
Intro 9a — Bayesian estimation of a New Keynesian model

Description Remarks and examples Also see

Description
This entry estimates and interprets the parameters of a simple New Keynesian model using Bayesian

methods. We also discuss some postestimation features, diagnostic tests, and how to improve the sam-

pling efficiency of parameters.

Remarks and examples
Remarks are presented under the following headings:

The model
Parameter estimation
Posterior diagnostics and plots
Improving sampling efficiency
Impulse responses

The model
Equations (1)–(5) specify a canonical New Keynesian model of inflation 𝑝𝑡, the output gap 𝑥𝑡, and

the interest rate 𝑟𝑡. The linearized model is

𝑝𝑡 = 𝛽𝐸𝑡(𝑝𝑡+1) + 𝜅𝑥𝑡 (1)

𝑥𝑡 = 𝐸𝑡(𝑥𝑡+1) − {𝑟𝑡 − 𝐸𝑡(𝑝𝑡+1) − 𝑔𝑡} (2)

𝑟𝑡 = 1
𝜓

𝑝𝑡 + 𝑢𝑡 (3)

𝑢𝑡+1 = 𝜌𝑢𝑢𝑡 + 𝜖𝑡+1 (4)

𝑔𝑡+1 = 𝜌𝑔𝑔𝑡 + 𝜉𝑡+1 (5)

Equation (1) specifies inflation as a linear combination of expected future inflation and the output gap.

Equation (2) specifies the output gap as a linear combination of the expected future output gap, the real

interest rate, and a state variable 𝑔𝑡. Equation (3) specifies the interest rate as a linear combination of

inflation and a state variable 𝑢𝑡. The state variables are modeled as first-order autoregressive processes.

The state variable 𝑢𝑡 is the deviation of 𝑟𝑡 from its equilibrium value of (1/𝜓)𝑝𝑡. The state variable 𝑔𝑡
is also the deviation of 𝑥𝑡 from its equilibrium value.

Three of the parameters have a structural interpretation. The parameter 𝜅 is known as the slope of the

Phillips curve and is predicted to be positive. The parameter 𝛽 is the discount factor that represents the

degree to which agents discount the future relative to the current period. The parameter 1/𝜓 measures

the degree to which interest rates react to movements in inflation.

The choice of notation is intentional and indicates one way to use priors and parameter transforma-

tions. For model stability, the coefficient 1/𝜓 must be greater than one. For theoretical reasons, the

region (1.5, 2) is of particular interest. As such, the parameter 𝜓 must lie between 0 and 1. By writing

the model in terms of 𝜓, we use a beta distribution to restrict its range and to put larger weight on the

region that is of interest. For example, a beta distribution for 𝜓 that is centered at 0.67 maps on to a prior

for 1/𝜓 that places much of its mass around 1.5, and this would be a good mix of logical and theoretical

restrictions.
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Parameter estimation
We specify priors for the model parameters. The discount rate 𝛽 must lie between 0 and 1, with

common values in the range (0.90, 0.99). The price-adjustment parameter 𝜅 is usually thought to be

small and positive. The autocorrelation parameters must lie in (−1, 1) but are typically believed to be
positive and closer to 1 than 0. The parameter 1/𝜓 must be greater than 1 for model stability; hence, 𝜓
must be between 0 and 1, making the beta distribution a good candidate. The parameters of the beta prior

for 𝜓 place its center of mass on 1.5, a value commonly found in the theoretical literature.

Priors were chosen to match the above theoretical considerations. For the discount rate 𝛽, a beta
distribution with shape parameters (95, 5) is used. These shape parameters place the prior mean at 0.95

and place most of the prior mass in the region between 0.9 and 1. For the price-adjustment parameter 𝜅,
a beta distribution with shape parameters (30, 70) is used. These shape parameters place the prior mean

at 0.3 and place most of the prior mass in the region between 0.2 and 0.4. For the Taylor rule parameter

𝜓, a beta distribution with shape parameters (0.67, 0.33) is used. These shape parameters place the prior
mean at 0.67, so that its inverse is 1.5, a common value for this parameter in the literature. For the

autoregressive parameters, a beta distribution with shape parameters (75, 25) is used. This places the

prior mean of each state variable’s autoregressive parameter at 0.8, reflecting a prior belief that the state

variables show a fairly high degree of persistence.

. use https://www.stata-press.com/data/r19/usmacro2
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)
. bayes, prior({beta}, beta(95, 5))
> prior({kappa}, beta(30, 70))
> prior({psi}, beta(67, 33))
> prior({rhou}, beta(75, 20))
> prior({rhog}, beta(75, 20))
> rseed(17) :
> dsge (p = {beta}*F.p + {kappa}*x)
> (x = F.x - (r - F.p - g) , unobserved)
> (r = 1/{psi}*p + u)
> (F.u = {rhou}*u, state)
> (F.g = {rhog}*g, state)
note: initial parameter vector set to means of priors.
Burn-in ...
Simulation ...
Model summary

Likelihood:
p r ~ dsgell({beta},{kappa},{psi},{rhou},{rhog},{sd(e.u)},{sd(e.g)})

Priors:
{beta} ~ beta(95,5)

{kappa} ~ beta(30,70)
{psi} ~ beta(67,33)

{rhou rhog} ~ beta(75,20)
{sd(e.u) sd(e.g)} ~ igamma(.01,.01)
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Bayesian linear DSGE model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1955q1 thru 2015q4 Number of obs = 244

Acceptance rate = .2209
Efficiency: min = .01093

avg = .02799
Log marginal-likelihood = -796.75515 max = .05246

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

beta .9330586 .0273878 .002619 .9354095 .8728009 .975816
kappa .150112 .0247365 .001796 .1485866 .1038851 .203525

psi .5905049 .0405852 .002398 .5895752 .5146669 .6752993
rhou .6275518 .0256116 .001511 .6283089 .5764364 .6770674
rhog .9061189 .0131007 .001059 .9069891 .8800901 .9294626

sd(e.u) 2.114667 .1380783 .006028 2.104597 1.869307 2.400718
sd(e.g) .5579649 .0578754 .002862 .5574834 .4491618 .6778793

Header output repeats the prior specification and reminds us that we are fitting a DSGE model. The

MCMC acceptance rate is 0.2209, with efficiencies ranging from 1% to 5%. An acceptance rate of 20%

to 25% is typical for these models. Acceptance rates that are too low indicate that a large portion of the

proposedMCMC iterations were rejected, so that regions of high posterior probability were not sufficiently

explored. Acceptance rates that are too high indicate that theMCMC iterations stayed in a relatively small

area of high probability and did not sufficiently explore the parameter region. Efficiency is linked to the

autocorrelation of the MCMC draws, with higher efficiency indicating lower autocorrelation.

Turning to parameter estimates, we see the posterior mean for {beta} is 0.93, close to the prior mean

of 0.95. The posterior mean for {kappa} is 0.15, about halfway between the prior mean of 0.3 and the

maximum likelihood estimate of 0.08 found in [DSGE] Intro 3a. The autoregressive parameters for the

state variables are positive, with the state variable g showing autocorrelation {rhog} of 0.91 and the

state variable u showing autocorrelation {rhou} of 0.63.

Posterior diagnostics and plots
We begin by examining the efficiency of the MCMC draws.

. bayesstats ess
Efficiency summaries MCMC sample size = 10,000

Efficiency: min = .01093
avg = .02799
max = .05246

ESS Corr. time Efficiency

beta 109.35 91.45 0.0109
kappa 189.60 52.74 0.0190

psi 286.40 34.92 0.0286
rhou 287.47 34.79 0.0287
rhog 153.01 65.36 0.0153

sd(e.u) 524.63 19.06 0.0525
sd(e.g) 408.84 24.46 0.0409

https://www.stata.com/manuals/dsgeintro3a.pdf#dsgeIntro3a


Intro 9a — Bayesian estimation of a New Keynesian model 4

Some parameters have sampling efficiencies around 1%, indicating poor mixing. Low efficiency implies

that it takes longer for the MCMC chain to explore the posterior distribution. We will come back to the

issue of improving sampling efficiency in Improving sampling efficiency below.

Sometimes, the object of interest is a function of parameters rather than the parameter itself. Such

a situation occurs in this model with the Taylor rule inflation-adjustment parameter 1/𝜓. The output

is reported in terms of 𝜓 by default, but what we really want to look at is 1/𝜓. We can analyze the

posterior distribution of 1/𝜓 using the postestimation commands available after the bayes prefix. The

bayesstats summary command produces posterior summary statistics for functions of model parame-

ters. We investigate the parameter 1/𝜓 in some detail now.

. bayesstats summary (1/{psi})
Posterior summary statistics MCMC sample size = 10,000

expr1 : 1/{psi}

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

expr1 1.701543 .1181073 .006993 1.696136 1.480825 1.943004

The posterior mean is 1.7, somewhat higher than the prior mean of 1.5.

Next, we investigate the behavior of theMCMC chain using bayesgraph. (Actually, this is something
that we should have done before obtaining summary statistics to verify that the corresponding MCMC

chain converged.) To view the MCMC chain for 1/𝜓, bayesgraph diagnostics can be specified with

the desired expression directly, bound in parentheses.

. bayesgraph diagnostics (1/{psi})
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The trace plot shows reasonably good mixing, and the autocorrelations decay at a moderate pace. The

density plot shows that the first- and second-half densities are similar to the density of the full MCMC

sample. Densities that differ substantially in their first and second half can indicate nonconvergence.

https://www.stata.com/manuals/dsgeintro9a.pdf#dsgeIntro9aRemarksandexamplesImprovingsamplingefficiency
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph
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Next, we compare the prior distribution and the posterior distributions for some model parameters

directly. The bayesgraph kdensity command plots the kernel density of the posterior draws. The

addplot() option can be used to add the prior to the plot. We plot the prior and posterior of the price-

adjustment parameter {kappa} and the discount rate {beta}.

. bayesgraph kdensity {kappa},
> addplot(function Prior = betaden(30,70, x),
> legend(on label(1 ”Posterior”)))
. bayesgraph kdensity {beta},
> addplot(function Prior = betaden(95, 5, x),
> legend(on label(1 ”Posterior”)))
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The price-adjustment parameter {kappa} is now centered on 0.15, rather than the prior mean of 0.3. By

contrast, the discount rate parameter {beta} has shown little updating; the data are uninformative on

this dimension, and the posterior overlaps with the prior.

Next, we turn to the Taylor rule parameter 𝜓.
. bayesgraph kdensity {psi},
> addplot(function Prior = betaden(67, 33, x),
> legend(on label(1 ”Posterior”))
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The posterior density for 𝜓 places more weight on smaller values compared with the prior, implying a

posterior density for 1/𝜓 that places more weight on larger values than the prior.
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Finally, bayesgraph kdensity all, byparm provides posterior kernel densities for all model pa-

rameters.

. bayesgraph kdensity _all, byparm
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Densities

Such a graph can be useful in summarizing the posterior distribution of all parameters. Roughness ob-

served in these densities can be smoothed by running a longer MCMC chain.

Improving sampling efficiency
The bayesstats ess output indicates lower sampling efficiency for several model parameters.

Blocking of parameters can improve sampling efficiency. Parameters that are to be sampled indepen-

dently are specified using the block() option of bayes. Efficiency can also be enhanced by running a
longer MCMC chain, accomplished with the mcmcsize() option of bayes. A longer burn-in period can

help with convergence. To demonstrate these procedures, we block some of the parameters and increase

the length of the MCMC chain.
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. bayes, prior({beta}, beta(95, 5))
> prior({kappa}, beta(30, 70))
> prior({psi}, beta(67, 33))
> prior({rhou}, beta(70, 20))
> prior({rhog}, beta(70, 20))
> rseed(17)
> block({kappa}) block({rhou}) block({sd(e.u)})
> mcmcsize(20000) dots :
> dsge (p = {beta}*F.p + {kappa}*x)
> (x = F.x - (r - F.p - g) , unobserved)
> (r = 1/{psi}*p + u)
> (F.u = {rhou}*u, state)
> (F.g = {rhog}*g, state)
note: initial parameter vector set to means of priors.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 20000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000........
> .11000.........12000.........13000.........14000.........15000.........16000.
> ........17000.........18000.........19000.........20000 done
Model summary

Likelihood:
p r ~ dsgell({beta},{kappa},{psi},{rhou},{rhog},{sd(e.u)},{sd(e.g)})

Priors:
{beta} ~ beta(95,5)

{kappa} ~ beta(30,70)
{psi} ~ beta(67,33)

{rhou rhog} ~ beta(70,20)
{sd(e.u) sd(e.g)} ~ igamma(.01,.01)

Bayesian linear DSGE model MCMC iterations = 22,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 20,000
Sample: 1955q1 thru 2015q4 Number of obs = 244

Acceptance rate = .4085
Efficiency: min = .01979

avg = .03764
Log marginal-likelihood = -796.02145 max = .06486

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

beta .9369982 .0266526 .001015 .9401569 .8745056 .9795873
kappa .1543932 .0267139 .001229 .1525291 .1081603 .2125788

psi .5912198 .0415403 .001646 .5908567 .5109676 .6738902
rhou .6201272 .0272482 .001369 .620959 .5658674 .6728684
rhog .905648 .0145937 .000405 .9062614 .8759466 .9333209

sd(e.u) 2.11736 .1461866 .00511 2.104432 1.85604 2.439449
sd(e.g) .5544951 .0588497 .0019 .5528083 .4448559 .6758059

The above command placed three parameters into their own blocks: {kappa}, {rhog}, and {sd(e.g)}.
(In this example, we specified three separate block() options, but we could have used the shortcut

block({kappa rhog sd(e.g)}, split)). Blocking improves efficiency at the cost of longer run time.
We see that efficiency has improved overall, with the minimum rising to 2% from 1% compared with the

estimation without blocking.
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. bayesstats ess
Efficiency summaries MCMC sample size = 20,000

Efficiency: min = .01979
avg = .03764
max = .06486

ESS Corr. time Efficiency

beta 689.22 29.02 0.0345
kappa 472.47 42.33 0.0236

psi 637.19 31.39 0.0319
rhou 395.87 50.52 0.0198
rhog 1297.26 15.42 0.0649

sd(e.u) 818.49 24.44 0.0409
sd(e.g) 959.44 20.85 0.0480

Effective sample sizes have improved. In particular, the effective sample size for the price-adjustment

parameter {kappa} has more than doubled from 189.60 to 472.47.

Impulse responses
To compute Bayesian impulse–response functions, use bayesirf create after estimation. We also

need to save off ourMCMC dataset. To do this, we replay the bayes command with the saving() option.
. bayes, saving(bdsge_nksim, replace)

With the MCMC results saved, we construct impulse–response functions.

. bayesirf set bayesirf.irf

. bayesirf create nkmodel

Results can be tabulated or graphed with bayesirf table and bayesirf graph, respectively.

. bayesirf graph irf, impulse(g) response(x p r g) byopts(yrescale)
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https://www.stata.com/manuals/bayesbayesirfcreate.pdf#bayesbayesirfcreate
https://www.stata.com/manuals/bayesbayesirftable.pdf#bayesbayesirftable
https://www.stata.com/manuals/bayesbayesirfgraph.pdf#bayesbayesirfgraph


Intro 9a — Bayesian estimation of a New Keynesian model 9

Plotted are the responses of the output gap x, inflation p, interest rate r, and the state variable u to a

shock to u. The steps are in the units of time that were used for estimation, so in this case, one step is one
quarter. Eight steps are computed and plotted by default. A rise in the monetary shock causes inflation

and interest rates to fall. The output gap becomes negative, indicating that this is a contractionary shock.

All three endogenous variables return smoothly to their steady-state values over time, as the effect of the

shock dissipates.

Along with point estimates, 95% equal-tailed credible intervals are shown. The point estimates are

comparable with those seen in [DSGE] Intro 1. But the credible intervals are somewhat narrower than

the confidence intervals because of fairly tight priors used.

Also see
[DSGE] dsge — Linear dynamic stochastic general equilibrium models

[DSGE] Intro 1 — Introduction to DSGEs

[DSGE] Intro 3a — New Keynesian model

[DSGE] Intro 3d — Nonlinear New Keynesian model

[BAYES] bayes: dsge — Bayesian linear dynamic stochastic general equilibrium models

[BAYES] bayes: dsge postestimation — Postestimation tools for bayes: dsge and bayes: dsgenl

[BAYES] bayes — Bayesian regression models using the bayes prefix
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