
splitsample — Split data into random samples

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Also see

Description
splitsample splits data into random samples based on a specified number of samples and specified

proportions for each sample. Splitting can also be done based on clusters. Sample splitting can also be

balanced across specified variables. Balanced splitting can be used for matched treatment assignment.

Quick start
Split data into two random samples of equal sizes and generate sample ID variable svar with values 1

and 2

splitsample, generate(svar)

Same as above, but with sample ID variable svar having values 0 and 1

splitsample, generate(svar) values(0 1)

Split data into three random samples of equal sizes and generate sample ID variable svar with values 1,

2, and 3

splitsample, generate(svar) nsplit(3)

Same as above, but with sample ID variable svar equal to missing (.) whenever any of y or x1-x100
have missing values

splitsample y x1-x100, generate(svar) nsplit(3)

Split data into three random samples with the first sample having 25% of the observations, the second

having 25%, and the third having 50%

splitsample, generate(svar) split(0.25 0.25 0.5)

Same sample split as above, but specify the split using ratios rather than proportions

splitsample, generate(svar) split(1 1 2)

Same as above, but maintain the specified sample-size ratios in each group defined by the variables

agegrp and gender
splitsample, generate(svar) split(1 1 2) balance(agegrp gender)

Same as above, but randomly round sample sizes when samples within an agegrp by gender group

cannot be chosen to satisfy the specified sample-size ratios exactly

splitsample, generate(svar) split(1 1 2) balance(agegrp gender) rround

Split data into three samples based on clusters defined by clustvar
splitsample, generate(svar) nsplit(3) cluster(clustvar)

1

splitsample — Split data into random samples 2

Same as above, but maintain the specified sample proportions based on clusters in each group defined by

the variables agegrp and gender, randomly round cluster sample sizes, and display a table showing
the cluster sample sizes

splitsample, generate(svar) nsplit(3) cluster(clustvar) ///
balance(agegrp gender) rround show

Menu
Data > Create or change data > Other variable-creation commands > Split data into random samples

Syntax
splitsample [varlist] [if] [in], generate(newvar [, replace]) [options]

varlist is checked for missing values, and the sample ID variable newvar is set to missing for observations

where any variable in varlist is missing. all or * may be specified for varlist.

options Description

Main
∗ generate(newvar [, replace]) create new sample ID variable; optionally replace existing

variable

nsplit(#) split into # random samples of equal size

split(numlist) specify numlist of proportions or ratios for the split

rround randomly round sample sizes when an exact split cannot
be made

values(numlist) specify numlist of values for sample ID variable

cluster(clustvar) split by clusters defined by clustvar, not observations

balance(balvars) split each group defined by the distinct values of balvars
independently based on the specified sample proportions

Advanced

strok evaluate string variables in varlist for missing values;
by default, string variables are ignored

rseed(#) specify random-number seed

show display a table showing the sample sizes of the split

percent display percentages in the table showing the split
∗generate() is required.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

generate(newvar [, replace]) creates a new variable containing ID values for the random samples.

The variable newvar is valued 1, 2, . . .by default. The option values(numlist) can be used to specify

different ID values. generate() is required.

replace allows any existing variable named newvar to be replaced.

nsplit(#) splits the data into # random samples of equal size, or as close to equal as possible. If neither

nsplit() nor split() is specified, the data are split into two samples.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

splitsample — Split data into random samples 3

split(numlist) is an alternative to nsplit() for specifying the split. This option splits the data into

samples whose sizes are proportional to the values of numlist. The values of numlist can be any

positive number. You can specify proportions that sum to 1, or you can specify integers that define

ratios for the sample sizes. Regardless of whether you specify decimals less than 1 or integers, the

proportions of the split are given by the values in numlist divided by their sum.

rround specifies that sample sizes be randomly rounded when an exact split cannot be made. When an

exact split can be made, this option does nothing. When split(numlist) is specified with rround,
numlist must consist of integers, and the integers should contain no common factors. For instance,

use split(1 1 2), not split(25 25 50). See Methods and formulas for an explanation.

By default, the sample sizes of the splits are calculated using a deterministic rounding formula. That is,

if you repeat the splitting with a different random-number seed, you will get exactly the same sample

sizes. Specifying rround creates randomly rounded sample sizes such that the expected values of the

sample sizes match the specified split proportions exactly.

The option rround is designed for use with the balance() option when the number of observations

in each of the balance groups is small. When group sizes are small (especially when smaller than the

number of splits), rround ensures that the overall actual sample split proportions closely match the

specified split proportions.

values(numlist) specifies that numlist be used for the values of the sample ID variable rather than the

default of 1, 2, The number of values in numlist must correspond to the number of samples into

which the data are split and must be ascending nonnegative integers.

cluster(clustvar) specifies that the data be split by the clusters defined by clustvar. That is, all obser-

vations in a cluster are kept together in the same split sample. The proportions of the split are based

on numbers of clusters, not numbers of observations. clustvar can be a numeric or string variable.

balance(balvars) specifies that each group defined by the distinct values of balvars be split indepen-

dently based on the specified sample proportions. This ensures a balanced, or roughly balanced,

distribution of the balvars values across the split samples. When the number of observations (or clus-

ters) in each group is about the same as (or smaller than) the number of split samples, the option

rround is recommended. balvars can be numeric or string variables.

� � �
Advanced �

strok (applies only when a varlist is specified) specifies to check any string variables in varlist for

missing values. For observations with missing values, the generated sample ID variable is set to

missing. By default, string variables in varlist are ignored.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running splitsample. See [R] set seed.

show displays a table showing the sample sizes of the split. When cluster() is specified, it shows

the numbers of clusters in the samples. When balance(balvars) is specified, it displays a table in

which each row corresponds to a distinct set of values of balvars and shown across the columns are

the numbers of observations (or clusters) belonging to each split sample for that balance group.

percent specifies to display percentages rather than the number of observations (or clusters) in the table.
percent can only be specified with the option show.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/dsplitsample.pdf#dsplitsampleMethodsandformulas
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed

splitsample — Split data into random samples 4

Remarks and examples
splitsample is useful for dividing data into training, validation, and testing samples for machine

learning and automated model-building procedures such as those performed by the lasso, stepwise,
and nestreg commands.

splitsample with the options balance() and rround can also be used to do random treatment

assignment with matching. See example 3.

Example 1: Splitting by observations
Let’s create a dataset with 101 observations and run splitsample without any options except the

required option giving the name of the sample ID variable to generate. Then we tabulate the newly

created variable.

. set obs 101
Number of observations (_N) was 0, now 101.
. splitsample, generate(svar)
. tabulate svar

svar Freq. Percent Cum.

1 51 50.50 50.50
2 50 49.50 100.00

Total 101 100.00

By default, splitsample splits the data into two samples, with the samples as equal in size as possible.

The option nsplit(#) can be used to split the data into as many samples as you want—in this case,

three samples.

. splitsample, generate(svar, replace) nsplit(3)

. tabulate svar
svar Freq. Percent Cum.

1 34 33.66 33.66
2 33 32.67 66.34
3 34 33.66 100.00

Total 101 100.00

The option split(numlist) can be specified in place of nsplit() to split the data into any propor-

tions you want. Here we specify that we want 25% of the observations in sample 1, 25% in sample 2,

and 50% in sample 3.

. splitsample, generate(svar, replace) split(0.25 0.25 0.50) show
svar Freq. Percent Cum.

1 25 24.75 24.75
2 26 25.74 50.50
3 50 49.50 100.00

Total 101 100.00

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/rstepwise.pdf#rstepwise
https://www.stata.com/manuals/rnestreg.pdf#rnestreg
https://www.stata.com/manuals/dsplitsample.pdf#dsplitsampleRemarksandexamplesex3
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

splitsample — Split data into random samples 5

It split the data as close as it could to 25% ∶ 25% ∶ 50%. The option show displayed the tabulation for

us.

Example 2: Splitting by clusters
splitsample can also split the data by clusters. Let’s create a cluster variable clustvar and split

the data into three samples with proportions 25% ∶ 25% ∶ 50% for the numbers of clusters. We also

specify the option show, which gives a convenient tabulation by numbers of clusters rather than numbers
of observations.

. set seed 12345

. generate clustvar = runiformint(1, 20)

. splitsample, generate(svar, replace) split(0.25 0.25 0.50) cluster(clustvar)
> show

svar Freq. Percent Cum.

1 5 25.00 25.00
2 5 25.00 50.00
3 10 50.00 100.00

Total 20 100.00
Total is number of clusters.

Because we had 20 clusters, the split into 25% ∶ 25% ∶ 50% yielded cluster sample sizes that met the

specified proportions exactly.

The resulting split by number of observations is, of course, different.

. tabulate svar
svar Freq. Percent Cum.

1 34 33.66 33.66
2 21 20.79 54.46
3 46 45.54 100.00

Total 101 100.00

When splitting by clusters, the size of each cluster is ignored.

Example 3: Balanced splitting and treatment assignment
splitsample can split the data independently within groups using the option balance(). Let’s

create two fake categorical variables, one agegrp representing eight age–group categories, and a 0/1

variable gender.

. set seed 12345

. generate agegrp = runiformint(1, 8)

. generate gender = runiformint(0, 1)

We want to split the data into four samples, where the first three samples are the same size, and the

fourth sample is twice the size of each of the others. We specify split(1 1 1 2) using integer ratios.

We specify the option balance(agegrp gender) to ensure that the distribution of agegrp × gender
is roughly balanced across the four samples. The option show is useful for seeing the actual splits of the

numbers of observations within each agegrp × gender group.

splitsample — Split data into random samples 6

. splitsample, generate(svar, replace) split(1 1 1 2)
> balance(agegrp gender) show
note: some groups defined by balance() do not contain every sample value.

agegrp gender svar 1 svar 2 svar 3 svar 4 Total

1 0 2 1 2 3 8
1 1 1 2 1 3 7

2 0 2 2 1 4 9
2 1 1 1 1 2 5

3 0 1 1 1 2 5
3 1 1 1 0 2 4

4 0 2 2 2 4 10
4 1 2 2 1 4 9

5 0 1 0 1 1 3
5 1 1 0 1 1 3

6 0 1 0 1 1 3
6 1 2 2 1 4 9

7 0 0 1 0 1 2
7 1 1 1 1 2 5

8 0 2 1 2 3 8
8 1 2 2 3 4 11

We get a message “some groups defined by balance() do not contain every sample value”. Indeed,

all the groups of size three have no observations in sample 2. Because we are splitting the data into four

samples, obviously we need at least four observations in a group for every sample to contain at least one

observation.

Second, we notice that all groups of the same size are split into the four samples with exactly the

same number of observations in each sample. For example, the two groups of size eight (agegrp = 1,

gender = 0 and agegrp = 8, gender = 0) both have two observations in each of samples 1 and 3, one

observation in sample 2, and three observations in sample 4.

Groups of the same size have exactly the same sample-size splits because, by default, the sample sizes

for the splits are calculated using a deterministic formula. If the sizes of the groups vary, this typically

would not be an issue. Overall, one would expect the actual split proportions to be close to the specified

split proportions. But imagine if all, or almost all, the group sizes were the same. What if the size of each

group were eight observations in this example? Every group would be split 2 ∶ 1 ∶ 2 ∶ 3 by observations,
yielding actual split proportions of 25% ∶ 12.5% ∶ 25% ∶ 37.5%, which are rather different from the

specified split proportions of 20% ∶ 20% ∶ 20% ∶ 40%.

splitsample — Split data into random samples 7

The option rround provides a solution for this problem. It randomly rounds the split sample sizes

when the split cannot be made exactly.

. splitsample, generate(svar, replace) split(1 1 1 2)
> balance(agegrp gender) rround rseed(54321) show
note: some groups defined by balance() do not contain every sample value.

agegrp gender svar 1 svar 2 svar 3 svar 4 Total

1 0 2 1 2 3 8
1 1 2 1 1 3 7

2 0 2 2 1 4 9
2 1 1 1 1 2 5

3 0 1 1 1 2 5
3 1 1 1 1 1 4

4 0 2 2 2 4 10
4 1 2 2 2 3 9

5 0 1 1 0 1 3
5 1 1 1 1 0 3

6 0 0 1 1 1 3
6 1 1 2 2 4 9

7 0 0 0 0 2 2
7 1 1 1 1 2 5

8 0 1 2 2 3 8
8 1 2 2 2 5 11

We see that the groups of sizes three, eight, and nine now have different splits by numbers of observations.

The groups of size five have exactly the same splits by size because they could be divided exactly based

on the specified split ratios of 1 ∶ 1 ∶ 1 ∶ 2.
The option rround with balance() thus does a “more random” assignment of observations (or clus-

ters), which is important when the sizes of the balance groups are small. When the sizes of the balance

groups are large, and the sizes of the groups vary, splits made with or without rround will be similar.

Note that rroundwith balance() is suitable for random treatment assignment with matching defined

by values of the balance variables.

The computational procedure for option rround first randomly assigns as many observations to the

split samples as it can to match the specified split proportions exactly. Leftover observations are as-

signed to samples by dividing them randomly based on the specified split ratios. Splitting ratios must be

specified as integers to facilitate this method of splitting the leftovers. See Methods and formulas.

Example 4: Missing values
varlist can be specified with splitsample to handle missing values. Let’s say we want to divide our

data into training and validation samples for a lasso or other procedure. Imagine that the variables in

the lasso have more than a few missing values. Specifying these variables as varlist for splitsample
means that the sample ID variable created will have missing values whenever any of the variables in

varlist are missing.

https://www.stata.com/manuals/dsplitsample.pdf#dsplitsampleMethodsandformulas

splitsample — Split data into random samples 8

Here’s an illustration. We create a couple of variables with missing values.

. set seed 1234

. generate y = runiform()

. replace y = . if runiform() < 0.1
(11 real changes made, 11 to missing)
. generate x = runiform()
. replace x = . if runiform() < 0.1
(15 real changes made, 15 to missing)

Then split the data specifying these variables to be checked for missing:

. splitsample y x, generate(svar, replace)

. tabulate svar, miss
svar Freq. Percent Cum.

1 38 37.62 37.62
2 38 37.62 75.25
. 25 24.75 100.00

Total 101 100.00

The split was done exactly for the observations without missing values.

Stored results
splitsample stores the following in r():

Scalars

r(N) total number of observations

r(N clust) total number of clusters

r(n samples) number of split samples

Macros

r(clustvar) name of cluster variable

r(balancevars) names of balance variables

r(rngstate) random-number state used

Methods and formulas
Let 𝑟1, 𝑟2, . . . , 𝑟𝐾 be the arguments to split(numlist). If the split is specified using nsplit(#),

then we set each 𝑟𝑘 = 1, and the number of split samples is 𝐾 = #. The split sample proportions are

𝑝𝑘 = 𝑟𝑘
𝑅

where 𝑅 =
𝐾

∑
𝑖=1

𝑟𝑖

The cumulative proportions are

𝑠𝑘 =
𝑘

∑
𝑖=1

𝑝𝑖

For the default deterministic rounding, we calculate cumulative sample sizes:

𝑀𝑘 = round(𝑁𝑠𝑘)

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

splitsample — Split data into random samples 9

where 𝑁 is the total number of observations or the number of clusters, and round(⋅) is Stata’s round()
function. When the option balance() is specified, 𝑁 is the number of observations or clusters in a

single balance group. The sample sizes 𝑁1, 𝑁2, . . . , 𝑁𝐾 are given by

𝑁1 = 𝑀1

𝑁𝑘 = 𝑀𝑘 − 𝑀𝑘−1 for 𝑘 = 2, . . . , 𝐾

When the option rround is specified for random rounding, we first divide 𝑁, the number of observa-

tions or clusters, as follows:

𝑁 = 𝑐𝑅 + 𝑑

where 𝑅 is the sum of 𝑟1, 𝑟2, . . . , 𝑟𝐾; 𝑐 is a nonnegative integer; and 0 ≤ 𝑑 < 𝑅. In other words, 𝑐𝑅
observations can be split into 𝐾 samples matching the specified split proportions exactly. We randomly

pick 𝑐𝑅 observations and assign them to the samples. The leftover 𝑑 observations are randomly placed

in 𝑅 bins without replacement, where the first 𝑟1 bins represent sample 1, the next 𝑟2 bins represent

sample 2, and so on.

The computational procedure for random rounding thus requires 𝑟1, 𝑟2, . . . , 𝑟𝐾 to be integers and also

requires 𝑅 ≤ 𝑁. To reduce the variance of the random rounding, the integers 𝑟1, 𝑟2, . . . , 𝑟𝐾 should have

no common factors.

Also see
[D] sample — Draw random sample

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctionsround()
https://www.stata.com/manuals/dsample.pdf#dsample
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

