
endogenous treatment.

Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 2c — Linear regression with endogenous treatment

Description Remarks and examples Also see

Description
Continuing from [ERM] Example 2b, we now consider the case where the treatment is endogenous

and the variance and correlation parameters differ by treatment group.

Remarks and examples
In [ERM] Example 2b, we assumed that graduating from college was an exogenous treatment.

However, unobserved factors such as ability may affect whether individuals graduate from college and
also affect their wage. Thus, it may be more appropriate for us to treat having a college degree as an
endogenous treatment. We found endogeneity in [ERM] Example 2a, which analyzes the treatment
instead as a binary endogenous covariate. You may want to compare the result of this example with
the results from [ERM] Example 2b.

Because college graduation is now assumed to be endogenous, we must specify a model for
college. We model graduation as a function of the level of parental education (peduc), which we
further assume does not have a direct effect on wage. The endogenous treatment equation is specified
in option entreat().
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. eregress wage c.age##c.age tenure, entreat(college = i.peduc) vce(robust)

Iteration 0: Log pseudolikelihood = -17382.446
Iteration 1: Log pseudolikelihood = -17381.922
Iteration 2: Log pseudolikelihood = -17381.92

Extended linear regression Number of obs = 6,000
Wald chi2(8) = 348743.60

Log pseudolikelihood = -17381.92 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

wage
college#

c.age
No .2338084 .0176633 13.24 0.000 .199189 .2684279

Yes .6777385 .0219827 30.83 0.000 .6346531 .7208239

college#
c.age#c.age

No -.0018611 .00019 -9.79 0.000 -.0022335 -.0014887
Yes -.0052533 .0002372 -22.14 0.000 -.0057183 -.0047883

college#
c.tenure

No .3948863 .0207452 19.04 0.000 .3542263 .4355462
Yes .5883544 .0257213 22.87 0.000 .5379415 .6387673

college
No 10.86301 .3675208 29.56 0.000 10.14268 11.58333

Yes 3.184255 .4612019 6.90 0.000 2.280316 4.088194

college
peduc

College .849575 .0356419 23.84 0.000 .7797181 .9194318
Graduate 1.347272 .0491996 27.38 0.000 1.250843 1.443701

Doctorate 1.541025 .1174797 13.12 0.000 1.310769 1.771281

_cons -.973061 .0292791 -33.23 0.000 -1.030447 -.9156749

var(e.wage) 7.629807 .2245651 7.202122 8.082889

corr(e.col~e,
e.wage) .623109 .0267317 23.31 0.000 .5679046 .6727326

As in [ERM] Example 2b, we can interpret the coefficients in the wage equation as coefficients
in separate models for the two potential outcomes—the models for those with and without a college
degree. The estimated correlation between the errors from the main and auxiliary equations is 0.62.
We could use the z statistic for the correlation to test for endogeneity. We could also use the estat
teffects and margins commands to answer questions related to the entire population or specific
subpopulations. However, we will not interpret the results of this model any further because we will
first extend it.

Above, we assumed that the relationship between the unobserved factors that affect wage and
the unobserved factors that affect whether individuals graduate from college was the same for those
individuals with a college degree and those without. We do not have a good reason to believe that
these will be the same, so we specify the suboption pocorrelation within the option entreat()
to model separate correlation parameters for the two potential outcomes. We also assumed that the
unobserved factors affecting wage were equally variable for those who had a college degree and
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those who did not. We can relax this assumption and model different variances for the two potential
outcomes by specifying the suboption povariance within the option entreat().

. eregress wage c.age##c.age tenure,
> entreat(college = i.peduc, povariance pocorrelation) vce(robust)

Iteration 0: Log pseudolikelihood = -17382.446
Iteration 1: Log pseudolikelihood = -17381.327
Iteration 2: Log pseudolikelihood = -17381.319
Iteration 3: Log pseudolikelihood = -17381.319

Extended linear regression Number of obs = 6,000
Wald chi2(8) = 104887.19

Log pseudolikelihood = -17381.319 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

wage
college#

c.age
No .234277 .0176793 13.25 0.000 .1996261 .2689278

Yes .6759938 .0220455 30.66 0.000 .6327854 .7192021

college#
c.age#c.age

No -.0018627 .00019 -9.80 0.000 -.0022351 -.0014902
Yes -.0052427 .0002376 -22.07 0.000 -.0057084 -.0047771

college#
c.tenure

No .3917974 .0211184 18.55 0.000 .350406 .4331887
Yes .5951107 .0264841 22.47 0.000 .5432027 .6470187

college
No 10.82487 .3712505 29.16 0.000 10.09723 11.55251

Yes 3.097338 .4678998 6.62 0.000 2.180271 4.014405

college
peduc

College .8482632 .0356294 23.81 0.000 .7784309 .9180955
Graduate 1.343223 .0493492 27.22 0.000 1.2465 1.439945

Doctorate 1.538188 .1162237 13.23 0.000 1.310393 1.765982

_cons -.9715507 .0292856 -33.18 0.000 -1.028949 -.9141521

var(e.wage)
college

No 7.46846 .2657898 6.965275 8.007997
Yes 7.98125 .3990003 7.236315 8.802871

corr(e.col~e,
e.wage)

college
No .6057846 .0374579 16.17 0.000 .5271994 .6740954

Yes .6518029 .0359868 18.11 0.000 .5755573 .7168138

We see separate variance and correlation parameters for those with a college degree and those
without. The estimated correlation between the errors from the main and auxiliary equation is 0.61
for individuals without a college degree and 0.65 for those with a college degree. The z statistics
may be used for Wald tests of the null hypothesis that there is no endogenous treatment. For both
treatment groups, we reject this hypothesis and conclude that having a college degree is an endogenous
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treatment. Because the estimates are positive, we conclude that unobserved factors that increase the
chance of having a college degree also tend to increase wage.

We can use estat teffects to estimate the average effect of a college degree on wage. We use
the atet option to estimate the ATET.

. estat teffects, atet

Predictive margins Number of obs = 6,000
Subpop. no. obs = 2,234

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATET
college

(Yes vs No) 5.238589 .2047014 25.59 0.000 4.837382 5.639797

We estimate that the average wage for those who graduated from college is $5.24 higher than
it would have been had those same individuals not graduated from college. This is $2.39 less than
the result from our model in [ERM] Example 2b that did not account for the endogeneity of college
graduation. We said “same individuals” to emphasize that $5.24 is a treatment effect on those who
chose to attend college and graduated. More formally, it is our estimate of what the average increase
in wage is in the whole population for everyone who chose to attend college and graduated.

But we do not need to stop there. We can analyze how college education affects different
subpopulations. Usually, when we zoom into the different subpopulations, we can see effects that
otherwise would be averaged out over the population. Before I do that though, I am going to change
the data slightly to get nicer output:

. label drop tengrp

. label define tengrp 0 "0-3 years tenure" 4 "3-7 years tenure"
> 8 "Over 7 years tenure"

. label values tenuregrp tengrp

Now, I am ready to use margins to zoom into some interesting subgroups of my data.

. margins college, over(agegrp tenuregrp) subpop(if college==1 & peduc==1)
> vce(unconditional)

(output omitted )

Here we have narrowed our focus on individuals with a college degree whose parents have a
college education, using the subpop() option, for different subpopulations defined by our age and
tenure groupings, using the over() option. Also, by using the default average structural function
prediction asf, we condition on the unobservable factors that increase the probability of graduating
from college.
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If you run the margins command, you will see that it takes a few seconds and that it produces a
lot of output. Let’s graph the results,

. marginsplot, by(college) byopts(style(altleg))
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Predictive margins of college with 95% CIs

The age–earnings profiles on the left, where we have taken the degrees away from our college
graduates, are distinctly different from those on the right, where they get to retain their degrees. We
see that tenure does have an effect, and if we look closely, it has a larger effect on college graduates:
the profiles are further apart on the right. What do the points on this graph represent? Each point in
the panel on the right is the expected wage for someone who graduated from college, whose parents
graduated from college, and who has the age and tenure shown on the graph. Each point on the left
is a counterfactual where we assume those same people did not graduate from college.

Seeing that, we have to ask, what are the profiles of the effect of college? To find those, we just
add an r. to college on our previous margins command.

. margins r.college, over(agegrp tenuregrp) subpop(if college==1 & peduc==1)
> vce(unconditional)

(output omitted )
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Again, the output is long, so we graph the results.

. marginsplot
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Contrasts of predictive margins of college with 95% CIs

College affects wages the least when people are young and have no tenure. The largest effects are
seen for those older than 50 and even more so when they also have long tenure. Each point represents
the expected increase in wages due to graduating from college among those who chose to attend
college and graduated. So each is an average treatment effect on the treated (ATET). Unlike overall
average ATETs, these are conditioned on being at a specific age and having a specific tenure. Each
point is bracketed by a pointwise 95% confidence interval. The confidence intervals reveal that we
have pretty tight estimates for each of the ATETs. Note that the previous graph also displayed 95%
confidence intervals. They were just so narrow that they are difficult to see.

As we saw above, margins allows us to answer numerous questions depending on the counterfactuals
and subpopulations we defined.

See Treatment under Methods and formulas in [ERM] eregress and Estimating treatment effects
with margins in [R] margins, contrast for additional information about calculating the ATET.

Video example

Extended regression models: Nonrandom treatment assignment

Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 9 — Conceptual introduction via worked example

https://www.youtube.com/watch?v=5doinKwx2HI


Title

Example 3a — Probit regression with continuous endogenous covariate

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a binary outcome and continuous endogenous covariate.

Remarks and examples
In [ERM] Example 1a through [ERM] Example 1c, we showed how researchers at the fictional

State University might approach an investigation of the relationship between the high school grade
point average (GPA) of the students the university admits and their final college GPA. Suppose instead
that they would like to know how the probability of college graduation is related to high school
GPA. They again suspect that high school GPA is endogenous in a model of the probability of college
graduation.

Their model for graduation includes parental income in $10,000s and whether the student had a
roommate who also went to State U. The State U researchers expect that the effect of high school
competitiveness on the probability of graduating from college is negligible once the other covariates
are controlled for. So they use the ranking of the high school (hscomp) as the instrumental variable
for high school GPA. They also include parental income in the auxiliary model for high school GPA.

We want to make inferences about how our covariates affect graduation rates in the population, not
just in our sample. We add vce(robust) so that subsequent calls to estat teffects and margins
will be able to consider our sample as a draw from the population.

236
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. use https://www.stata-press.com/data/r18/class10
(Class of 2010 profile)

. eprobit graduate income i.roommate, endogenous(hsgpa = income i.hscomp)
> vce(robust)

Iteration 0: Log pseudolikelihood = -1418.5008
Iteration 1: Log pseudolikelihood = -1418.4414
Iteration 2: Log pseudolikelihood = -1418.4414

Extended probit regression Number of obs = 2,500
Wald chi2(3) = 326.79

Log pseudolikelihood = -1418.4414 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

graduate
income .1597677 .0158826 10.06 0.000 .1286384 .1908969

roommate
Yes .2636312 .0563563 4.68 0.000 .1531748 .3740876

hsgpa 1.01877 .4324788 2.36 0.018 .1711273 1.866413
_cons -3.647166 1.204728 -3.03 0.002 -6.008389 -1.285943

hsgpa
income .047859 .0016461 29.07 0.000 .0446327 .0510853

hscomp
Moderate -.135734 .0114717 -11.83 0.000 -.158218 -.1132499

High -.225314 .0195055 -11.55 0.000 -.2635441 -.1870838

_cons 2.794711 .0127943 218.43 0.000 2.769634 2.819787

var(e.hsgpa) .0685893 .0019597 .064854 .0725398

corr(e.hsgpa,
e.graduate) .3687006 .0919048 4.01 0.000 .1765785 .5337596

The estimate of the correlation between the errors of our two equations is 0.37 and is significantly
different from zero, so we have endogeneity. Because the correlation is positive, we conclude that
the unobservable factors that increase high school GPA also increase the probability of graduation.

The results for the main equation are interpreted as you would those from probit. We can obtain
directions but not effect sizes from the coefficients in the main equation. For example, we see that
family income and high school GPA are positively associated with the probability that a student
graduates.

Let’s ask something more interesting. What if we could increase each student’s high school GPA
by one point, moving a 2.0 to a 3.0, a 2.5 to a 3.5, and so on? We obviously cannot increase anyone’s
GPA by one point if he or she is already above a 3.0; so we restrict our population of interest to
students with a GPA at or below 3.0. margins will give us the population-average expected graduation
rate given each student’s current GPA if we specify at(hsgpa=generate(hsgpa)). It will also
give us the population-average expected graduation rate with an additional point in each student’s
GPA if we specify at(hsgpa=generate(hsgpa+1)). We want to hold each student’s unobservable
characteristics to be those that are implied by his or her current data by using the default average
structural function prediction.
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. margins, at(hsgpa=generate(hsgpa)) at(hsgpa=generate(hsgpa+1))
> subpop(if hsgpa <= 3) vce(unconditional)

Predictive margins Number of obs = 2,500
Subpop. no. obs = 1,430

Expression: Average structural function probability, predict()
1._at: hsgpa = hsgpa
2._at: hsgpa = hsgpa+1

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .4315243 .0125571 34.37 0.000 .4069129 .4561357
2 .7737483 .1057771 7.31 0.000 .5664289 .9810677

For students with a high school GPA at or below 3.0, the expected graduation rate is 43%. If those
same students are given an additional point in their GPA, the graduation rate rises to 77%.

By adding contrast(at(r)) to our margins command, we can difference those two counter-
factuals and estimate the average effect of giving an additional point of GPA. We also added effects
to add test statistics and nowald to clean up the output.

. margins, at(hsgpa=generate(hsgpa)) at(hsgpa=generate(hsgpa+1))
> subpop(if hsgpa <= 3) contrast(at(r) nowald effects) vce(unconditional)

Contrasts of predictive margins Number of obs = 2,500
Subpop. no. obs = 1,430

Expression: Average structural function probability, predict()
1._at: hsgpa = hsgpa
2._at: hsgpa = hsgpa+1

Unconditional
Contrast std. err. z P>|z| [95% conf. interval]

_at
(2 vs 1) .342224 .1070061 3.20 0.001 .1324959 .5519521

Giving students an additional point in their GPA increased graduation rates by just over 34 percentage
points, with a 95% confidence interval from 13 to 55 percentage points.

Does this effect differ across any of our other covariates? Our dataset has a grouping variable for
family income incomegrp, so let’s estimate the effect within each income grouping. We just add
over(incomegrp) to our prior margins command.
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. margins, at(hsgpa=generate(hsgpa)) at(hsgpa=generate(hsgpa+1))
> subpop(if hsgpa <= 3) contrast(at(r) nowald effects) noatlegend
> vce(unconditional) over(incomegrp)

Contrasts of predictive margins Number of obs = 2,500
Subpop. no. obs = 1,430

Expression: Average structural function probability, predict()
Over: incomegrp

Unconditional
Contrast std. err. z P>|z| [95% conf. interval]

_at@
incomegrp
(2 vs 1)

< 20K .3690987 .1367297 2.70 0.007 .1011134 .6370839
(2 vs 1)

20--39K .3698609 .1254644 2.95 0.003 .1239552 .6157667
(2 vs 1)

40--59K .3516159 .1026905 3.42 0.001 .1503463 .5528855
(2 vs 1)

60--79K .3094611 .0798654 3.87 0.000 .1529277 .4659944
(2 vs 1)

80--99K .255203 .0572386 4.46 0.000 .1430174 .3673887
(2 vs 1)
100--119K .1829494 .038826 4.71 0.000 .1068519 .2590469
(2 vs 1)
120--139K .1238027 .0344788 3.59 0.000 .0562255 .19138
(2 vs 1)
140K up .0485429 .0139112 3.49 0.000 .0212775 .0758083

The effect is largest for the low-income groups and declines as income goes up. It becomes almost
negligible for students from households whose income is above $140,000.

We can see this relationship more clearly if we graph the results.

. marginsplot
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Figure 1.

Our point estimates of the effect on the probability of graduating are near 0.4 for the lowest-income
groups and fall below 0.2 for incomes over $100,000.
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So we can examine subpopulation averages and effects and make inferences about their values.

Let’s see whether we can observe the effects of the unobservables that are affecting both graduation
probability and high school GPA. We will restrict our attention to those with very low and very high
incomes. We do not want any confounding from the individual’s roommate status, so we will also
include only those who have a roommate. Before we start, we modify our data to simplify our
analysis.

. generate smpl = roommate==1 & (income < 3 | income > 10)

. generate byte hlincome = 1 if income < 3
(1,870 missing values generated)

. replace hlincome = 2 if income > 10
(216 real changes made)

. label define hiloinc 1 "Income < $30,000" 2 "Income > $100,000"

. label values hlincome hiloinc

We would like to know the expected graduation rates for those with high and low income over
the groupings of high school GPA.

. margins, subpop(smpl) over(hsgpagrp hlincome) vce(unconditional)
(output omitted )

. marginsplot
(output omitted )
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Figure 2.

Clearly, those with high incomes have much higher expected graduation rates.

What if we could level the playing field and give everyone the same family income level? We
will give everyone $100,000. That is a substantial increase for those in the low-income group and
somewhat of a reduction for most in the high-income group. We form these counterfactuals by adding
at(income=10) to our margins command and then graph them.
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. margins, subpop(smpl) over(hsgpagrp hlincome) at(income=10) vce(unconditional)
(output omitted )

. marginsplot
(output omitted )
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Figure 3.

Now, we have given everyone $100,000 of family income, but each person has retained his or her
unobservable characteristics. The red line for those who originally had incomes over $100,000 is still
pretty much where it was before. The line for those with incomes less than $30,000 is far higher than
it was. It is now above the line for the high income students. For any level of GPA, the low-income
group now has a higher graduation rate than the high-income group. We have locked up all the
regressors in the main model by either putting them in groups or assigning them a counterfactual.
So any differences that we see must be attributable to the individual’s unobserved characteristics. If
these were real data, the results would not be surprising. One way to view it is that any level of high
school GPA is more difficult to obtain for individuals in a low-income family. That would mean that
their unobservables will also tend to increase their graduation rate.

The results validate our previous conclusions. The important message is that we can analyze
fully conditional counterfactuals and make complex inferences. These inferences account for not only
observable characteristics but also unobservable traits and thus have a structural interpretation.

Also see
[ERM] eprobit — Extended probit regression

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] Intro 3 — Endogenous covariates features

[ERM] Intro 9 — Conceptual introduction via worked example
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Example 3b — Probit regression with endogenous covariate and treatment

Description Remarks and examples Also see

Description
We model a binary outcome that depends on a continuous endogenous covariate and has an

endogenous treatment by using eprobit with the endogenous() and entreat() options.

Remarks and examples
Continuing from [ERM] Example 3a, State U administrators have implemented a voluntary program

to increase retention freshman year. Whether a student chose to participate is stored in the indicator
variable program. They are concerned that unobservable factors that influence a student’s decision
to participate in the college retention program also influence the probability of graduation. For
example, students who have higher self-motivation may be more likely to join and also more likely
to graduate without the program. Thus, they are concerned that participation in the program may
be an endogenously chosen treatment. Further, they would like to control for the possibility that the
unobserved factors affecting graduation have different relationships with the unobserved factors that
affect participation and high school GPA for those who participated and those who did not.

The researchers believe the program was easier to access for students who lived on campus
freshman year. They also think students who had scholarships may have been more motivated to
attend the program. However, they do not believe either of these variables independently affects the
probability of graduation after controlling for other covariates in the model. They use an indicator for
on-campus residence during the freshman year (campus), having a scholarship of any kind (scholar),
and parents’ income in the treatment assignment model.

242



Example 3b — Probit regression with endogenous covariate and treatment 243

. eprobit graduate income i.roommate, endogenous(hsgpa = income i.hscomp)
> entreat(program = i.campus i.scholar income, pocorrelation) vce(robust)

Iteration 0: Log pseudolikelihood = -2793.4696
Iteration 1: Log pseudolikelihood = -2792.8365
Iteration 2: Log pseudolikelihood = -2792.7434
Iteration 3: Log pseudolikelihood = -2792.7433

Extended probit regression Number of obs = 2,500
Wald chi2(8) = 335.99

Log pseudolikelihood = -2792.7433 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

graduate
program#

c.income
0 .1824158 .0238431 7.65 0.000 .1356842 .2291475
1 .1865878 .0245008 7.62 0.000 .1385672 .2346084

roommate#
program
Yes#0 .3099365 .0827593 3.75 0.000 .1477313 .4721418
Yes#1 .2436647 .076438 3.19 0.001 .093849 .3934805

program#
c.hsgpa

0 1.083248 .6284794 1.72 0.085 -.1485491 2.315045
1 1.004868 .5841352 1.72 0.085 -.1400159 2.149752

program
0 -4.201051 1.779367 -2.36 0.018 -7.688547 -.7135555
1 -3.590705 1.623489 -2.21 0.027 -6.772685 -.4087256

program
campus

Yes .7437785 .0734259 10.13 0.000 .5998663 .8876906

scholar
Yes .8963839 .058676 15.28 0.000 .7813811 1.011387

income -.0798981 .008895 -8.98 0.000 -.097332 -.0624643
_cons -.3806292 .0859392 -4.43 0.000 -.5490669 -.2121916

hsgpa
income .0478622 .0016462 29.08 0.000 .0446358 .0510886

hscomp
Moderate -.1351312 .0115348 -11.72 0.000 -.1577391 -.1125233

High -.226768 .0194135 -11.68 0.000 -.2648178 -.1887181

_cons 2.794476 .0128195 217.99 0.000 2.769351 2.819602

var(e.hsgpa) .0685876 .0019597 .0648522 .0725381

corr(e.pro~m,
e.graduate)

program
0 .3223659 .1492073 2.16 0.031 .0079293 .5787898
1 .4280942 .1358716 3.15 0.002 .1307496 .6547793
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corr(e.hsgpa,
e.graduate)

program
0 .4241328 .1274031 3.33 0.001 .1471666 .6394236
1 .3792206 .1220983 3.11 0.002 .1190782 .5906426

corr(e.hsgpa,
e.program) -.0206714 .0264813 -0.78 0.435 -.0724717 .03124

The main equation output is slightly different from that in [ERM] Example 3a. Because program
was specified as a treatment, it was automatically interacted with each of the other covariates in the
graduate equation.

We specified the pocorrelation suboption in entreat() so that we estimate separate correlation
parameters for the two potential outcomes—for those who participated and those who did not. In the
treated group, the correlation of the errors from the graduation equation and those from the program
participation equation corr(e.program,e.graduate) is estimated to be 0.43 and is significantly
different from zero. The researchers conclude that unobservable factors that increase the chance
of participating in the program also increase the chance of graduating among the individuals that
participate in the program.

Now, we use estat teffects to estimate the ATE of program participation on college graduation.
We specified vce(robust) when we fit the model, so estat teffects reports standard errors and
tests for the population ATE.

. estat teffects

Predictive margins Number of obs = 2,500

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATE
program

(1 vs 0) .1053155 .0491882 2.14 0.032 .0089083 .2017226

We estimate that the ATE is 0.11. In other words, the average probability of graduating increases by
0.11 when all students participate in the program versus when no students participate in the program.

We might be interested if those students who self-selected into the program increased their graduation
probability by more than 0.11. We estimate the average treatment effect on the treated (ATET).

. estat teffects, atet

Predictive margins Number of obs = 2,500
Subpop. no. obs = 1,352

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATET
program

(1 vs 0) .1255127 .0674688 1.86 0.063 -.0067236 .2577491

In this case, the program is only a little more effective on average for those who chose to participate
than it would have been for everyone. The ATET is 0.13, only 0.02 higher than the ATE.
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Those are the overall averages. Do graduation rates for participants and nonparticipants differ by
high school GPA and parents’ income? Our dataset has grouping variables, so we can let margins
estimate graduation rates for subpopulations defined by all three covariates.

. margins, over(program incomegrp hsgpagrp) vce(unconditional)
(output omitted )

The output is copious. You can type the command and see it if you like. The patterns are easier to
see on a marginsplot.

. marginsplot, plot(program) xlabels(0 4 8 12)
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The red line shows expected graduation rates for those who participated in the program. The blue
line shows rates for nonparticipants. Clearly, the differences between the groups in the program and
those out of the program differ dramatically across GPA and family income. For GPAs at or above 3.5,
the graduation rates are so high that there was no room for differences. For those with GPAs below 2.5,
we see differences, with participation graduation rates being higher than nonparticipation, but lots
of variation as income increases. For the other groups, the graduation rates are estimated to be
substantially higher among those who participated.

We were careful not to call the comparisons above effects or attribute them directly to the program.
They are indeed expected rates for the groups, but the students self-selected into program participation
groups. If we want to compare graduation rates assuming all students do not participate and then
assuming all students do participate, we type

. margins r.program, over(incomegrp hsgpagrp) vce(unconditional)
> contrast(nowald)

(output omitted )

The output is again long, so we leave you to see it for yourself. The graphs reveal the patterns
across groups.
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. marginsplot, by(hsgpagrp) xlabels(0 4 8 12)
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Contrasts of predictive margins of program with 95% CIs

These differences are close to what we would have seen had we differenced the red and blue
lines of the first graph. In this graph, each point is an estimate of the average treatment effect for a
subpopulation defined by a range of GPAs and a range of family income. We note that the confidence
intervals, as represented by the capped lines, are fairly wide.

Also see
[ERM] eprobit — Extended probit regression

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 3 — Endogenous covariates features

[ERM] Intro 5 — Treatment assignment features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 4a — Probit regression with endogenous sample selection

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a binary outcome and endogenous sample selection.

Remarks and examples
We are interested in whether regular exercise and body mass index (BMI) influence the chance of

having a subsequent heart attack. In our fictional study, we collected data on 625 men who had a
heart attack when they were between the ages of 50 and 55. Some men withdrew from the study
before it completed, and we believe their reasons for leaving are related to unobserved factors that
also affect their chances of having a second heart attack. We did, however, observe all cases where
a second heart attack was fatal.

To account for the endogenous sample selection, we specify an auxiliary model for selection using
a covariate that belongs in the auxiliary model and is excluded from the main equation. We expect
that the direct effect of whether a man had regular checkups before the study is negligible after we
condition on other covariates.

The outcome of interest is whether the man had another heart attack within five years of his first
heart attack (attack). We believe that the man’s current age is also an important exogenous covariate
along with BMI. We model the indicator for whether the man was observed for the full five years of
the study (full) as a function of an indicator for having regular checkups along with the covariates
from the main equation.

247
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. use https://www.stata-press.com/data/r18/heartsm
(Heart attacks)

. eprobit attack age bmi i.exercise, select(full = age bmi i.checkup) vce(robust)

Iteration 0: Log pseudolikelihood = -409.23137
Iteration 1: Log pseudolikelihood = -408.78569
Iteration 2: Log pseudolikelihood = -408.78452
Iteration 3: Log pseudolikelihood = -408.78452

Extended probit regression Number of obs = 625
Selected = 458

Nonselected = 167

Wald chi2(3) = 142.85
Log pseudolikelihood = -408.78452 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

attack
age .2237091 .0351334 6.37 0.000 .1548489 .2925693
bmi .1760896 .0298853 5.89 0.000 .1175155 .2346636

exercise
Yes -1.438937 .1515198 -9.50 0.000 -1.735911 -1.141964

_cons -15.78445 2.105945 -7.50 0.000 -19.91202 -11.65687

full
age -.1599347 .032953 -4.85 0.000 -.2245214 -.095348
bmi -.1146582 .0208896 -5.49 0.000 -.1556011 -.0737152

checkup
Yes 2.306638 .1660248 13.89 0.000 1.981236 2.632041

_cons 11.66488 1.942686 6.00 0.000 7.857284 15.47247

corr(e.full,
e.attack) -.4537026 .1636665 -2.77 0.006 -.71301 -.0852183

We estimate that the correlation between the errors from the outcome equation and the errors from
the selection equation is −0.45. This is significantly different from zero, so selection into the study
is endogenous. Because the correlation is negative, we conclude that unobserved factors that increase
the chance of staying in the study tend to occur with unobserved factors that decrease the chance of
having a subsequent heart attack.

The results for the main outcome equation (attack) and auxiliary selection equation (full) are
interpreted just as you would those from heckprobit. Which is to also say that the results for the
main equation can be interpreted as you would those from a probit regression using probit on
uncensored data. The goal of including a selection model is to estimate the parameters of the main
equation as though there were no selection.

Age and BMI have increased the chances of having another heart attack, while regular exercise
decreases the chances. However, the magnitude of the effect on the probability of another heart attack
cannot be determined from the coefficient estimates themselves. We can use margins to examine
the effect of different covariates on the probability of having a second heart attack. But first we want
to investigate a possible further complication in our data: regular exercise may be an endogenous
treatment. We explore this in [ERM] Example 4b.
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Also see
[ERM] eprobit — Extended probit regression

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] Intro 4 — Endogenous sample-selection features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 4b — Probit regression with endogenous treatment and sample selection

Description Remarks and examples Also see

Description
Continuing from [ERM] Example 4a, we show you how to estimate and interpret the results of

a model for a binary outcome when the model includes an endogenous treatment and the data are
subject to endogenous sample selection.

Remarks and examples
In [ERM] Example 4a, we ignored the possibility that regular exercise was an endogenous treatment.

However, we suspect that unobserved factors that influence the choice to exercise may be correlated
with the unobserved factors that affect the chance of having another heart attack.

We would like to know the average expected change in probability of having a subsequent
heart attack for those who exercise. That is, we are interested in estimating the average treatment
effect on the treated (ATET). We continue to include BMI and age in our outcome model, and to
account for endogenous sample selection, we specify the same auxiliary model for selection we did
in [ERM] Example 4a. We add a third equation to account for endogenous treatment assignment.
Whether a man ever joined a gym is an instrumental variable predicting exercise that we do not
expect to otherwise affect attack, so we include it in our model for regular exercise.

250
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. eprobit attack age bmi, select(full = age bmi i.checkup)
> entreat(exercise = bmi i.gym) vce(robust)

(iteration log omitted )
Extended probit regression Number of obs = 625

Selected = 458
Nonselected = 167

Wald chi2(6) = 111.78
Log pseudolikelihood = -711.90507 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

attack
exercise#

c.age
No .2156634 .0550909 3.91 0.000 .1076872 .3236397

Yes .221641 .0423742 5.23 0.000 .1385891 .3046928

exercise#
c.bmi

No .1925833 .04278 4.50 0.000 .108736 .2764306
Yes .2134441 .038381 5.56 0.000 .1382186 .2886696

exercise
No -16.07086 3.282712 -4.90 0.000 -22.50486 -9.636863

Yes -17.84655 2.61864 -6.82 0.000 -22.97899 -12.71411

full
age -.1650386 .0321825 -5.13 0.000 -.228115 -.1019621
bmi -.1143184 .0206726 -5.53 0.000 -.154836 -.0738008

checkup
Yes 2.315167 .1639928 14.12 0.000 1.993747 2.636587

_cons 11.92957 1.898426 6.28 0.000 8.208727 15.65042

exercise
bmi -.1815549 .0211349 -8.59 0.000 -.2229786 -.1401313

gym
Yes 1.517225 .1248316 12.15 0.000 1.27256 1.761891

_cons 3.941703 .5728064 6.88 0.000 2.819023 5.064383

corr(e.full,
e.attack) -.5338178 .1584217 -3.37 0.001 -.7737932 -.1598432

corr(e.exe~e,
e.attack) -.435728 .1467897 -2.97 0.003 -.676196 -.1113554

corr(e.exe~e,
e.full) .3212358 .0928654 3.46 0.001 .1293396 .4899396

The correlation between the errors that affect having a subsequent heart attack and the errors that
affect staying in the study is estimated to be −0.53 and is significant. So we do have endogenous
selection and conclude that unobservable factors that increase the chance of staying in the study also
tend to decrease the chance of having a subsequent heart attack.

Increases in age and BMI increase the chance of having another heart attack. This is true both for
those who exercise, coefficients marked yes, and for those who do not, coefficients marked no.

We use estat teffects to estimate the ATET of regular exercise on having a subsequent heart
attack. We specified vce(robust) when we fit the model so that estat teffects will report
unconditional standard errors for the population ATET rather than the sample ATET.
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. estat teffects, atet

Predictive margins Number of obs = 625
Subpop. no. obs = 291

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATET
exercise

(Yes vs No) -.2993399 .0773753 -3.87 0.000 -.4509927 -.1476871

The estimated ATET is −0.30. Thus, for those who exercise regularly, the average probability of
having a subsequent heart attack is 0.30 lower than it would be if they did not exercise regularly.

Also see
[ERM] eprobit — Extended probit regression

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 4 — Endogenous sample-selection features

[ERM] Intro 5 — Treatment assignment features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 5 — Probit regression with endogenous ordinal treatment

Description Remarks and examples Also see

Description
We model a binary outcome that depends on an endogenous ordinal treatment by using eprobit

with the entreat() option.

Remarks and examples
We are interested in estimating the average treatment effects (ATEs) of different levels of exercise

intensity on the chance of having a subsequent heart attack. In our fictional study, we collected data
on 625 men who had a heart attack when they were between the ages of 50 and 55. The outcome
of interest is whether the man had another heart attack within five years of his first heart attack
(attack). We believe that body mass index (BMI) and age are important covariates.

The exintensity variable records the intensity of exercise using the scale of 0 (no exercise), 1
(moderate), and 2 (heavy). We suspect that unobserved factors that influence the choice to exercise
at a certain intensity level also affect the chance of having another heart attack, so we specify
exintensity as an endogenous treatment. Whether an individual ever joined a gym is included as
an instrumental covariate in the treatment model that we specify in entreat().

253



254 Example 5 — Probit regression with endogenous ordinal treatment

. use https://www.stata-press.com/data/r18/heartsm
(Heart attacks)

. eprobit attack age bmi, entreat(exintensity = bmi i.gym) vce(robust)

(iteration log omitted )
Extended probit regression Number of obs = 625

Wald chi2(9) = 152.33
Log pseudolikelihood = -728.6686 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

attack
exintensity#

c.age
None .2118759 .0514612 4.12 0.000 .1110138 .312738

Moderate .2338466 .0425341 5.50 0.000 .1504813 .3172119
Heavy .2346887 .0805152 2.91 0.004 .0768818 .3924957

exintensity#
c.bmi
None .1948171 .0386314 5.04 0.000 .119101 .2705332

Moderate .2062276 .0405785 5.08 0.000 .1266952 .2857599
Heavy .2155222 .0765592 2.82 0.005 .0654689 .3655755

exintensity
None -15.90911 3.043587 -5.23 0.000 -21.87444 -9.943793

Moderate -18.2922 2.499325 -7.32 0.000 -23.19079 -13.39362
Heavy -18.61821 5.395246 -3.45 0.001 -29.1927 -8.043721

exintensity
bmi -.1720462 .0204172 -8.43 0.000 -.2120632 -.1320292

gym
Yes 1.518834 .1192361 12.74 0.000 1.285136 1.752532

/exintensity
cut1 -3.677846 .5537938 -4.763262 -2.59243
cut2 -2.386538 .5372719 -3.439572 -1.333505

corr(e.exi~y,
e.attack) -.4722803 .1091789 -4.33 0.000 -.6575129 -.2332112

The estimated correlation between the errors in the main outcome and auxiliary treatment equations
is −0.47. This is significantly different from zero, so we confirm that the choice of exercise intensity
level is endogenous. Because it is negative, we conclude that unobservable factors that increase the
intensity of exercising tend to decrease the chance of having a subsequent heart attack. The cutpoints
for the ordered probit model for the endogenous treatment are shown just beneath the treatment model.

The coefficients for exintensity in the main equation indicate that both moderate and heavy
exercise have a negative effect because they are smaller, more negative, than the coefficient for no
exercise. BMI has a positive effect on the chance of having another heart attack, regardless of exercise
level. In fact, the values of the three coefficients for bmi are so close that we might not need separate
parameters for the three levels of exercise. The same could be said of the three coefficients on age.
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The coefficients for the intercepts of heavy and moderate exercise are close in magnitude. To test
whether these two coefficients are equal, we can use test.

. test 1.exintensity == 2.exintensity

( 1) [attack]1.exintensity - [attack]2.exintensity = 0

chi2( 1) = 0.00
Prob > chi2 = 0.9557

We cannot reject that the coefficients are equal.

We also have separate coefficients on age and bmi for heavy and moderate exercise. To jointly
test the equality of each coefficient associated with heavy exercise with the corresponding coefficient
associated with moderate exercise, we type

. test (1.exintensity == 2.exintensity)
> (1.exintensity#c.bmi == 2.exintensity#c.bmi)
> (1.exintensity#c.age == 2.exintensity#c.age)

( 1) [attack]1.exintensity - [attack]2.exintensity = 0
( 2) [attack]1.exintensity#c.bmi - [attack]2.exintensity#c.bmi = 0
( 3) [attack]1.exintensity#c.age - [attack]2.exintensity#c.age = 0

chi2( 3) = 0.04
Prob > chi2 = 0.9983

We do not have any evidence that heavy and moderate exercise have a different effect on the probability
of a second heart attack.

That was some pretty tricky coefficient referencing in our test command. We suggest you type

. eprobit, coeflegend

to see how to reference coefficients in test, nlcom, and other postestimation commands.

What if every man in the population did not exercise? What if they all exercised moderately?
What if they all exercised heavily? estat teffects can estimate the average probability of a second
heart attack over the five years for each of those counterfactuals.

. estat teffects, pomean

Predictive margins Number of obs = 625

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

POmean
exintensity

None .7918941 .0329342 24.04 0.000 .7273443 .856444
Moderate .5419335 .0326336 16.61 0.000 .4779728 .6058942

Heavy .5336232 .0767752 6.95 0.000 .3831466 .6840998

When no one in the population exercises, we estimate that 79% will have subsequent heart attacks.
We are pretty confident in that number: the 95% confidence interval begins at 73% and ends at 86%.
It does not matter much whether every man exercises moderately or heavily. Either intensity drops
the expected rate of subsequent heart attacks to about 54%. These are the average potential-outcome
means (POMs) under the three exercise-intensity regimes.
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The difference between these POMs gives us estimates of the average treatment effects (ATEs) in
the population. estat teffects will estimate those too.

. estat teffects

Predictive margins Number of obs = 625

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATE
exintensity
(Moderate

vs
None) -.2499606 .0507776 -4.92 0.000 -.349483 -.1504383

(Heavy
vs

None) -.2582709 .0965797 -2.67 0.007 -.4475637 -.0689781

We estimate that the ATE for heavy intensity compared with no exercise is −0.26. So the average
probability of a subsequent heart attack is 26 percentage points lower when all men in the population
exercise with heavy intensity versus when none of them exercise at all. The estimated ATE for moderate
intensity versus none is −0.25. We again see no substantive difference between moderate and heavy
exercise.

We used vce(robust) at estimation so that estat teffects would report standard errors that
account for sampling variability in our covariates and are therefore valid for inference about the POMs,
ATEs, and ATETs in the population from which our sample was drawn.

We have established that men who choose to exercise have unobserved attributes that tend to
decrease their chance of another heart attack beyond the direct effect of exercising and beyond the
effect of the other covariates. We can include the effect of these attributes for men who exercise by
estimating the average treatment effect on the treated (ATET).

. estat teffects, atet
(subpopulation of first non-control treatment level assumed)

Predictive margins Number of obs = 625
Subpop. no. obs = 201

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATET
exintensity
(Moderate

vs
None) -.2992132 .0531572 -5.63 0.000 -.4033994 -.195027

(Heavy
vs

None) -.309572 .100091 -3.09 0.002 -.5057467 -.1133973

The ATETs are both about 0.30, making them about 5 percentage points higher than the ATEs. We
cannot, however, directly attribute that difference to the unobserved attributes. The ATETs are also
averaged over subsamples and are therefore affected by any differences in the distribution of age or
bmi in treated subsamples. The effect of those distributions could be either positive or negative.

With some care, we can extract just the effect of the unobserved attributes. It is a little tricky,
both conceptually and syntactically. So continue reading only if you are truly interested.
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Let’s consider only the moderate exercisers. When we type

. margins r(0 1).exintensity, subpop(if exintensity == 1) vce(unconditional)

margins will produce the average difference for exintensity levels 0 and 1 (none and moderate).
subpop(if exintensity == 1) restricts the average to men who exercised moderately.

margins would use the unobserved attributes associated with moderate exercise for both of the
counterfactuals it requires to compute the contrast. Which is to say, it would use the true value of
exercise intensity in the subpopulation we are averaging over. If you were to guess that this difference
will be the ATET, you would be correct. For each man who chose moderate exercise, the ATET
computation compares the man’s expected probability of another attack using all the information on
the man with that same man’s expected probability if he instead did not choose to exercise. When
we say “same man”, we mean that he retains his original unobserved attributes when evaluating the
counterfactual that he does not exercise. The ATET is then the average of that comparison over all
those who exercise moderately.

We may also want to use margins to test whether the ATE for heavy exercise and the ATE for
moderate exercise are equal. We specify two predict() options. On the first, we request treatment
effects (te) for heavy exercisers (tlevel(heavy)). On the second, we request the treatment effects
for moderate exercisers (tlevel(moderate)). We add contrast(predict(r)) to request the
difference between the predictions (their contrast). Finally, we use vce(unconditional) to request
standard errors that account for sampling variability in the covariates and thus allow us to make
inferences about the population.

. margins, predict(te tlevel(Heavy)) predict(te tlevel(Moderate))
> contrast(predict(r)) vce(unconditional)

Contrasts of predictive margins Number of obs = 625

1._predict: treatment effect Pr(attack==Yes), exintensity: Heavy vs. None,
predict(te tlevel(Heavy))

2._predict: treatment effect Pr(attack==Yes), exintensity: Moderate vs. None,
predict(te tlevel(Moderate))

df chi2 P>chi2

_predict 1 0.01 0.9085

Unconditional
Contrast std. err. [95% conf. interval]

_predict
(2 vs 1) .0083103 .0722814 -.1333587 .1499793

We cannot reject that the ATE for heavy exercise is equal to the ATE for moderate exercise. This result
agrees with what we saw when we tested the coefficients for heavy and moderate exercise.

As we have seen repeatedly in the examples in the manual, most of the interesting questions are
answered by estat teffects and margins and not by the parameter estimates themselves. This is
particularly true of models estimated using eprobit and eoprobit.
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Also see
[ERM] eprobit — Extended probit regression

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 5 — Treatment assignment features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 6a — Ordered probit regression with endogenous treatment

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with an ordinal outcome and endogenous treatment.

Remarks and examples
We are studying the effect of having health insurance on women’s health status, which we measure

with a health score from 1 (poor) to 5 (excellent). We want to estimate the average treatment effect
(ATE) of insurance on the probability of having each of the five statuses. We suspect that our model
needs to account for the health insurance being an endogenous treatment.

In our fictional study, we collect data on a sample of 6,000 women between the ages of 25 and
30. In addition to the insurance indicator, we include an indicator for whether the woman exercises
regularly and the number of years of schooling she completed (grade) as exogenous covariates. For
our treatment model, we use grade and an indicator for whether the woman is currently working or
attending school (workschool), which is excluded from the outcome model.
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. use https://www.stata-press.com/data/r18/womenhlth
(Women’s health status)

. eoprobit health i.exercise grade, entreat(insured = grade i.workschool)
> vce(robust)

(iteration log omitted )
Extended ordered probit regression Number of obs = 6,000

Wald chi2(4) = 516.93
Log pseudolikelihood = -9105.4376 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

health
exercise#
insured
Yes#No .5296149 .0619049 8.56 0.000 .4082835 .6509463

Yes#Yes .5190249 .033872 15.32 0.000 .4526371 .5854127

insured#
c.grade

No .1079014 .0250326 4.31 0.000 .0588383 .1569645
Yes .1296456 .0107428 12.07 0.000 .10859 .1507012

insured
grade .3060024 .0100506 30.45 0.000 .2863036 .3257012

workschool
Yes .5387767 .0446794 12.06 0.000 .4512067 .6263466

_cons -3.592452 .1348431 -26.64 0.000 -3.85674 -3.328165

/health
insured#
c.cut1

No .6282326 .2393499 .1591154 1.09735
Yes -.7255086 .2470598 -1.209737 -.2412803

insured#
c.cut2

No 1.594089 .2300159 1.143266 2.044912
Yes .4404531 .1986825 .0510426 .8298636

insured#
c.cut3

No 2.526424 .2241048 2.087186 2.965661
Yes 1.332514 .1845713 .9707608 1.694267

insured#
c.cut4

No 3.41748 .2356708 2.955574 3.879386
Yes 2.292828 .1760594 1.947758 2.637899

corr(e.ins~d,
e.health) .3414241 .0940374 3.63 0.000 .1460223 .5111858

The estimated correlation between the errors from the health status equation and the errors from
the health insurance equation is 0.34. This is significantly different from zero, so the treatment choice
of being insured is endogenous. Because it is positive, we conclude that unobserved factors that
increase the chance of having health insurance tend to also increase the chance of being in a high
health status.
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We see estimates of both the coefficients and the cutpoints for two equations, one for insured
women (yes) and one for uninsured (no). For both insured and uninsured, exercise and education
have positive effects on health status.

We could use estat teffects to estimate the ATE of insurance on the probabilities of each health
category.

. estat teffects

Feel free to run that command and see the results. We estimate and interpret other estimates of
these ATEs in [ERM] Example 6b after adjusting for endogenous sample selection that is introduced in
that example. The ATE estimates there are slightly different, but they estimate the same thing. Given
a sufficiently large sample, the two sets of estimates would converge to the same values.

Also see
[ERM] eoprobit — Extended ordered probit regression

[ERM] eoprobit postestimation — Postestimation tools for eoprobit and xteoprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 5 — Treatment assignment features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 6b — Ordered probit regression with endogenous treatment and sample selection

Description Remarks and examples Also see

Description
Continuing from [ERM] Example 6a, we show you how to estimate and interpret the results of a

model for an ordinal outcome when the model includes an endogenous treatment and the data are
subject to endogenous sample selection.

Remarks and examples
Suppose that we collected our data at doctors’ offices and thus observe health score information

only from women who visited their doctor in the study time frame (drvisit = 1). We suspect that
unobserved factors that affect whether a woman visited the doctor are related to those that affect
whether she has insurance and to those that affect her health status. Thus, we have an endogenously
selected sample and an endogenously chosen treatment.

For our selection model, we use the endogenous treatment indicator for insurance status and regular
checkups before the study (regcheck), which is excluded from the outcome model. Our command
is otherwise exactly the same as specified in [ERM] Example 6a.

. eoprobit health i.exercise c.grade, entreat(insured = grade i.workschool)
> select(select = i.insured i.regcheck) vce(robust)

(iteration log omitted )
Extended ordered probit regression Number of obs = 6,000

Selected = 4,693
Nonselected = 1,307

Wald chi2(4) = 367.30
Log pseudolikelihood = -9806.1189 Prob > chi2 = 0.0000
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Robust
Coefficient std. err. z P>|z| [95% conf. interval]

health
exercise#
insured
Yes#No .4169984 .0851131 4.90 0.000 .2501798 .583817

Yes#Yes .5399986 .037546 14.38 0.000 .4664098 .6135874

insured#
c.grade

No .1317866 .0342405 3.85 0.000 .0646765 .1988967
Yes .1343324 .0129342 10.39 0.000 .1089818 .159683

select
insured

Yes 1.01669 .092325 11.01 0.000 .8357364 1.197644

regcheck
Yes .5374105 .0397297 13.53 0.000 .4595417 .6152793

_cons -.1690644 .0743716 -2.27 0.023 -.3148301 -.0232987

insured
grade .3057852 .0100116 30.54 0.000 .2861628 .3254076

workschool
Yes .5314797 .0452607 11.74 0.000 .4427703 .6201891

_cons -3.584315 .1348183 -26.59 0.000 -3.848554 -3.320077

/health
insured#
c.cut1

No .7262958 .3313472 .0768673 1.375724
Yes -.5450451 .3181876 -1.168681 .0785912

insured#
c.cut2

No 1.719809 .3129056 1.106526 2.333093
Yes .5683456 .2464686 .085276 1.051415

insured#
c.cut3

No 2.620793 .3056038 2.021821 3.219766
Yes 1.442022 .2227768 1.005387 1.878656

insured#
c.cut4

No 3.48945 .3158536 2.870389 4.108512
Yes 2.391497 .2090187 1.981828 2.801166

corr(e.sel~t,
e.health) .496699 .0990366 5.02 0.000 .2795869 .665485

corr(e.ins~d,
e.health) .4032487 .121518 3.32 0.001 .1421331 .6118937

corr(e.ins~d,
e.select) .2661948 .0555596 4.79 0.000 .1543216 .3713287

At both levels of the treatment, exercise and education still have positive effects on health status.

The correlation between the errors from the selection equation and the errors from the main equation
is 0.497. This is significantly different from zero, so we confirm our suspicion of endogeneity. Because
it is positive, we conclude that unobservable factors that increase the chance of being in the study
also tend to increase the chance of being in a higher health status category.
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What are the expected average probabilities of being in each health status if every woman had
insurance? If every woman did not have insurance? We can answer those questions using estat
teffects.

. estat teffects, pomean

Predictive margins Number of obs = 6,000

POmean_Pr1: Pr(health=1=Poor)
POmean_Pr2: Pr(health=2=Not good)
POmean_Pr3: Pr(health=3=Fair)
POmean_Pr4: Pr(health=4=Good)
POmean_Pr5: Pr(health=5=Excellent)

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

POmean_Pr1
insured

No .1028382 .0327177 3.14 0.002 .0387126 .1669637
Yes .0058955 .0033611 1.75 0.079 -.0006921 .0124831

POmean_Pr2
insured

No .2621517 .0479497 5.47 0.000 .1681719 .3561314
Yes .0618234 .0116191 5.32 0.000 .0390504 .0845965

POmean_Pr3
insured

No .3216819 .0259933 12.38 0.000 .270736 .3726278
Yes .1759926 .0100741 17.47 0.000 .1562478 .1957374

POmean_Pr4
insured

No .2144017 .0402798 5.32 0.000 .1354547 .2933488
Yes .3237595 .009282 34.88 0.000 .3055672 .3419519

POmean_Pr5
insured

No .0989265 .0521147 1.90 0.058 -.0032163 .2010694
Yes .4325289 .0165829 26.08 0.000 .400027 .4650309

These are the estimates of the average potential-outcome means for the population. We can consider
the values in this table to be either the expected proportions of all women being in a status category
or the average probabilities of being in a status category. If we multiply by 100, we can talk about
the expected percentage of all women being in a status category. The first pair of rows shows the
probabilities of being in the first health status, poor. If all women are uninsured, the probability of
having a poor health status is 0.10. If all women are insured, that probability falls to 0.01. At the
other end of the spectrum, only 9.9% of women are expected to have excellent health if no women
are insured. That number rises to 43.3% if all women are insured.

If we sum all the proportions labeled no, that sum is 1.0. The same is true of the proportions
labeled yes. The sum of the proportions must be 1.0 because each woman can be in only one health
status.

In any health status, if we subtract the potential-outcome mean when assuming all women are
uninsured from the mean when assuming all women to be insured, we estimate the average treatment
effect (ATE). This is the ATE that being insured has on the probability of being in the health status
category. Let’s do that.
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. estat teffects

Predictive margins Number of obs = 6,000

ATE_Pr1: Pr(health=1=Poor)
ATE_Pr2: Pr(health=2=Not good)
ATE_Pr3: Pr(health=3=Fair)
ATE_Pr4: Pr(health=4=Good)
ATE_Pr5: Pr(health=5=Excellent)

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATE_Pr1
insured

(Yes vs No) -.0969427 .0333853 -2.90 0.004 -.1623767 -.0315086

ATE_Pr2
insured

(Yes vs No) -.2003283 .0552089 -3.63 0.000 -.3085358 -.0921207

ATE_Pr3
insured

(Yes vs No) -.1456893 .0322109 -4.52 0.000 -.2088216 -.082557

ATE_Pr4
insured

(Yes vs No) .1093578 .0437353 2.50 0.012 .0236382 .1950774

ATE_Pr5
insured

(Yes vs No) .3336024 .0637745 5.23 0.000 .2086066 .4585982

Looking at the last line, we see that the average probability of being in excellent health in the
population of women aged 25 to 30 is 0.33 greater when all women have health insurance versus
when no women have health insurance.

Because we specified vce(robust) at estimation, all of our estimates from estat teffects
reported standard errors for the population ATE rather than standard errors that are conditional on the
sample ATE.

Also see
[ERM] eoprobit — Extended ordered probit regression

[ERM] eoprobit postestimation — Postestimation tools for eoprobit and xteoprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 4 — Endogenous sample-selection features

[ERM] Intro 5 — Treatment assignment features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 7 — Random-effects regression with continuous endogenous covariate

Description Remarks and examples Reference Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a continuous outcome, a continuous endogenous covariate, and random effects.

Remarks and examples
We will use nlswork.dta, a subsample of the NLSY data (Center for Human Resource Re-

search 1989) on young women aged 14–24 in 1968. These data are panel data; each individual was
surveyed in multiple years ranging from 1968 to 1988.

Suppose that we want to study the relationship between the natural logarithm of wage (ln wage)
and the number of years at a job (tenure). We also model ln wage with a quadratic effect of the
individual’s age (age and c.age#c.age), living in a metropolitan area (not smsa), and whether the
individual is African American (2.race). We suspect that the unobserved factors that influence the
individual’s job tenure are correlated with the unobserved factors that influence their wage, so we
treat job tenure as an endogenous covariate. We use an individual’s union status (union) and whether
she lived in the southern United States (south) as instrumental covariates for tenure. Of course, these
are not the instruments we would choose in real research, but they are useful for demonstrating how
to use the commands below.

We also want to account for the within-panel correlation in our data, so we fit a random-effects
model using xteregress. Before we can fit our model, we must use xtset to specify the panel
identifier variable, in this case, idcode. Our data have already been xtset, so we type xtset to
display the settings.

. use https://www.stata-press.com/data/r18/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. xtset

Panel variable: idcode (unbalanced)
Time variable: year, 68 to 88, but with gaps

Delta: 1 unit

We are now ready to fit our model. We want to make inferences about how our covariates affect
the log wage in the population, not just in our sample. Therefore, we add the vce(robust) option
so that subsequent calls to margins will consider our sample as a draw from the population.

By default, xteregress includes random effects for both ln wage and tenure and allows these
random effects to be correlated. Because of the complexity of this model, the command may take a
few minutes to run.
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. xteregress ln_wage age c.age#c.age i.not_smsa 2.race,
> endogenous(tenure = age c.age#c.age i.union 2.race i.south) vce(robust)

(iteration log omitted )
Extended linear regression Number of obs = 19,007
Group variable: idcode Number of groups = 4,134

Obs per group:
min = 1
avg = 4.6
max = 12

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 384.25
Log pseudolikelihood = -53601.41 Prob > chi2 = 0.0000

(Std. err. adjusted for 4,134 clusters in idcode)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

ln_wage
age .0161086 .0134428 1.20 0.231 -.0102388 .042456

c.age#c.age -.0011178 .0002402 -4.65 0.000 -.0015887 -.000647

1.not_smsa -.172498 .0122743 -14.05 0.000 -.1965552 -.1484408

race
Black -.2374388 .0254533 -9.33 0.000 -.2873263 -.1875513
tenure .2300781 .0277646 8.29 0.000 .1756605 .2844957
_cons 1.690136 .2077606 8.14 0.000 1.282933 2.097339

tenure
age .0892847 .0599348 1.49 0.136 -.0281852 .2067547

c.age#c.age .0033688 .0009943 3.39 0.001 .0014199 .0053176

1.union .5584566 .0740956 7.54 0.000 .4132318 .7036814

race
Black .4691202 .1101411 4.26 0.000 .2532476 .6849929

1.south -.4024058 .0628545 -6.40 0.000 -.5255983 -.2792132
_cons -2.929734 .8800349 -3.33 0.001 -4.65457 -1.204897

var(e.ln_w~e) .3654205 .0786259 .2396866 .5571114
var(e.tenure) 6.656475 .1285168 6.409292 6.913189

corr(e.ten~e,
e.ln_wage) -.9055589 .0213219 -42.47 0.000 -.9395846 -.8538145

var(
ln_~e[idc~e]) .3314414 .0736048 .2144748 .5121973

var(
ten~e[idc~e]) 7.593483 .3027546 7.022688 8.210672

corr(
ten~e[idc~e],
ln_~e[idc~e]) -.8299334 .0421356 -19.70 0.000 -.8963409 -.7271053
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The first two sections of the output provide the estimated coefficients in the equations for ln wage
and tenure. Because this is a linear regression, we can interpret the coefficients in the usual way.
For example, we expect an increase of 0.23 in log wage for an additional year of job tenure.

Next, we see the estimates of the observation-level error variances and their correlation with
the dependent variable. This is followed by estimates of the variances of the random effects and
an estimate of their correlation with the dependent variable. If at least one of these correlations
is significantly different from zero, we can conclude that tenure is endogenous. In our case, the
correlation between the observation-level errors is −0.91, and the correlation between the random
effects is −0.83. Because both are negative and significantly different from zero, we conclude that
tenure is endogenous and that unobserved individual-level factors that increase job tenure tend to
decrease log wage. Additionally, unobserved observation-level (time-varying) factors that increase job
tenure tend to also decrease log wage.

We may also want to ask questions about specific groups in the population. Below, we consider
how log wages differ by age group. We will study people between 18 and 40. As we mentioned in
[ERM] Intro 7, the effects that margins computes by default have a causal interpretation if the model
is correctly specified. The reason they do is that margins conditions on the level of endogeneity. We
type

. margins, over(age) subpop(if (age>=18)*(age<=40)) vce(unconditional)
(output omitted )

and then graph the effects

. marginsplot
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Figure 1.

What if we had not accounted for the level of endogeneity? This will not matter in cases where
we average over the entire population and the effect of the unobservable becomes zero. It matters,
however, when we look at effects over subpopulations. Below, we use margins to compute effects
using the linear prediction, xitβ, by adding the option predict(xb). The linear prediction is not
conditioning on endogeneity.
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. margins, over(age) predict(xb) subpop(if (age>=18)*(age<=40)) vce(unconditional)
(output omitted )

. marginsplot
(output omitted )
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Figure 2.

Figure 1 shows wages increasing for each age group, whereas figure 2 shows wages decreasing
after 35 years. Conditioning on the level of endogeneity to obtain structural effects matters even when
we have linear models.

Reference
Center for Human Resource Research. 1989. National Longitudinal Survey of Labor Market Experience, Young Women

14–24 years of age in 1968. Columbus, OH: Ohio State University Press.

Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] Intro 3 — Endogenous covariates features

[ERM] Intro 6 — Panel data and grouped data model features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 8a — Random effects in one equation and endogenous covariate

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a continuous outcome and a continuous endogenous covariate. We include random effects in the
outcome equation but not in the equation for the continuous endogenous covariate.

Remarks and examples
In [ERM] Example 1a, we examined data from a fictional university that was studying the relationship

between the high school grade point average (GPA) of its admitted students and their final college
GPA.

Now suppose that 100 colleges have joined together in a study of the effect of high school GPA
on the final college GPA of admitted students. Again, we suspect that unobserved ability affects both
high school GPA and college GPA. So we treat high school GPA as an endogenous covariate. The
researchers also believe that unobserved characteristics of the college are likely to affect college GPA
but not high school GPA. Therefore, we allow for random effects in only the college GPA equation.
Having random effects in only the main outcome equation is rare, but occasionally it corresponds to
a model of interest.

Using data on the 2,000 students expected to graduate in 2010, the researchers model college GPA
(gpa) as a function of high school GPA (hsgpa). In both cases, GPA is measured in 0.01 increments,
and we ignore complications due to the boundary points. We also ignore that, unfortunately, the
schools have a high dropout rate and that the college GPA is missing for these students, leaving the
researchers with a sample of 1,372 students.

The researchers expect that the effect of high school competitiveness on college GPA is negligible
once high school GPA is controlled for. So they include a ranking of the high school (hscomp) as
an instrumental covariate for high school GPA. They include parental income measured in $10,000s,
which they believe may also influence student performance, in the main model and in the model for
high school GPA.

In our dataset, each observation represents one student. The variable collegeid uniquely identifies
the 100 schools used in the study. Before we can fit a random-effects model to our data, we need to
declare our grouping variable using xtset.

. use https://www.stata-press.com/data/r18/class10re
(Classes of 2010 profile)

. xtset collegeid

Panel variable: collegeid (balanced)
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With the data xtset, we can now estimate the parameters of the model.

. xteregress gpa income, endogenous(hsgpa = income i.hscomp, nore)

(setting technique to bhhh)
Iteration 0: Log likelihood = 44.332373
Iteration 1: Log likelihood = 44.674349
Iteration 2: Log likelihood = 44.688506
Iteration 3: Log likelihood = 44.690548
Iteration 4: Log likelihood = 44.691142
Iteration 5: Log likelihood = 44.691359
Iteration 6: Log likelihood = 44.691445
Iteration 7: Log likelihood = 44.691483
Iteration 8: Log likelihood = 44.6915
Iteration 9: Log likelihood = 44.691507
(switching technique to nr)
Iteration 10: Log likelihood = 44.691511

Extended linear regression Number of obs = 1,372
Group variable: collegeid Number of groups = 100

Obs per group:
min = 3
avg = 13.7
max = 20

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 2916.69
Log likelihood = 44.691511 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

gpa
income .0558709 .003765 14.84 0.000 .0484916 .0632502
hsgpa .9390929 .0781538 12.02 0.000 .7859142 1.092272
_cons -.5600512 .2346858 -2.39 0.017 -1.020027 -.1000755

hsgpa
income .0428695 .0019412 22.08 0.000 .0390649 .0466741

hscomp
Moderate -.1452852 .0140801 -10.32 0.000 -.1728817 -.1176887

High -.2339232 .0235935 -9.91 0.000 -.2801656 -.1876809

_cons 3.083431 .0167567 184.01 0.000 3.050589 3.116274

var(e.gpa) .0470832 .0024655 .0424907 .0521721
var(e.hsgpa) .0572604 .0021862 .053132 .0617096

corr(e.hsgpa,
e.gpa) .1979973 .0870885 2.27 0.023 .0229883 .3612321

var(
gpa[colle~d]) .0633532 .0095652 .0471252 .0851695

We suppressed the random effect from the equation for high school GPA by specifying nore within
the endogenous() option. Therefore, no variance is reported for college random effects affecting a
student’s high school GPA. The variance of the random effects affecting college GPA is estimated to
be 0.06.

To check for endogeneity, we need to examine only the correlation between the student-level
errors in high school and college GPAs. The estimate of this correlation is 0.2, and the corresponding
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test finds that it is significantly different from zero. The researchers conclude that the unobserved
student-level factors that increase high school GPA tend to also increase college GPA.

Because this is a linear regression model, the coefficients can be directly interpreted. For example,
the researchers expect the difference in college GPA is about 0.94 points for students with a difference
of 1 point in high school GPA.

Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] Intro 3 — Endogenous covariates features

[ERM] Intro 6 — Panel data and grouped data model features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 8b — Random effects, endogenous covariate, and endogenous sample selection

Description Remarks and examples Also see

Description
In [ERM] Example 8a, we ignored the observations that were dropped because of missing data

on GPA. In this example, we show you how to fit a model with a continuous outcome, a continuous
endogenous covariate, endogenous sample selection, and random effects.

Remarks and examples
In the last example, the researchers excluded students who dropped out of college because they

are missing college GPA on these students. Thus they were estimating the parameters for only the
population of students who graduate from college. Now let’s suppose that the researchers are interested
in the expected college GPA for all the students who enrolled, even those who dropped out. What
would their GPA be if they had remained in school?

The researchers assumed that unobserved student ability affected both college and high school GPAs.
They also suspect that unobserved ability affects the decision to stay in school, so they could have an
endogenously selected sample. The researchers have data on whether the students have participated in
a retention program (program) and whether they had a roommate from the same college (roommate).
They use these variables in addition to high school GPA and parent’s income to model whether the
student graduates.

The researchers assumed that there are unobserved characteristics of the college that affects college
GPA. They also assumed that unobserved college characteristics such as the availability and type of
extracurricular activities and the rigor of the curriculum affect whether the students graduate. They
account for these unobserved college-level factors that may affect the probability of graduating and
the final college GPA of the students by including random effects in both of these equations.

. xteregress gpa income, endogenous(hsgpa = income i.hscomp, nore)
> select(graduate=hsgpa income i.roommate i.program)

(setting technique to bhhh)
Iteration 0: Log likelihood = -750.88823
Iteration 1: Log likelihood = -750.14312
Iteration 2: Log likelihood = -750.09077
Iteration 3: Log likelihood = -750.03772
Iteration 4: Log likelihood = -750.03525
Iteration 5: Log likelihood = -750.03163
Iteration 6: Log likelihood = -750.03143
Iteration 7: Log likelihood = -750.03082
Iteration 8: Log likelihood = -750.03081
Iteration 9: Log likelihood = -750.03069
(switching technique to nr)
Iteration 10: Log likelihood = -750.03068
Iteration 11: Log likelihood = -750.03067
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Extended linear regression Number of obs = 2,000
Selected = 1,372

Nonselected = 628

Group variable: collegeid Number of groups = 100

Obs per group:
min = 20
avg = 20.0
max = 20

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 2498.14
Log likelihood = -750.03067 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

gpa
income .0580659 .0039428 14.73 0.000 .0503381 .0657938
hsgpa .975956 .0719006 13.57 0.000 .8350334 1.116879
_cons -.7193664 .2132662 -3.37 0.001 -1.13736 -.3013723

graduate
hsgpa 1.59638 .5058428 3.16 0.002 .604946 2.587813

income .2111094 .0256101 8.24 0.000 .1609145 .2613043

roommate
Yes 1.16331 .0893901 13.01 0.000 .9881092 1.338512

1.program .8719825 .0858947 10.15 0.000 .7036319 1.040333
_cons -6.488787 1.512468 -4.29 0.000 -9.453169 -3.524405

hsgpa
income .0487467 .0016938 28.78 0.000 .0454269 .0520664

hscomp
Moderate -.1594138 .0121475 -13.12 0.000 -.1832225 -.1356051

High -.2532709 .0195334 -12.97 0.000 -.2915557 -.2149862

_cons 3.018068 .0138501 217.91 0.000 2.990922 3.045214

var(e.gpa) .0475351 .0024437 .0429789 .0525742
var(e.hsgpa) .0602102 .0019041 .0565915 .0640602

corr(e.gra~e,
e.gpa) .2754647 .1003886 2.74 0.006 .0697401 .4587145

corr(e.hsgpa,
e.gpa) .1905273 .081385 2.34 0.019 .0273572 .3438079

corr(e.hsgpa,
e.graduate) .1534595 .1210009 1.27 0.205 -.0879677 .3778581

var(
gpa[colle~d]) .0646465 .0097678 .0480764 .0869278

var(
gra~e[col~d]) .9011305 .1745683 .6164413 1.317297

corr(
gra~e[col~d],
gpa[colle~d]) .2599483 .1069409 2.43 0.015 .0412395 .4548852

Now we see a random-effect variance parameter estimate for graduation and for college GPA and a
correlation between these random effects. The student-level and college-level correlation parameters
between the college GPA equation and graduation are significantly different from zero, so the researchers
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conclude that there is endogenous sample selection. The student-level correlation between college
GPA and high school GPA is also significantly different from zero, so they conclude that high school
GPA is an endogenous covariate.

We can interpret the coefficients in the main equation as we did in [ERM] Example 8a, but now they
are estimated for the population of admitted students, not the population of graduates. The estimated
effect of high school GPA is slightly higher, 0.98 rather than 0.94.

Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] Intro 3 — Endogenous covariates features

[ERM] Intro 4 — Endogenous sample-selection features

[ERM] Intro 6 — Panel data and grouped data model features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

Example 9 — Ordered probit regression with endogenous treatment and random effects

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with an ordinal outcome, an endogenous treatment, and random effects.

Remarks and examples
In [ERM] Example 6a, we examined fictional data on the health scores of women between the

ages of 25 and 30. Each woman was observed at one time point. Our outcome was an ordinal health
status ranging from 1 (poor) to 5 (excellent). We estimated the average treatment effect of having
health insurance on the probabilities of having each health status.

Now suppose that we conduct a fictional study where we have collected data on 1,800 women
between the ages of 25 and 30 annually from 2010 to 2013. We have measured the women’s health
status in each year. We want to estimate the average treatment effect (ATE) of having insurance
on the probability of each of the five statuses. We suspect that our model needs to account for
health insurance being an endogenous treatment. We also believe that unobserved characteristics of
the individual might affect both health status and whether the woman has insurance, so we include
random effects in both equations.

In addition to the insurance indicator, we include an indicator for whether the woman exercises
regularly and the number of years of schooling she completed (grade) as exogenous covariates in
the model for health status. For our treatment model, we use grade and an indicator for whether the
woman is currently working or attending school (workschool), which is excluded from the outcome
model.

Before we can fit our random-effects model, we need to specify the panel structure of the data
using xtset. Our panel variable is personid, the identification code for the individual. The time
variable is year, and it ranges from 2010 to 2013.
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. use https://www.stata-press.com/data/r18/womenhlthre
(Women’s health status panel)

. xtset personid year

Panel variable: personid (strongly balanced)
Time variable: year, 2010 to 2013

Delta: 1 unit

With the data xtset, we can estimate the parameters of the model.

. xteoprobit health exercise grade,
> entreat(insured = grade i.workschool) vce(robust)

(setting technique to bhhh)
Iteration 0: Log pseudolikelihood = -12272.723
Iteration 1: Log pseudolikelihood = -12256.949
Iteration 2: Log pseudolikelihood = -12256.539
Iteration 3: Log pseudolikelihood = -12256.478
Iteration 4: Log pseudolikelihood = -12256.468
Iteration 5: Log pseudolikelihood = -12256.466
Iteration 6: Log pseudolikelihood = -12256.465
Iteration 7: Log pseudolikelihood = -12256.465
Iteration 8: Log pseudolikelihood = -12256.465
Iteration 9: Log pseudolikelihood = -12256.465

Extended ordered probit regression Number of obs = 7,200
Group variable: personid Number of groups = 1,800

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 404.14
Log pseudolikelihood = -12256.465 Prob > chi2 = 0.0000

(Std. err. adjusted for 1,800 clusters in personid)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

health
insured#

c.exercise
No .356811 .0521592 6.84 0.000 .2545809 .459041

Yes .4929456 .0360086 13.69 0.000 .4223701 .5635211

insured#
c.grade

No .0970783 .0198281 4.90 0.000 .0582159 .1359407
Yes .130956 .0114576 11.43 0.000 .1084996 .1534124

insured
grade .29484 .0100943 29.21 0.000 .2750555 .3146245

workschool
Yes .5841205 .0638709 9.15 0.000 .4589358 .7093052

_cons -3.502613 .1377291 -25.43 0.000 -3.772557 -3.232669
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/health
insured#
c.cut1

No .4910109 .1864684 .1255395 .8564823
Yes -.2650117 .2049759 -.6667571 .1367337

insured#
c.cut2

No 1.388273 .1810191 1.033482 1.743064
Yes .5527565 .1908832 .1786323 .9268806

insured#
c.cut3

No 2.192588 .1794012 1.840968 2.544207
Yes 1.381288 .1806265 1.027267 1.73531

insured#
c.cut4

No 2.994727 .1873594 2.627509 3.361945
Yes 2.297709 .1731544 1.958333 2.637086

corr(e.ins~d,
e.health) .3783935 .0770755 4.91 0.000 .2183033 .5186513

var(
hea~h[per~d]) .379062 .0284741 .3271676 .4391877

var(
ins~d[per~d]) .2436723 .0354709 .1831887 .3241259

corr(
ins~d[per~d],
hea~h[per~d]) .3251756 .0721159 4.51 0.000 .1774673 .458556

The estimated correlation between the observation-level errors is 0.38. The estimated correlation
between the individual-level random effects affecting health status and the individual-level random
effects affecting insurance status is 0.33. Both are significantly different from zero. We conclude
that insurance status is endogenous and that the unobserved person-specific factors that increase
the chance of having health insurance also tend to increase the chance of being in a high health
status. Additionally, the unobserved observation-level (time-varying) factors that increase the chance
of having health insurance also tend to increase the chance of being in a high health status.

We see estimates of both the coefficients and the cutpoints for two equations, one for insured
women (yes) and one for uninsured women (no). For both insured and uninsured, exercise and
education have positive effects on health status.
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We can use estat teffects to estimate the ATE of insurance on the probabilities of each health
category.

. estat teffects

Predictive margins Number of obs = 7,200

(Std. err. adjusted for 1,800 clusters in personid)

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

ATE_Pr1
insured

(Yes vs No) -.1761541 .0279001 -6.31 0.000 -.2308372 -.1214709

ATE_Pr2
insured

(Yes vs No) -.1731894 .0227877 -7.60 0.000 -.2178525 -.1285264

ATE_Pr3
insured

(Yes vs No) -.0607013 .0127344 -4.77 0.000 -.0856602 -.0357424

ATE_Pr4
insured

(Yes vs No) .1145319 .0214062 5.35 0.000 .0725765 .1564874

ATE_Pr5
insured

(Yes vs No) .2955128 .0345022 8.57 0.000 .2278897 .3631359

We see that the treatment effect is negative on the probability of being in poor health. The treatment
effect becomes more positive for each successive health status. Looking at the last line, we see that
the average probability of being in excellent health in the population of women aged 25 to 30 is 0.30
greater when all women have health insurance versus when no women have health insurance.

Also see
[ERM] eoprobit — Extended ordered probit regression

[ERM] eoprobit postestimation — Postestimation tools for eoprobit and xteoprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] Intro 5 — Treatment assignment features

[ERM] Intro 6 — Panel data and grouped data model features

[ERM] Intro 9 — Conceptual introduction via worked example



Title

predict advanced — predict’s advanced features

Description Syntax Options Remarks and examples
Methods and formulas Also see

Description

predict’s features are documented in

[ERM] eregress predict
[ERM] eintreg predict
[ERM] eprobit predict
[ERM] eoprobit predict
[ERM] predict treatment

Here, we document predict’s advanced features.

Syntax
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic treatstatistic asfmethod

counterfactual treatmodifier oprobitmodifier advanced
]

In some cases, more than one new variable needs to be specified:

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
] [

, statistic treatstatistic

asfmethod counterfactual treatmodifier oprobitmodifier advanced
]

With the exception of advanced, you have seen this syntax in the other predict manual entries. We
will not cover old ground.

advanced Description

Main

equation(depvar) calculate results for specified dependent variable
nooffset ignore option offset() specified when model was fit in making

calculation
pr(a, b) calculate Pr(a < xiβ+ ei.depvar < b); a and b are numbers or

variable names
e(a, b) calculate E(yi|a < yi < b), where yi = xiβ+ ei.depvar; a and b

are numbers or variable names
fix(endogvars) fix specified endogenous covariates
base(valspecs) specify base values of any variables
scores calculate equation-level score variables for cross-sectional models

and parameter-level score variables for panel-data models
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base() and fix() exist so margins can manipulate variables to form counterfactuals. You should
not use them to calculate predictions. Use target() if you want to compute counterfactuals using
predict.

base() and fix() imply option noasf.

endogvars are names of one or more endogenous variables appearing in the main equation.

valspecs specify the values for variables at which predictions are to be evaluated. Each valspec is of
the form

varname = #

varname = (exp)

varname = othervarname

For instance, base(valspecs) could be base(w1=0) or base(w1=0 w2=1).

Also note that even though option mean was not included in treatstatistic for eprobit, eoprobit,
xteprobit, and xteoprobit, it is allowed with them. mean returns the probability of a positive
outcome after eprobit and xteprobit and returns the expected value of the outcome after eoprobit
and xteoprobit.

Options

� � �
Main �

equation(depvar) specifies the dependent variable for which predictions are to be calculated. By
default, predictions are made for the dependent variable of the main equation.

nooffset is relevant only if you specified offset() when you fit the model. It modifies the
calculations made by predict so that they ignore the offset variable.

pr(a, b) calculates Pr(a < xiβ + ei.depvar < b), the probability that the linear prediction is
between a and b.

a and b may be specified as numbers or variable names. If a is missing (a ≥ .), then a is treated
as −∞. If b is missing (b ≥ .), then b is treated as +∞.

e(a, b) calculates E(yi|a < yi < b), where yi = xiβ + ei.depvar. This is the linear prediction
conditional on the outcome being between a and b.

a and b may be specified as numbers or variable names. If a is missing (a ≥ .), then a is treated
as −∞. If b is missing (b ≥ .), then b is treated as +∞.

fix(endogvars) is an advanced option seldom used for prediction. If you want to specify counter-
factuals, you should use target(). fix() specifies a list of endogenous variables from the main
equation to be treated as if they were exogenous. This was discussed in [ERM] Intro 7.

base(valspecs) is an advanced option seldom used for prediction. If you want to specify counterfac-
tuals, you should use target(). base() specifies a list of variables from any equation and values
for them. Those values will be used in calculating the expected value of ei.y (or eij .y in the panel
case). Errors from other equations spill over into the main equation because of correlations between
errors. The correlations were estimated when the model was fit. The amount of spillover depends
on those correlations and the values of the errors. This issue was discussed in [ERM] Intro 7.

scores calculates equation-level scores for cross-sectional models (eintreg, eoprobit, eprobit,
and eregress) and parameter-level scores for panel-data models (xteintreg, xteoprobit,
xteprobit, and xteregress).
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Remarks and examples
The most important of the advanced features is the equation() option. Previously, we documented

that predict calculates results for the main equation only. That was not true. The equation() option
can be used to target the other equations. The equation() option is important because it can apply
so many of predict’s features to them.

ERMs provide three types of equations. The endogenous() option names two of them and leaves
the other unnamed:

endogenous(. . . , none specified . . . )
endogenous(. . . , probit . . . )
endogenous(. . . , oprobit . . . )

none specified should have been called linear. Meanwhile, entreat() adds probit or oprobit
equations, select() adds probit equations, and tobitselect() adds linear equations. Thus,
there are three types of equations in total: linear, probit, and oprobit.

equation() can be used to provide the following predict features with the other equations in
the model:

Option Description

Linear equations

mean linear prediction
xb linear prediction excluding complications
ystar() censored prediction
e() constrained expected value
pr() probability in range
expmean mean of exponentiated outcome

Probit equations

xb linear prediction excluding complications
pr probability of positive outcome
mean synonym for pr

Ordered probit equations

xb linear prediction excluding complications
pr probability of each outcome
mean expected value of outcome

Note 1: Option outlevel(#) is used with pr in oprobit equations to restrict the calculation to the specified outcome.
Note 2: When equation(depvar) is the main equation, you can use any of predict’s options.
Note 3: For the main equation, options e() and pr() can be used with howcalculated options fix(), base(), and

target().

Options not allowed with equation() include predict’s treatment options as well as fix(),
base(), and target().

For an example of predict with the equation() option, see [ERM] Example 6b.

Methods and formulas
See Methods and formulas of [ERM] eprobit postestimation.
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Also see
[ERM] eintreg postestimation — Postestimation tools for eintreg and xteintreg

[ERM] eintreg predict — predict after eintreg and xteintreg

[ERM] eoprobit postestimation — Postestimation tools for eoprobit and xteoprobit

[ERM] eoprobit predict — predict after eoprobit and xteoprobit

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] eprobit predict — predict after eprobit and xteprobit

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] eregress predict — predict after eregress and xteregress



Title

predict treatment — predict for treatment statistics

Description Syntax Options
Remarks and examples Methods and formulas Also see

Description
predict has options to predict potential-outcome means, treatment effects, and treatment effects

on the treated after models fit using the entreat() or extreat() option. The predict options are
described below.

For standard use of predict, see

[ERM] eregress predict
[ERM] eintreg predict
[ERM] eprobit predict
[ERM] eoprobit predict

For advanced use of predict, see

[ERM] predict advanced

Also see [ERM] estat teffects for reports of average treatment statistics.

Syntax
You previously fit a model by using the entreat() or extreat() option,

eregress y x1 . . . , . . . entreat(treated = . . . ) . . .
eintreg yl yu x1 . . . , . . . entreat(treated = . . . ) . . .
eprobit y x1 . . . , . . . entreat(treated = . . . ) . . .
eoprobit y x1 . . . , . . . entreat(treated = . . . ) . . .
xteregress y x1 . . . , . . . entreat(treated = . . . ) . . .
xteintreg yl yu x1 . . . , . . . entreat(treated = . . . ) . . .
xteprobit y x1 . . . , . . . entreat(treated = . . . ) . . .
xteoprobit y x1 . . . , . . . entreat(treated = . . . ) . . .

eregress y x1 . . . , . . . extreat(treated) . . .
eintreg yl yu x1 . . . , . . . extreat(treated) . . .
eprobit y x1 . . . , . . . extreat(treated) . . .
eoprobit y x1 . . . , . . . extreat(treated) . . .
xteregress y x1 . . . , . . . extreat(treated) . . .
xteintreg yl yu x1 . . . , . . . extreat(treated) . . .
xteprobit y x1 . . . , . . . extreat(treated) . . .
xteoprobit y x1 . . . , . . . extreat(treated) . . .

In these cases, predict has extra features. predict’s extra syntax for these features is

predict
[

type
]

newvar
[

if
] [

in
]
, treatstatistic

[
treatmodifier oprobitmodifier

]
284
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In some cases, more than one new variable needs to be specified:

predict
[

type
]
{ stub* | newvarlist }

[
if
] [

in
]
, treatstatistic

[
treatmodifier

oprobitmodifier
]

treatstatistic Description

pomean potential-outcome mean (POM)
te treatment effect (TE)
tet treatment effect on the treated (TET)

treatmodifier Description

tlevel(#) treatment level for which treatstatistic is calculated

# may be specified as a value recorded in variable treated, such as 1, 2, . . . or such as 1, 5, . . . , depending on
the values recorded.

# may also be specified as #1, #2, . . . , meaning the first, second, . . . values recorded in treated.

oprobitmodifier Description

outlevel(#) ordered outcome for which treatstatistic is calculated

When used after models fit with eoprobit or xteoprobit, treatstatistic is calculated for the specified outcome, or
for the first outcome if you do not specify otherwise.

outlevel(#) specifies the outcome for which statistics are to be calculated. # is specified in the same way as with
tlevel(), but the meaning is different. In the case of outlevel(), you are specifying the outcome, not the
treatment level.

Options

The options for the statistic to be calculated—pomean, te, and tet—are mutually exclusive. You
calculate one treatment statistic per predict command.

pomean calculates the POMs for each treatment level. The POMs are the expected value of y that
would have been observed if everyone was assigned to each of the treatment levels.

If there were two treatment levels (a control and a treatment), you would type

. predict pom1 pom2, pomean

If there were three levels, you would type

. predict pom1 pom2 pom3, pomean

pomean can alternatively be used with tlevel() to produce individual POMs:

. predict pom1, pomean tlevel(#1)

. predict pom2, pomean tlevel(#2)

If you have fit the model using eoprobit or xteoprobit, the POMs calculated for the examples
above would be for y’s first outcome. You can change that. See Predicting treatment effects after
eoprobit and xteoprobit in Remarks and examples below.
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te calculates the TEs for each treatment level. The TEs are the differences in the POMs. For instance,
if there were two treatment levels—a control and a treatment—there would be one treatment effect
and it would be pom2-pom1. If there were three levels, there would be two treatment effects,
pom2-pom1 and pom3-pom1.

If there were two treatment levels—a control and a treatment—you would type

. predict te2, te

If there were three levels, you would type

. predict te2 te3, te

te can alternatively be used with tlevel() to produce individual TEs:

. predict te2, te tlevel(#2)

. predict te3, te tlevel(#3)

If you have fit the model using eoprobit or xteoprobit, the TEs calculated for the examples
above would be for y’s first outcome. You can change that. See Predicting treatment effects after
eoprobit and xteoprobit in Remarks and examples below.

tet calculates the TETs. The TETs are the differences in the POMs conditioned on treatment level.

If there were two treatment levels—a control and a treatment—you would type

. predict tet2, tet

If there were three levels, you would type

. predict tet2 tet3, tet

tet can alternatively be used with tlevel() to produce individual TETs:

. predict tet2, tet tlevel(#2)

. predict tet3, tet tlevel(#3)

If you have fit the model using eoprobit or xteoprobit, the TETs calculated for the examples
above would be for y’s first outcome. You can change that. See Predicting treatment effects after
eoprobit and xteoprobit in Remarks and examples below.

tlevel(#) is optionally used with pomean, te, or tet. Its use is illustrated above.

outlevel(#) is optionally used with pomean, te, or tet with models fit by eoprobit and
xteoprobit. See Predicting treatment effects after eoprobit and xteoprobit in Remarks and
examples below.

Remarks and examples
For an example of predict with treatment effects, see [ERM] Intro 9.

Remarks are presented under the following headings:

Predicting treatment effects after eregress, eintreg, xteregress, and xteintreg
Predicting treatment effects after eprobit and xteprobit
Predicting treatment effects after eoprobit and xteoprobit
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Predicting treatment effects after eregress, eintreg, xteregress, and xteintreg

eregress, eintreg, xteregress, and xteintreg concern models with a continuous outcome
variable. In eregress and xteregress models, yi is observed. In eintreg and xteintreg models,
yi is not observed directly, but it is known that yli ≤ yi ≤ yui.

Thus, the treatment statistics are expressed in the units of y. If y is blood pressure, the units are
presumably mmHG. POMs are in mmHG. TEs and TETs are differences in blood pressure expressed in
mmHG.

Predicting treatment effects after eprobit and xteprobit

eprobit and xteprobit concern models with binary outcomes, and predictions are in terms of
the probability of a positive outcome. Thus, POMs are probabilities. TEs and TETs are differences in
probabilities.

Predicting treatment effects after eoprobit and xteoprobit

eoprobit and xteoprobit concern models with ordinal outcome variables, and predictions are
in terms of the probabilities—the probability of each outcome.

Treatment statistics are calculated on the basis of probabilities of outcomes. Thus, POMs are
probabilities. TEs and TETs are differences in probabilities.

We want probabilities and differences in probabilities, but you need to specify which probability.
The probability for the first outcome? The second?

If you do not specify which and simply type

. predict pom1 pom2 pom3, pomean

then the POMs are calculated for the first outcome, what eoprobit and xteoprobit call out-
level(#1). If you wanted to obtain the POMs for outlevel(#2), you would type

. predict pom1 pom2 pom3, pomean outlevel(#2)

If you wanted them for outlevel(#3), you would type

. predict pom1 pom2 pom3, pomean outlevel(#3)

The same logic applies to calculating TE and TET with the te and tet options. outlevel(#1)
is used unless you specify otherwise.

Methods and formulas
See Methods and formulas in [ERM] eintreg, [ERM] eoprobit, [ERM] eprobit, and [ERM] eregress.



288 predict treatment — predict for treatment statistics

Also see
[ERM] eintreg postestimation — Postestimation tools for eintreg and xteintreg

[ERM] eintreg predict — predict after eintreg and xteintreg

[ERM] eoprobit postestimation — Postestimation tools for eoprobit and xteoprobit

[ERM] eoprobit predict — predict after eoprobit and xteoprobit

[ERM] eprobit postestimation — Postestimation tools for eprobit and xteprobit

[ERM] eprobit predict — predict after eprobit and xteprobit

[ERM] eregress postestimation — Postestimation tools for eregress and xteregress

[ERM] eregress predict — predict after eregress and xteregress
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Triangularize — How to triangularize a system of equations

Description Remarks and examples Also see

Description
ERMs allow endogenous covariates, but they must form a triangular system, also known as a

recursive system. Said differently, ERMs do not allow simultaneous causation. This was explained for
simple cases in [ERM] Intro 3. How to triangularize complicated systems is described below.

Remarks and examples
The day will come when you try to fit a model and the ERM command responds with the following

error:

. eregress y w1 w2 w3 x1 x2,
> endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)
> endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain)
> endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain)
> endogenous(z1 = z5 x1 x2 x4, nomain)
endogenous variables do not form a triangular system

The problem may be fixable. See triangularizing the system.
r(459);

The error can even occur in simple models:

. eregress y w1 x2 x3, endogenous(w1 = y z1 x2, nomain)
endogenous variables do not form a triangular system

The problem may be fixable. See triangularizing the system.
r(459);

The error message says the problem may be fixable. We explain below how to find the problem,
how to determine whether it is fixable, and how to fix it when it is.

Remarks are presented under the following headings:

What is a triangular system?
Triangularizing nontriangular systems
You can only triangularize linear equations
Options entreat(), select(), and tobitselect() also add endogenous variables
Workarounds involving the main equation
Why the above is a workaround and not a fix

What is a triangular system?

ERMs require that the endogenous variables in the model being fit form a triangular system. The
endogenous variables include the dependent variable in the main equation and the dependent variables
in the endogenous() options. In addition, the options entreat(), select(), and tobitselect()
add endogenous variables, but we will cover those options later.

289
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The endogenous variables are y, w1, w2, w3, and z1 in the model

. eregress y w1 w2 w3 x1 x2 x5, ///
endogenous(w1 = z1 z2 x1 x2 x5, nomain) ///
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain) ///
endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain) ///
endogenous(z1 = z5 x1 x2 x4, nomain)

The system that needs to be triangular is y, w1, w2, w3, and z1. That system is

Endogenous which depends on the
variable endogenous variable(s)
y w1 w2 w3
w1 z1
w2 w1 z1
w3 w1
z1 (none)

A system is triangular when the dependencies can be ordered such that each endogenous variable
is already defined before it is used as an explanatory variable. The system, in order, is

Endogenous which depends on the
variable endogenous variable(s)

z1 (none)
w1 z1
w3 w1
w2 w1 z1
y w1 w2 w3

The system is in order and triangular because

1. Endogenous variable z1 depends on no other endogenous variables.

2. Endogenous variable w1 depends on z1, and z1’s definition has already been listed.

3. Endogenous variable w3 depends on w1, and w1’s definition has already been listed.

4. Endogenous variable w2 depends on w1 and z1, and their definitions have already been
listed.

5. Endogenous variable y depends on w1, w2, and w3, and their definitions have already been
listed.

When the system is triangular, ERMs can fit the model.

Triangularizing nontriangular systems

Consider the model

. eregress y w1 w2 w3 x1 x2 x5,
> endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)
> endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain)
> endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain)
> endogenous(z1 = z5 x1 x2 x4, nomain)
endogenous variables do not form a triangular system

The problem may be fixable. See triangularizing the system.
r(459);
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The ERM command has already told us that the system defined by this model is not triangular.
Thus, if we try to order the definitions as we did above, we will not be successful. Where we run
into difficulties, however, will tell us where the problem is.

The endogenous variables in this model are y, w1, w2, w3, and z1. Their definitions in the order
in which they appear in the command are

Endogenous which depends on the
variable endogenous variable(s)
y w1 w2 w3
w1 w2 z1
w2 w1 z1
w3 w1
z1 (none)

The definitions in as near to the correct order as we can get them are

Endogenous which depends on the
variable endogenous variable(s)

z1 (none)
w1 z1 w2 ← problem here
w2 w1 z1
w3 w1
y w1 w2 w3

The problem appears in the second line where w1 is defined in terms of z1 and w2: w2 has not
yet been defined. Obviously, we need to put its definition above that for w1. However, if we move
the definition of w2 above that of w1, we still have a problem: w2 depends on z1 and w1, and now
w1 has not yet been defined!

You might notice that there are three endogenous variables involved in the problem—w1, w2, and
w3—but just focus on the first pair of definitions that cause the problem. It does not matter which
two of the three they are. In our case, they are

endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain)

As we said in [ERM] Intro 3, there is a workaround for the problem when both equations are
linear, as they are in this case. The workaround is

When the simultaneous-causation problem occurs in linear equations defined by endoge-
nous() options, remove the endogenous variable from one equation and substitute for it all
the variables from the removed variable’s equation except, of course, the variable you just
removed.

The workaround in this case either

1. Removes w2 from the first equation and substitutes “z1 z3 x1 x2 x5” for it.

2. Removes w1 from the second equation and substitutes “z1 z2 x1 x2 x5” for it.

It does not matter which we do.
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To remind you, we are fixing the first equation:

endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)

When we remove w2 and substitute “z1 z3 x1 x2 x5”, we obtain

z1 z3 x1 x2 x5 z1 z2 x1 x2 x5

Now, we need to remove the duplicates. Removing them, we have

z3 z1 z2 x1 x2 x5

Thus, the first equation becomes

endogenous(w1 = z3 z1 z2 x1 x2 x5, nomain)

We can now try fitting the model again:

. eregress y w1 w2 w3 x1 x2 x5, ///
endogenous(w1 = z3 z1 z2 x1 x2 x5, nomain) ///
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain) ///
endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain) ///
endogenous(z1 = z5 x1 x2 x4, nomain)

When we try to fit the model, it will be successful or it will repeat the same error we saw earlier:

endogenous variables do not form a triangular system
The problem may be fixable. See triangularizing the system.

r(459);

In this case, the model will be successfully fit. If you do get the error, repeat the process. Remove
the problems one at a time.

You can only triangularize linear equations

The rule is

When the simultaneous-causation problem occurs in linear equations defined by endoge-
nous() options, remove the endogenous variable from one equation and substitute for it all
the variables from the removed variable’s equation except, of course, the variable you just
removed.

Triangularization involves a pair of equations that must both be linear. In the example above, both
were linear:

endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain)

They would not have both been linear if either had been fit by probit or oprobit. If one or
both of the equations had been

endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain probit)
endogenous(w2 = w1 z1 z3 x1 x2 x5)

or

endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain oprobit)

there would have been no solving the simultaneous-causation problem.
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This linearity requirement applies only to the two equations directly involved. Other equations can
be nonlinear and there will be no issue. The workaround we outlined would have worked just as well
had the model been

. eregress y w1 w2 w3 x1 x2 x5, ///
endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain) ///
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain) ///
endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain probit) ///
endogenous(z1 = z5 x1 x2 x4, nomain probit)

or even

. eprobit y w1 w2 w3 x1 x2 x5, ///
endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain) ///
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain) ///
endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain probit) ///
endogenous(z1 = z5 x1 x2 x4, nomain probit)

Options entreat(), select(), and tobitselect() also add endogenous variables

The example above contained repeated uses of the endogenous() option. When you make the
list of endogenous variables, you must also include the dependent variables treated and selected from
the options

entreat(treated= . . . )

select(selected= . . . )

tobitselect(selected= . . . )

The above options make treated and selected endogenous. Unlike with the endogenous() option,
however, the variables are not automatically added to the main equation even if you do not specify
nomain.

These three options are nonlinear. If the simultaneous-causation problem involves equations created
by these options, then there is no workaround for the simultaneous-causation problem.

Workarounds involving the main equation

The example of the simultaneous-causation problem involved two equations defined by endoge-
nous() options. The problem could also occur when one of the equations is the main equation. In
[ERM] Intro 3, we discussed problems involving the main equation as if they were different from
simultaneous causation, but they are not. It is the same problem that has the same workaround, but
with an important difference.

In workarounds involving equations defined by endogenous() equations, the workaround may be
applied to either equation.

In workarounds involving the main equation and an endogenous() equation, the workaround
must be applied to the endogenous() equation.

When the simultaneous-causation problem involves the main equation fit by eregress and
an endogenous() linear equation, remove the dependent variable from the endogenous()
equation and substitute for it all the variables from the main equation except, of course, the
variable you just removed.

Also notice that this rule applies only to main equations fit by eregress. What about eintreg,
eprobit, and eoprobit?
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The simultaneous-causation problem does not arise in models fit by eintreg. There is no way
you could include eintreg’s dependent variables as explanatory variables in another equation.

The simultaneous-causation problem can arise in models fit by eprobit and eoprobit, but those
are nonlinear equations, and that means you cannot apply the workaround. The workaround requires
that both equations be linear.

The main equation must be linear if it is one of the two equations involved in the simultaneous-
causation problem. Otherwise, the main equation is not required to be linear.

Why the above is a workaround and not a fix

It is a detail, but you may have noticed that we provided a workaround and not a fix. The
purpose of ERMs is to obtain valid estimates of the coefficients of the main equation—its structural
parameters—in light of lots of complications. It so happens that ERMs produce estimates of structural
parameters for all the other equations if the system is truly triangular. That is not important, but it is
true.

When you triangularize a nontriangular system, ERMs no longer produce estimates of the structural
parameters for the equations that you modify. They produce estimates of the reduced-form equation,
and that is sufficient. Valid estimates of the reduced-form equation ensures that estimates of the
coefficients in the main equation are estimates of its structural parameters.

Thus, what we provided is a workaround, not a fix. If you use the workaround, do not interpret
any equations modified as estimates of their structural parameters.

Also see
[ERM] Intro 3 — Endogenous covariates features
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average structural function. The average structural function (ASF) is used to calculate predicted
values of ERMs.

The ASF averages out the heterogeneity caused by the endogeneity from a conditional mean or a
conditional probability in a model with endogenous covariates. Applying the ASF to a conditional
mean produces an average structural mean (ASM). Applying the ASF to a conditional probability
produces an average structural probability (ASP). Contrasts of ASMs or ASPs produced by a covariate
change define a causal structural effect. Blundell and Powell (2003, 2004) and Wooldridge (2005,
2014) are seminal papers that define and extend the ASF. See Wooldridge (2010, 22–24) for a
textbook introduction.

average structural mean. The average structural mean (ASM) is the result of applying the average
structural function to a conditional mean.

average structural probability. The average structural probability (ASP) is the result of applying the
average structural function to a conditional probability.

average treatment effect. See treatment effects.

average treatment effect on the treated. See treatment effects.

average treatment effect on the untreated. See treatment effects.

binary variable. A binary variable is any variable that records two values, the two values representing
false and true, such as whether a person is sick. We usually speak of the two values as being 0 and 1
with 1 meaning true, but Stata requires merely that 0 means false and nonzero and nonmissing
mean true. Also see continuous variable, categorical variable, and interval variable.

categorical variable. A categorical variable is a variable that records the category number for, say,
lives in the United States, lives in Europe, and lives in Asia. Categorical variables play no special
role in this manual, but ordered categorical variables do. The example given is unordered. The
categories United States, Europe, and Asia have no natural ordering. We listed the United States
first only because the author of this manual happens to live in the United States.

The way we use the term, categorical variables usually record two or more categories, and the
term binary variable is used for categorical variables having two categories.

We usually speak of categorical variables as if they take on the values 1, 2, . . . . Stata does not
require that. However, the values do need to be integers.

censored, left-censored, right-censored, and interval-censored. Censoring involves not observing
something but knowing when and where you do not observe it.

For instance, sometimes patients, subjects, or units being studied—observations in your dataset—
have values equal to missing. Such observations are said to be censored when there is a reason
they are missing. A variable is missing because a potential worker chooses not to work, because
a potential patient chooses not to be a patient, because a potential subject was not prescribed the
treatment, etc. Such censored outcomes cause difficulty when there is an unobserved component
to the reason they are censored that is correlated with the outcome being studied. ERM option
select() addresses these issues.

Another type of censoring—interval-censoring—involves not observing a value precisely but
knowing its range. You do not observe blood pressure, but you know it is in the range 120 to 140.
Or you know it is less than 120 or greater than 160. ERM command eintreg fits models in which
the dependent variable is interval-censored.
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Left-censoring is open-ended interval-censoring in which measurements below a certain value are
unobserved. Blood pressure is less than 120.

Right-censoring is open-ended interval-censoring in which measurements above a certain value are
unobserved. Blood pressure is above 160.

conditional mean. The conditional mean of a variable is the expected value based on a function of
other variables. If y is a linear function of x1 and x2—y = β0 + β1x1 + β2x2 + noise—then the
conditional mean of y for x1 = 2 and x2 = 4 is β0 + 2β1 + 4β2.

confounding variable, confounder. A confounding variable is an omitted explanatory variable in
a model that is correlated with variables included in the model. The fitted coefficients on the
observed variables will include the effect of the variables, as intended, plus the effect of being
correlated with the omitted variable.

Confounders are often omitted from the model because they are unobserved. See [ERM] Intro 3.

continuous variable. A continuous variable is a variable taking on any value on the number line.
In this manual, however, we use the term to mean the variable is not a binary variable, not a
categorical variable, and not an interval variable.

counterfactual. The result that would be expected from a thought experiment that assumes things
counter to what are currently true. What would be the average income if everyone had one more
year of schooling? What would be the effect of an experimental medical treatment if the treatment
were made widely available? Stata’s margins command produces statistical answers to these kinds
of thought experiments and reports standard errors as well.

counterfactual predictions. Counterfactual predictions are used when you have endogenous covariates
in your main equation and you wish to estimate either counterfactuals or the effect on the outcome
of changing the values of covariates. They are obtained using predict options base() and fix().

covariate. A covariate is a variable appearing on the right-hand side (RHS) of a model. Covariates
can be exogenous or endogenous, but when the term is used without qualification, it usually means
exogenous covariate. Covariates are also known as explanatory variables. Also see endogenous
covariate and exogenous covariate.

cross-sectional data. Cross-sectional data refers to data collected over a set of individuals, such as
households, firms, or countries sampled from a population at a given point in time.

dependent variable. A dependent variable is a variable appearing on the left-hand side of an equation
in a model. It is the variable to be explained. Every equation of a model has a dependent variable.
The term “the dependent variable” is often used in this manual to refer to the dependent variable
of the main equation. Also see [ERM] Intro 3.

endogenous and exogenous treatment assignment. See treatment assignment.

endogenous covariate. An endogenous covariate is a covariate appearing in a model 1) that is
correlated with omitted variables that also affect the outcome; 2) that is measured with error;
3) that is affected by the dependent variable; or 4) that is correlated with the model’s error. See
[ERM] Intro 3.

endogenous sample selection. Endogenous sample selection refers to situations in which the subset
of the data used to fit a model has been selected in a way correlated with the model’s outcome.

Mechanically, the subset used is the subset containing nonmissing values of variables used by the
model. A variable is unobserved—contains missing values—because a potential worker chooses
not to work, because a potential patient chooses not to be a patient, because a potential subject
was not prescribed the treatment, etc. Such censored outcomes cause difficulty when there is an



Glossary 297

unobserved component to the reason they are censored that is correlated with the outcome being
studied.

ERM option select() can address these issues when the dataset contains observations for which
the dependent variable was missing.

error. Error is the random component (residual) appearing at the end of the equations in a model.
These errors account for the unobserved information explaining the outcome variable. Errors in
this manual are written as e.depvarname, such as y = β0 + β1x1 + β2x2 + e.y.

exogenous covariate. An exogenous covariate is a covariate that is uncorrelated with the error term
in the model. See [ERM] Intro 3.

explanatory variable. Explanatory variable is another word for covariate.

extended regression models. Extended regression models (ERMs) are generalized structural equation
models that allow identity and probit links and Gaussian, binomial, and ordinal families for the
main outcome. They extend interval regression, ordered probit, probit, and linear regression models
by accommodating endogenous covariates, nonrandom and endogenous treatment assignment,
endogenous sample selection, and random effects.

individual-level treatment effect. An individual-level treatment effect is the difference in the indi-
viduals outcome that would occur when given one treatment instead of another. It is the difference
between two potential outcomes for the individual. The blood pressure after taking a pill minus
the blood pressure were the pill not taken is the individual-level treatment effect of the pill on
blood pressure.

informative missingness. See missingness.

instrument. Instrument is an informal word for instrumental variable.

instrumental variable. An instrumental variable is a variable that affects an endogenous covariate
but does not affect the dependent variable. See [ERM] Intro 3.

interval measurement. Interval measurement is a synonym for interval-censored. See censored.

interval variable. An interval variable is actually a pair of variables that record the lower and upper
bounds for a variable whose precise values are unobserved. ylb and yub might record such values
for a variable y. Then it is known that, for each observation i, ylbi ≤ y ≤ yubi. ERM estimation
command eintreg fits such models. Also see censored.

interval-censored. See censored.

left-hand-side (LHS) variable. A left-hand-side variable is another word for dependent variable.

longitudinal data. Longitudinal data is another term for panel data. See also panel data.

loss to follow-up. Subjects are lost to follow-up if they do not complete the course of the study for
reasons unrelated to the event of interest. For example, loss to follow-up occurs if subjects move
to a different area or decide to no longer participate in a study. Loss to follow-up should not be
confused with administrative censoring. If subjects are lost to follow-up, the information about the
outcome these subjects would have experienced at the end of the study, had they completed the
study, is unavailable.

main equation. The main equation in an ERM is the first equation specified, the equation appearing di-
rectly after the eregress, eintreg, eprobit, eoprobit, xteregress, xteintreg, xteprobit,
or xteoprobit command. The purpose of ERMs is to produce valid estimates of the coefficients
in the main equation, meaning the structural coefficients, in the presence of complications such as
endogeneity, selection, treatment assignment, or random effects.
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measurement error, measured with error. A variable measured with error has recorded value equal
to x+ ε, where x is the true value. The error is presumably uncorrelated with all other errors in
the model. In that case, fitted coefficients will be biased toward zero. See [ERM] Intro 3.

missing at random (MAR). See missingness.

missing completely at random (MCAR). See missingness.

missing not at random (MNAR). See missingness.

missingness. Missingness refers to how missing observations in data occur. The categories are 1) miss-
ing not at random (MNAR), 2) missing at random (MAR), and 3) missing completely at random
(MCAR).

In what follows we will refer to missing observations to mean not only observations entirely
missing from a dataset but also the omitted observations because of missing values when fitting
models.

MNAR observations refer to cases in which the missingness depends on the outcome under study.
The solution in this case is to model that dependency. When observations are missing because of
missing values, ERM option select() can be used to model the missingness.

MAR observation refer to cases in which the missingness does not depend on the outcome under
study but does depend on other variables correlated with the outcome. The solution for some of
the problems raised is to include those other variables as covariates in your model. Importantly,
you do not need to model the reason for missingness.

MCAR observations are just that and obviously not a problem other than to cause loss of efficiency.

The MNAR and MAR cases are known jointly as informative missingness.

multivalued treatment. A multivalued treatment is a treatment with more than two arms. See treatment
arms.

observational data. Observational data are data collected over which the researcher had no control.
The opposite of observational data is experimental data. Use of observational data often introduces
statistical issues that experimental data would not. For instance, in a treatment study based on
observational data, researchers had no control over treatment assignment; thus the treatment
assignment needs to be modeled.

omitted variables. Omitted variables is an informal term for covariates that should appear in the
model but do not. They do not because they are unmeasured, because of ignorance or other reasons.
Problems arise when the variables that are not omitted are correlated with the omitted variables.

ordered categorical variable. An ordered categorical variable is a categorical variable in which the
categories can be ordered, such as healthy, sick, and very sick. Actually recorded in the variable
are integers such as 1, 2, and 3. The integers need not be sequential, but they must reflect the
ordering. Also see binary variable and continuous variable.

outcome variable. See dependent variable.

panel data. Panel data are data in which the same units were observed over multiple periods. The
units, called panels, are often firms, households, or patients who were observed at several points
in time. In a typical panel dataset, the number of panels is large, and the number of observations
per panel is relatively small.

potential outcome. Potential outcome is a term used in the treatment-effects literature. It is the
outcome an individual would have had if given a specific treatment. Individual in this case means
conditional on the individual’s covariates, which are in the main equation in models fit by ERMs.
It is the outcome that would have been observed for that individual. For instance, each patient in
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a study has one potential blood pressure after taking a pill and another had he or she not taken
it. Also see treatment effects.

potential-outcome means. Potential-outcome means (POMs) is a term used in the treatment-effects
literature. They are the means (averages) of potential outcomes. The average treatment effect (see
treatment effects) is the difference between the potential-outcome mean for treated and untreated
over the population.

random-effects model. A random-effects model for panel data treats the panel-specific errors for each
equation as random variables drawn from a population with zero mean and constant variance. The
regressors not distinctly specified as endogenous must be uncorrelated with the random effects for
the estimates to be consistent.

recursive (structural) model. ERMs fit recursive models. A model is not recursive when one endoge-
nous variable depends (includes its equation) on another endogenous variable that depends on the
first. Said in symbols, when A depends on B, which depends on A. A model is also not recursive
when A depends on B depends on C, which depends on A, and so on. See [ERM] Triangularize.

reverse causation and simultaneous causation. We use the term reverse causation in this manual
when the dependent variable in the main equation of an ERM affects a covariate as well as when
the covariate affects the dependent variable. Stressed persons may be physically unhealthy because
they are stressed and further stressed because they are unhealthy. When a covariate suffers from
reverse causation, the solution is to make it endogenous and find instruments for it.

Our use of the term reverse causation is typical of how it is used elsewhere. Reverse causation is
a reason to make a variable endogenous. Reverse causation is discussed in [ERM] Intro 3.

The term simultaneous causation is sometimes used as a synonym for reverse causation elsewhere,
but we draw a distinction. We use the term when two already endogenous variables affect each
other. Simultaneous causation is discussed in [ERM] Triangularize.

right-hand-side (RHS) variable. A right-hand-side variable is another word for covariate.

sample selection. Sample selection is another term for endogenous sample selection.

selection. Selection is another term for endogenous sample selection.

selection on unobservables. Selection on unobservables is another term for endogenous sample
selection.

simultaneous causation. See recursive (structural) model.

simultaneous system. A simultaneous system is a multiple-equation model in which dependent
variables can affect each other freely. The equation for y1 could include y2, and the equation
for y2 include y1. ERMs cannot fit simultaneous systems. Because the focus of ERMs is on one
equation in particular—the main equation—you can substitute the covariates for y1 into the y2
equation to form the reduced-form result and still obtain estimates of the structural parameters
of the y1 equation. In this manual, we discuss this issue using the terms reverse causation and
recursive (structural) model. In the manual, it is discussed in [ERM] Triangularize.

strongly balanced. A longitudinal or panel dataset is said to be strongly balanced if each panel has
the same number of observations and the observations for different panels were all made at the
same times.

TE. See treatment effect.

tobit estimator. Tobit is an estimation technique for dealing with dependent variables that are censored.
The classic tobit model dealt with left-censoring, in which the outcome variable was recorded as
zero if it would have been zero or below. The estimator has since been generalized to dealing
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with models in which observations can be left-censored, right-censored, or interval-censored. See
censored.

treatment. A treatment is a drug, government program, or anything else administered to a patient,
job seeker, etc., in hopes of improving an outcome.

treatment arms. Sometimes, experiments are run on more than one treatment simultaneously. Each
different treatment is called an arm of the treatment. The controls (those not treated) are also an
arm of the treatment.

treatment assignment. Treatment assignment is the process by which subjects are assigned to a
treatment arm. That process can be endogenous or exogenous, meaning that the random component
(error) in the assignment is correlated or is not correlated with the outcomes of the treatments. It is
often endogenous because doctors assign subjects or subjects choose based in part on unobserved
factors correlated with the treatment’s outcome.

treatment effects. A treatment effect (TE) is the effect of a treatment in terms of a measured outcome
such as blood pressure, ability to walk, likelihood of finding employment, etc. The statistical
problem is to measure the effect of a treatment in the presence of complications such as censoring,
treatment assignment, and so on.

ERMs fit treatment-effect models when one of the options entreat() or extreat() is specified
for endogenous or exogenous treatment assignment. Meanwhile, the outcome model is specified
in the main equation.

The TE is, for each person, the difference in the predicted outcomes based on the covariates in
the main equation given that treatment is locked at treated or untreated.

The treatment effect on the treated (TET) is, for each person who was treated, the difference in
the predicted outcomes based on the covariates in the main equation and the fact that they were
assigned to or choose to be treated.

The treatment effect on the untreated (TEU) is, for each person who was not treated, the difference
in predicted outcomes based on the covariates in the main equation and the fact that they were
assigned to or choose not to be treated.

The average treatment effect (ATE) is an estimate of the average effect in a population after
accounting for statistical issues.

The average effect on the treated (ATET) is an estimate of the average effect that would have been
observed for those who were in fact treated in the data.

The average effect on the untreated (ATEU) is an estimate of the average effect that would have
been observed for those who were in fact not treated in the data.

triangular system. See recursive (structural) model.

unbalanced data. A longitudinal or panel dataset is said to be unbalanced if each panel does not
have the same number of observations. See also weakly balanced and strongly balanced.

weakly balanced. A longitudinal or panel dataset is said to be weakly balanced if each panel has
the same number of observations but the observations for different panels were not all made at
the same times.
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Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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