
Intro 9 — Bayesian estimation

Description Remarks and examples Also see

Description
This entry introduces Bayesian estimation of DSGE models. We discuss the setup of such models, the

specification of priors, diagnostics tests, and other statistical and computational details important to fit

Bayesian models.

We assume that you are already familiar with the elements of a DSGE; see [DSGE] Intro 1. For a

comprehensive discussion of Bayesian analysis and Bayesian methods using Stata, see [BAYES] Intro

and [BAYES] Bayesian commands.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Principles of Bayesian DSGE estimation

An uninformative prior
An informative prior
Convergence diagnostics

Introduction
Bayesian estimation provides an alternative to maximum likelihood estimation. Bayesian analysis

combines a likelihood model for the data with a specification of prior knowledge of the distribution of

parameters to arrive at a posterior distribution for the parameters. Incorporation of prior information in

DSGE models takes several forms.

First, the prior incorporates information that would be difficult or impossible to specify through the

likelihood, broadening the amount of information that can be incorporated into the model. The likelihood

is typically specified in terms of aggregate equations. However, some information about the parameters

can be drawn from microeconomic evidence. This evidence can be incorporated into estimation via

the prior. Second, the prior incorporates logical bounds on values that a parameter might take. Some

parameters represent shares, like a capital share of income or depreciation rate of capital, so that only

the (0,1) interval is an appropriate value for the parameter. A prior that takes on positive value in (0,1)

but has a zero probability elsewhere restricts the search to the desired region. Third, the prior can reflect

information from theory, for instance, that a parameter should be positive or should lie above a critical

threshold. All of this makes Bayesian estimation of DSGE models an appealing alternative to classical

frequentist estimation.

Stata provides a full suite of commands for Bayesian estimation. See [BAYES] Intro for an introduc-

tion to Bayesian analysis and [BAYES] Bayesian commands for an introduction to Stata’s implementa-

tion of Bayesian analysis. This entry focuses on Stata’s implementation of Bayesian estimation for DSGE

models.
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https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
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Bayesian estimation of DSGEmodels is accomplished through use of the bayes: prefix. If your DSGE

model is

. dsge (y = z) (F.z = {rho}*z, state)

then the corresponding Bayesian estimates can be obtained with

. bayes, prior({rho}, uniform(0,1)): dsge (y=z) (F.z={rho}*z, state)

The command has two parts: the DSGE model and the prior specification. The DSGE model is specified

exactly as it is when estimating using maximum likelihood. Priors are specified with the prior() option
of bayes. Most bayes commands come with default priors, intended to be uninformative; see Remarks

and examples in [BAYES] bayes. However, in the case of DSGE models, default priors are only provided

for standard deviation parameters. All other model parameters must be accompanied by an explicit prior.

DSGE parameters are often logically bounded to a certain range by the model structure, such as the (0,1)

interval or greater than some critical value, so that uninformative priors over the entire real line are

inappropriate. Because DSGE parameters are model dependent, informative priors are readily available

and in most cases necessary for estimates to be reasonable.

Principles of Bayesian DSGE estimation

An uninformative prior

We begin with an autoregressive model of order 1, written in its state-space form. This model is used

to provide an introduction to the syntax of bayes: dsge and the specification of priors. See [TS] sspace

for more information on the state-space form of an autoregressive model, and see [BAYES] bayes: var

for a more general approach to the estimation of autoregression and vector autoregression models using

Bayesian methods. We can estimate the parameters of this model by maximum likelihood using the dsge
command (see [DSGE] dsge). We use output growth y as the dependent variable.

. use https://www.stata-press.com/data/r19/usmacro2
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)
. dsge (y = z) (F.z = {rho}*z, state), nolog
DSGE model
Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -639.18399

y Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
rho .3392504 .0608551 5.57 0.000 .2199765 .4585243

sd(e.z) 3.321503 .1503577 3.026808 3.616199

The first-order autocorrelation of output growth is 0.339, and the standard deviation of output shock is

3.32.

To estimate these parameters using Bayesian methods, specify a prior for model parameters, and use

the bayes: prefix. Priors for most model parameters are required. Default priors are provided for the

parameters representing the standard deviation of shocks. For a first example, we specify a flat prior for

the autocorrelation parameter 𝜌 in the range (−1, 1). The command is
. bayes, prior({rho}, uniform(-1, 1)) : dsge (y = z) (F.z = {rho}*z, state)

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamples
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamples
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/tssspace.pdf#tssspace
https://www.stata.com/manuals/bayesbayesvar.pdf#bayesbayesvar
https://www.stata.com/manuals/dsgedsge.pdf#dsgedsge
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Because Bayesian estimation is a stochastic procedure, we specify the random-number seed to ensure

reproducibility.

. bayes, rseed(17) prior({rho}, uniform(-1,1)): dsge (y=z) (F.z={rho}*z, state)
note: initial parameter vector set to means of priors.
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ dsgell({rho},{sd(e.z)})

Priors:
{rho} ~ uniform(-1,1)

{sd(e.z)} ~ igamma(.01,.01)

Bayesian linear DSGE model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1955q1 thru 2015q4 Number of obs = 244

Acceptance rate = .2635
Efficiency: min = .07655

avg = .1075
Log marginal-likelihood = -648.5502 max = .1385

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rho .3385195 .0611807 .001644 .3388822 .2251003 .465511
sd(e.z) 3.33619 .1564792 .005656 3.330808 3.062057 3.666267

The model summary shows the likelihood model and the priors used for model parameters. The like-

lihood model is dsgell(), meaning the state-space form of the DSGE model. The prior for {rho} is

uniform(−1, 1). The prior for the standard deviation of the state variable, {sd(e.z)}, is by default an
inverse-gamma prior with parameters (0.01, 0.01).

The estimation header reports the total number of MCMC draws, the length of the burn-in period, the

number of MCMC draws used for estimation, the number of observations in the dataset, the acceptance

rate, and the efficiency rates of the draws. The acceptance rate specifies the proportion of proposed

parameter values accepted by the MCMC algorithm. For the Metropolis–Hastings algorithm used by

Bayesian DSGE estimation, this number is rarely above 50% and is often below 30%. A low acceptance

rate—say, below 10%—can indicate convergence problems.

The first two columns of the estimation table report the posterior mean and posterior standard devi-

ation. Because the prior was uninformative, the posterior mean of the autoregressive parameter {rho},
0.339, is the same as the maximum likelihood estimate of 0.339. The estimation table also reports Monte

Carlo standard errors, medians, and equal-tailed credible intervals (CrIs).

By default, the Bayesian estimates are based on anMCMC sample size of 10,000 after a 2,500-iteration

burn-in. It is important to verify that theMCMC simulation has converged; otherwise, the estimates cannot

be trusted. We examine convergence diagnostics later in Convergence diagnostics.

https://www.stata.com/manuals/dsgeintro9.pdf#dsgeIntro9Remarksandexamplesconvdiag
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An informative prior

Default priors are not provided for user-defined DSGEmodel parameters. Reasonable priors are model

dependent and reflect the role the parameter plays in the model. Share parameters are bounded between

0 and 1; autoregressive parameters are bounded between −1 and 1; some parameters must be larger than

a critical value for model stability. Priors reflect these logical constraints. Additionally, priors reflect

information on the probable location of a parameter within that range. Such information can be gleaned

through prior studies or through different sources of information, such as microdata or economic theory.

Thus priors must be specified for user-defined parameters, and informative priors can affect estimation

results.

For standard deviations of shocks, an inverse-gamma prior with the shape and scale parameters of

0.01 is used. You can change the parameters of this prior by specifying the igammaprior() option, or

you can specify a different prior distribution in the prior() option.

Priors provide several useful functions in DSGE models. Many parameters in DSGE models can be

interpreted as share parameters: the capital share, the depreciation rate, the discount rate, etc. Such

parameters are naturally bounded by the interval (0,1), and a uniform prior on (0,1) guarantees that the

estimated parameter value lies within the economically sensible range. The beta distribution is frequently

useful for share parameters, in which greater weight is to be given to a particular region of the (0,1)

interval.

In addition, many parameters in DSGE models have microeconomic interpretation. As such, microe-

conomic information can be brought to bear on the estimation by using informative priors.

In Stata, priors are specified using their statistical parameters as arguments. A uniform prior on

(𝑎, 𝑏) is specified with uniform(a, b). A normal prior with mean 𝜇 and variance 𝜎2 is specified with

normal(mu, sigma2). Abeta distribution with shape parameters 𝛼 and 𝛽 is specified with beta(alpha,
beta). Uniform priors are useful for specifying an uninformative prior on a specified range. Normal pri-

ors are useful for parameters that can take on any real value. Beta priors are useful for parameters that are

naturally bounded between 0 and 1, a case that is especially salient for the parameters of DSGE models.

For a full list of priors, see [BAYES] bayes.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
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We next use an informative prior for {rho} on (0,1), centered at 0.5. An appropriate distribution for

this task is the beta distribution, and a fairly tight prior is obtained with the shape parameters (50, 50). A

graph of the prior is

. twoway function y = betaden(50, 50, x)
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Estimation with the beta(50,50) prior is accomplished using the following command:

. bayes, rseed(17) prior({rho}, beta(50,50)): dsge (y=z) (F.z={rho}*z, state)
note: initial parameter vector set to means of priors.
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ dsgell({rho},{sd(e.z)})

Priors:
{rho} ~ beta(50,50)

{sd(e.z)} ~ igamma(.01,.01)

Bayesian linear DSGE model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1955q1 thru 2015q4 Number of obs = 244

Acceptance rate = .1459
Efficiency: min = .06455

avg = .0822
Log marginal-likelihood = -648.3465 max = .09986

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rho .437131 .0373697 .001183 .4355395 .3616302 .5088862
sd(e.z) 3.35469 .1570423 .006181 3.344853 3.057471 3.684154

The acceptance rate is 15%, somewhat lower than the example with an uninformative prior. Sampling

efficiencies are little changed at around 10%. The informative prior has pulled the point estimate of

{rho} away from its maximum likelihood estimate of 0.34; the posterior mean is now 0.437. The pos-

terior mean for {rho} lies about halfway between the prior mean of 0.5 and the maximum likelihood
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estimate of 0.34. The posterior distribution reflects a balance between prior information and the data at

hand. More informative priors, indicated by a smaller standard deviation around the prior mean, tip the

balance toward the prior mean. Larger sample sizes increase the importance of the data at hand, though

macroeconomic datasets often face practical limitations on the available sample size.

Convergence diagnostics

Continuing with the previous example, we use bayesgraph diagnostics to plot diagnostic charts

for the autoregressive parameter {rho}. Four plots are provided: the MCMC draws, a histogram of the

posterior distribution, the autocorrelation of the draws, and a density plot.

. bayesgraph diagnostics {rho}
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We use these plots to visually assess two aspects of the MCMC chain: convergence and efficiency.

There are no single conclusive convergence criteria for theMCMC chain, but some visual diagnostics can

be used to explore MCMC convergence. (You can also run multiple chains to compute Gelman–Rubin

convergence diagnostics; see Convergence diagnostics using multiple chains.) The trace plot should not

exhibit any time trend and should have constant mean and variance. These properties can be inspected

in the trace plot in the top left. The density of the chain should not vary over the duration of the MCMC

sample. Constancy of the distribution can be assessed in the 1-half and 2-half density plots in the bottom

right; if these plots differ dramatically, then the chain has not converged. For further discussion of

convergence, see Convergence of MCMC.

Efficiency and mixing are terms used to describe how quickly theMCMC chain traverses the posterior

domain. A chain that mixes well has high efficiency, low autocorrelation, and traverses the posterior

quickly. A chain that mixes poorly has low efficiency and traverses the posterior slowly, exhibiting

high autocorrelation in the MCMC chain. A chain that is less efficient requires more MCMC iterations to

obtain the same information as a more efficient chain. Efficiency can also be assessed numerically; see

[BAYES] bayesstats ess.

For our autoregressive model, the trace plot shows no time trend and appears to have constant mean

and variance. The 1-half and 2-half density plots overlap with each other and with the full chain density.

These features are indicators that the chain has converged. The autocorrelation of the chain dies out

quickly, indicating that the chain has acceptable efficiency. To verify convergence more formally, we

could use the nchains() option to run multiple chains and to compute Gelman–Rubin convergence

diagnostics.

https://www.stata.com/manuals/dsgeintro9.pdf#dsgeIntro9Remarksandexamplesinfprior
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergencediagnosticsusingmultiplechains
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesstatsess.pdf#bayesbayesstatsess
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In [DSGE] Intro 9a and [DSGE] Intro 9b, we demonstrate Bayesian estimation using some of the

models we have already developed in previous sections.

[DSGE] Intro 9a demonstrates Bayesian estimation of a linear New Keynesian model.

[DSGE] Intro 9b demonstrates Bayesian estimation of a nonlinear stochastic growth model.

Also see
[DSGE] dsge — Linear dynamic stochastic general equilibrium models

[DSGE] dsgenl — Nonlinear dynamic stochastic general equilibrium models

[BAYES] bayes: dsge — Bayesian linear dynamic stochastic general equilibrium models

[BAYES] bayes: dsgenl — Bayesian nonlinear dynamic stochastic general equilibrium models

[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary
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